Problem 1 (20 points)
Answer the following questions:

a. Suppose the variable X follows the generalized Wiener process with drift rate \(\mu_X \) and variance \(\sigma_X^2 \), and the variable Y follows the generalized Wiener process with drift rate \(\mu_Y \) and variance \(\sigma_Y^2 \). Initially the variable X has the value \(\alpha \) and the variable Y the value \(\beta \). What is the distribution of \(X+Y \) after time \(\Delta t \) if:

1. The changes in X and Y in any short time interval \(\Delta t \) are uncorrelated?

\[
X \sim N \left(\alpha + \mu_X \Delta t, \sigma_X \Delta t \right), \quad Y \sim N \left(\beta + \mu_Y \Delta t, \sigma_Y \Delta t \right)
\]

\[
X + Y \sim N \left(\alpha + \beta + (\mu_X + \mu_Y) \Delta t, \sqrt{\sigma_X^2 + \sigma_Y^2} \right)
\]

2. There is a correlation \(\rho \) between the changes in X and Y in any short time interval \(\Delta t \)?

\[
X + Y \sim N \left(\alpha + \beta + (\mu_X + \mu_Y) \Delta t, \sqrt{\sigma_X^2 + \sigma_Y^2 + 2 \rho \sigma_X \sigma_Y} \right)
\]

b. Consider a variable \(S \) that follows the process \(dS = \mu dt + \sigma dz \). For the first three years, \(\mu = 2 \) and \(\sigma = 3 \). For the next three years, \(\mu = 3 \) and \(\sigma = 4 \). If the initial value of the variable \(S \) is 5, what is the probability distribution of the variable at the end of year 6?

\[
\begin{align*}
S_0 & = 5 + 3(2) + 3(1) = 10 \\
S_3 & = 5 + 3(3) + 3(2) = 20 \\
S_6 & = 5 + 3(2) + 3(3) = 20 \\
\end{align*}
\]

\[
\begin{align*}
\text{Var}(S) & = \text{Var}(DS_1) + \cdots + \text{Var}(DS_6) = 3 \times 2^2 + 3 \times 3^2 = 75 \\
\text{Var}(S_6) & = \text{Var}(S_3) + \text{Var}(DS_3) + \text{Var}(DS_6) = 75 + 9 + 9 = 93 \\
\end{align*}
\]

\[
S_6 \sim N \left(20, 93 \right)
\]
Problem 2 (20 points)
Answer the following questions:

a. Let \(c = S^{-\frac{x}{\sigma^2}} \). Does \(c \) satisfy the Black-Scholes differential equation?

\[
\frac{\partial c}{\partial t} = -\frac{x}{\sigma^2} S - \frac{x^2}{2 \sigma^2} \quad \frac{\partial^2 c}{\partial (\sigma S)} = \left(\frac{2x}{\sigma^2} \right) \left(\frac{x^2}{\sigma^2} + 1 \right) S
\]

\[
\frac{\partial c}{\partial S} + r S \frac{\partial c}{\partial S} + \left(\frac{x^2}{2 \sigma^2} \right) \frac{\partial^2 c}{\partial S^2} = - \frac{x}{\sigma^2} = r c \quad \text{YES}.
\]

b. Suppose the volatility for a stock goes to zero, i.e. \(\sigma \to 0 \). It means the stock is riskless and must earn the risk-free interest rate. Therefore, at expiration time of a call option, \(S_T = S_0 e^{rT} \). What is the value of the call option at time zero (now)?

\[
c = e^{-rt} \max \left(S_0 e^{rt} - E, 0 \right)
\]

\[
\sigma \rightarrow c = \max \left(S_0 - \frac{E}{e^{rt}}, 0 \right)
\]

c. What is the result obtained by the Black-Scholes model for the situation in (b)?

\[
\text{Suppose } S_0 > \frac{E}{e^{rt}} \rightarrow \ln \frac{S_0}{E} > -rt \Rightarrow \ln \frac{S_0}{E} + rt > 0
\]

\[
d_1 = \ln \frac{S_0}{E} + \left(r + \frac{x^2}{2 \sigma^2} \right) t = \frac{S_0}{E} - \frac{x^2}{2 \sigma^2} \rightarrow d_1 = \infty \quad \Rightarrow \quad c = S_0 - \frac{E}{e^{rt}} \quad \text{BLACK-SCHOLES}
\]

\[
\text{Suppose } S_0 < \frac{E}{e^{rt}} \Rightarrow \ln \frac{S_0}{E} + rt < 0
\]

\[
d_1 = \frac{S_0}{E} = \infty \rightarrow d_1 = -\infty
\]

\[
\phi(d_1) = \phi(d_2) = 0 \quad \Rightarrow \quad c = 0 \quad \text{BLACK-SCHOLES}
\]

d. A straddle is an option trading strategy where the investor buys a put and a call with the same expiration date and exercise price.

1. Construct a table that shows the payoff of the put, the call, and the total. Please do not use numbers. Use \(E, S_T \), etc.

\[
\begin{array}{|c|c|c|c|}
\hline
\frac{S_T}{S} & \text{LONG CALL} & \text{LONG PUT} & \text{TOTAL} \\
\hline
S < E & 0 & E - S & \text{E - S} \\
\hline
S > E & S - E & 0 & \text{S - E} \\
\hline
\end{array}
\]

2. Draw the diagram that shows the profit of the put, the call, and the total. Again, no numbers!
Problem 2 (20 points) \(\text{buy put with } E_1, \parallel \text{sell put with } E_2 \)

Part A:
Consider a bull spread when puts with exercise prices \(E_1 \) and \(E_2 \), with \(E_2 > E_1 \), are used.

a. Construct a table that shows the payoff of the puts and the total. Please do not use numbers. Use \(E, S_T \), etc.

<table>
<thead>
<tr>
<th>(S_T)</th>
<th>Long put</th>
<th>Short put</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_T > E_2)</td>
<td>0</td>
<td>(S_T - E_2)</td>
<td>(S_T - E_2)</td>
</tr>
<tr>
<td>(E_1 < S_T < E_2)</td>
<td>0</td>
<td>(S_T - E_1)</td>
<td>(S_T - E_1)</td>
</tr>
<tr>
<td>(S_T < E_1)</td>
<td>(E_1 - S_T)</td>
<td>0</td>
<td>(E_1 - E_1)</td>
</tr>
</tbody>
</table>

b. Draw the diagram that shows the payoff of the puts and the total. Again, no numbers!

Part B:
A straddle is an option trading strategy where the investor buys a put and a call with the same expiration date and exercise price.

a. Construct a table that shows the payoff of the put, the call, and the total. Please do not use numbers. Use \(E, S_T \), etc.

<table>
<thead>
<tr>
<th>(S_T)</th>
<th>Long Call</th>
<th>Long-Put</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S < E)</td>
<td>0</td>
<td>(E - S)</td>
<td>(E - S)</td>
</tr>
<tr>
<td>(S > E)</td>
<td>(S - E)</td>
<td>0</td>
<td>(S - E)</td>
</tr>
</tbody>
</table>

b. Draw the diagram that shows the profit of the put, the call, and the total. Again, no numbers!
Problem 3 (15 points)
Answer the following questions:

a. The price of a stock at time \(t = 0 \) is $40. Over each of the next two 3-month periods it is expected to increase by 10% or decrease by 10%. The risk-free continuous interest rate is 12% per year. What is the value of a 6-month European put option with exercise price of $42? Show all your work and place all the values on a 2-step binomial tree.

\[\begin{align*}
U &= 1.1^1 = 1.1, \\
D &= 0.9, \\
\rho &= \frac{e^{0.12 \frac{1}{2}} - 0.9}{1.1 - 0.9} = 0.55227, \\
1 - \rho &= 0.44773.
\end{align*} \]

\[
\frac{0.8 + 2.4 (1-\rho)}{e^{0.12 \frac{1}{4}}} = 0.80988
\]

\[
\frac{2.4 \rho + 9.6 (1-\rho)}{e^{0.12 \frac{1}{4}}} = 4.75873
\]

Finally,

\[
P = \frac{0.80988 + 4.75873 (1-\rho)}{e^{0.12 \frac{1}{4}}} \Rightarrow P = 2.11850
\]

b. Suppose the return of the underlying stock of a European call is equal to the risk-free interest rate. Show that the probability that a European call option will be exercised at time \(T \) is equal to \(\Phi(d_2) \).

Assume lognormal property of stock prices. Also, time now is 0, therefore \(\Delta t = T \).

\[\ln S_T \sim N \left(\ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right) \]

\[
P (S_T > E) = P \left(\ln S_T > \ln E \right) = P \left(\frac{\ln E - \ln S_0 - \left(r - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} > \frac{\ln E - \ln S_0 - \left(r - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right) = \Phi(d_1)
\]

\[
= P \left(Z > \frac{\ln \frac{E}{S_0} - \left(r - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right) = P \left(\frac{Z \times \ln \frac{E}{S_0} + \left(r - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right) = \Phi(d_2)
\]

c. Refer to part (b): Again, the underlying stock earns the risk-free interest rate. Give an expression of the value of the European call that pays off $100 if the price of the stock at time \(T \) is greater than \(E \).

Payoff at expiration is: 100 \(P \left(S_T > E \right) \) = 100 \(\Phi(d_2) \)

Since this is riskless, the P.V. will be the price of the call discounted using continuous risk-free interest rate.

\[
C = \frac{100 \Phi(d_2)}{e^{rT}}
\]
Problem 4 (20 points)
Answer the following questions:

a. Assume that the price S of stock A follows the lognormal distribution. Its current value is 50, with expected return and volatility 12% and 30% respectively per year. What is the probability that the stock price will be larger than 80 in two years?

\[
P(S_T > 80) = P\left(\ln S_T > \ln 80\right) = P\left(Z > \frac{\ln 80 - \ln 50 - (0.12 - \frac{0.3^2}{2}) \cdot 2}{0.3 \sqrt{2}}\right)
\]

\[
= P\left(Z > 0.75\right) = 1 - 0.7234 = 0.2266
\]

b. Refer to question (a). A European put is written on stock A with expiration date 6 months from now and with exercise price 60. What is the probability that this put option will not be exercised?

\[
P(S_T > 60) = P\left(\ln S_T > \ln 60\right) = P\left(Z > \frac{\ln 60 - \ln 50 - (0.06 - \frac{0.3^2}{2}) \cdot 0.5}{0.3 \sqrt{0.5}}\right)
\]

\[
= P\left(Z > 0.68\right) = 1 - 0.7487 = 0.2513
\]

c. Suppose a call option is currently prices at 110. You want to estimate volatility by trial and error using the Black-Scholes formula for c. You start with an initial guess of $\sigma = 0.30$ that gives $c = 115$. What should be your next guess for σ? Explain!

\[
c = 110 \text{ with } \sigma = 0.30 \text{ we get } c_1 = 115
\]

\[
\Rightarrow \text{ our next guess should be } \sigma < 0.30
\]

d. Consider the binomial option pricing model for a European put, with exercise price 52, current stock price 50, $u = 1.2$, $d = 0.3$ for a 30-period binomial tree. Find the maximum number of up movements so that the put will be in the money at expiration.

\[
\frac{\left(\frac{u}{d}\right)^k}{S_0 d^{30-k}} < 52 \Rightarrow k < \frac{\log \left(\frac{52}{50 \cdot (0.3)^{20}}\right)}{\log \frac{1.2}{0.8}}
\]

\[
k \leq 16
\]
Problem 5 (25 points)
Answer the following questions:

a. A stock price is currently $30. During each 2-month period for the next 4 months the stock will increase by 8% or decrease by 10%. The risk-free continuous interest rate is 5% per year. Use a two-step binomial tree to calculate the value of an option that pays off at expiration amount equal to $\max[(30 - S_T), 0]^2$, where S_T is the price of the stock in 4 months.

$$p = \frac{e^{rt} - d}{u - d} = \frac{e^{0.05 \cdot 2} - 0.9}{1.08 - 0.9} = 0.6020$$

Value of the option:

$$0.7056 \times 2 \times \phi(d_1) + 32.49 \times \phi(d_2)$$

$$\Rightarrow c = 5.394$$

b. Assume the Black-Scholes model applies. Consider an option on a non-dividend paying stock when the stock price is $30, the exercise price is $29, the continuously risk-free interest rate 5%, the volatility is 25% per year, and the time to expiration is 4 months.

1. What is the price of the option if it is a European call?

$$c = S_0 \phi(d_1) - e^{-rt} \phi(d_2) = 30 \phi(0.4225) - 29 \phi(0.2282)$$

$$c = 2.4478$$

2. What is the price of the option if it is an American call?

SAME

3. What is the price of the option if it is a European put?

$$P + S_0 = C + e^{-rt} P = 2.4478 + 29 \phi(0.2282) - 30$$

$$P = 0.9985$$

c. A stock price is observed weekly with S_i being the ith observation. Define $u_i = \ln(S_i/S_{i-1})$. Suppose that there are 40 observations on u_i and $\sum_{i=1}^{40} u_i = 0.18$ while $\sum_{i=1}^{40} u_i^2 = 0.06$. Estimate the stock price volatility per year.

$$\mu = \frac{1}{40} \left(0.06 - \frac{0.18}{40}\right) \approx 0.003896$$

$$\sigma_{\text{annual}} = 0.07896 \sqrt{40} \approx 0.2869$$
The standard normal distribution table. Note: $P(Z \leq 1.13) = 0.8708$.

Table 2

Cumulative Normal Distribution—Values of P Corresponding to z_p for the Normal Curve

z is the standard normal variable. The value of P for $-z_p$ equals 1 minus the value of P for $+z_p$, for example, the P for -1.62 equals $1 - 0.9474 = 0.0526$.

<table>
<thead>
<tr>
<th>z_p</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
<th>.03</th>
<th>.04</th>
<th>.05</th>
<th>.06</th>
<th>.07</th>
<th>.08</th>
<th>.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0</td>
<td>.5000</td>
<td>.5040</td>
<td>.5080</td>
<td>.5120</td>
<td>.5160</td>
<td>.5199</td>
<td>.5239</td>
<td>.5279</td>
<td>.5319</td>
<td>.5355</td>
</tr>
<tr>
<td>.1</td>
<td>.5398</td>
<td>.5438</td>
<td>.5478</td>
<td>.5517</td>
<td>.5557</td>
<td>.5596</td>
<td>.5636</td>
<td>.5675</td>
<td>.5714</td>
<td>.5752</td>
</tr>
<tr>
<td>.2</td>
<td>.5793</td>
<td>.5832</td>
<td>.5871</td>
<td>.5910</td>
<td>.5948</td>
<td>.5987</td>
<td>.6026</td>
<td>.6064</td>
<td>.6103</td>
<td>.6141</td>
</tr>
<tr>
<td>.3</td>
<td>.6179</td>
<td>.6217</td>
<td>.6255</td>
<td>.6293</td>
<td>.6331</td>
<td>.6368</td>
<td>.6406</td>
<td>.6443</td>
<td>.6480</td>
<td>.6517</td>
</tr>
<tr>
<td>.4</td>
<td>.6554</td>
<td>.6591</td>
<td>.6628</td>
<td>.6664</td>
<td>.6700</td>
<td>.6736</td>
<td>.6772</td>
<td>.6808</td>
<td>.6844</td>
<td>.6875</td>
</tr>
<tr>
<td>.5</td>
<td>.6915</td>
<td>.6950</td>
<td>.6985</td>
<td>.7019</td>
<td>.7054</td>
<td>.7088</td>
<td>.7123</td>
<td>.7157</td>
<td>.7190</td>
<td>.7224</td>
</tr>
<tr>
<td>.6</td>
<td>.7257</td>
<td>.7291</td>
<td>.7324</td>
<td>.7357</td>
<td>.7389</td>
<td>.7422</td>
<td>.7454</td>
<td>.7486</td>
<td>.7517</td>
<td>.7546</td>
</tr>
<tr>
<td>.7</td>
<td>.7580</td>
<td>.7611</td>
<td>.7642</td>
<td>.7673</td>
<td>.7704</td>
<td>.7734</td>
<td>.7764</td>
<td>.7794</td>
<td>.7823</td>
<td>.7852</td>
</tr>
<tr>
<td>.8</td>
<td>.7881</td>
<td>.7910</td>
<td>.7939</td>
<td>.7967</td>
<td>.7995</td>
<td>.8023</td>
<td>.8051</td>
<td>.8078</td>
<td>.8106</td>
<td>.8133</td>
</tr>
<tr>
<td>.9</td>
<td>.8159</td>
<td>.8186</td>
<td>.8212</td>
<td>.8238</td>
<td>.8264</td>
<td>.8289</td>
<td>.8315</td>
<td>.8340</td>
<td>.8365</td>
<td>.8385</td>
</tr>
<tr>
<td>1.0</td>
<td>.8413</td>
<td>.8438</td>
<td>.8461</td>
<td>.8485</td>
<td>.8508</td>
<td>.8531</td>
<td>.8554</td>
<td>.8577</td>
<td>.8599</td>
<td>.8621</td>
</tr>
<tr>
<td>1.1</td>
<td>.8643</td>
<td>.8665</td>
<td>.8686</td>
<td>.8708</td>
<td>.8729</td>
<td>.8749</td>
<td>.8770</td>
<td>.8790</td>
<td>.8810</td>
<td>.8833</td>
</tr>
<tr>
<td>1.2</td>
<td>.8849</td>
<td>.8869</td>
<td>.8888</td>
<td>.8907</td>
<td>.8925</td>
<td>.8944</td>
<td>.8962</td>
<td>.8980</td>
<td>.8997</td>
<td>.9015</td>
</tr>
<tr>
<td>1.3</td>
<td>.9032</td>
<td>.9049</td>
<td>.9066</td>
<td>.9082</td>
<td>.9099</td>
<td>.9115</td>
<td>.9131</td>
<td>.9147</td>
<td>.9162</td>
<td>.9177</td>
</tr>
<tr>
<td>1.4</td>
<td>.9192</td>
<td>.9207</td>
<td>.9222</td>
<td>.9236</td>
<td>.9251</td>
<td>.9263</td>
<td>.9279</td>
<td>.9292</td>
<td>.9306</td>
<td>.9319</td>
</tr>
<tr>
<td>1.5</td>
<td>.9332</td>
<td>.9345</td>
<td>.9357</td>
<td>.9370</td>
<td>.9382</td>
<td>.9394</td>
<td>.9406</td>
<td>.9418</td>
<td>.9429</td>
<td>.9441</td>
</tr>
<tr>
<td>1.6</td>
<td>.9452</td>
<td>.9463</td>
<td>.9474</td>
<td>.9484</td>
<td>.9495</td>
<td>.9505</td>
<td>.9515</td>
<td>.9525</td>
<td>.9535</td>
<td>.9545</td>
</tr>
<tr>
<td>1.7</td>
<td>.9554</td>
<td>.9564</td>
<td>.9573</td>
<td>.9582</td>
<td>.9591</td>
<td>.9599</td>
<td>.9608</td>
<td>.9616</td>
<td>.9625</td>
<td>.9633</td>
</tr>
<tr>
<td>1.8</td>
<td>.9641</td>
<td>.9649</td>
<td>.9656</td>
<td>.9664</td>
<td>.9671</td>
<td>.9678</td>
<td>.9686</td>
<td>.9693</td>
<td>.9699</td>
<td>.9706</td>
</tr>
<tr>
<td>1.9</td>
<td>.9713</td>
<td>.9719</td>
<td>.9726</td>
<td>.9732</td>
<td>.9738</td>
<td>.9744</td>
<td>.9750</td>
<td>.9756</td>
<td>.9761</td>
<td>.9767</td>
</tr>
<tr>
<td>2.0</td>
<td>.9772</td>
<td>.9778</td>
<td>.9783</td>
<td>.9788</td>
<td>.9793</td>
<td>.9798</td>
<td>.9803</td>
<td>.9808</td>
<td>.9812</td>
<td>.9817</td>
</tr>
<tr>
<td>2.1</td>
<td>.9821</td>
<td>.9826</td>
<td>.9830</td>
<td>.9834</td>
<td>.9838</td>
<td>.9842</td>
<td>.9846</td>
<td>.9850</td>
<td>.9854</td>
<td>.9857</td>
</tr>
<tr>
<td>2.2</td>
<td>.9861</td>
<td>.9864</td>
<td>.9868</td>
<td>.9871</td>
<td>.9875</td>
<td>.9878</td>
<td>.9881</td>
<td>.9884</td>
<td>.9887</td>
<td>.9890</td>
</tr>
<tr>
<td>2.3</td>
<td>.9893</td>
<td>.9896</td>
<td>.9898</td>
<td>.9901</td>
<td>.9904</td>
<td>.9906</td>
<td>.9909</td>
<td>.9911</td>
<td>.9913</td>
<td>.9916</td>
</tr>
<tr>
<td>2.4</td>
<td>.9918</td>
<td>.9920</td>
<td>.9922</td>
<td>.9925</td>
<td>.9927</td>
<td>.9929</td>
<td>.9931</td>
<td>.9932</td>
<td>.9934</td>
<td>.9936</td>
</tr>
<tr>
<td>2.5</td>
<td>.9938</td>
<td>.9940</td>
<td>.9941</td>
<td>.9943</td>
<td>.9945</td>
<td>.9946</td>
<td>.9948</td>
<td>.9949</td>
<td>.9951</td>
<td>.9952</td>
</tr>
<tr>
<td>2.6</td>
<td>.9953</td>
<td>.9955</td>
<td>.9956</td>
<td>.9957</td>
<td>.9959</td>
<td>.9960</td>
<td>.9961</td>
<td>.9962</td>
<td>.9963</td>
<td>.9964</td>
</tr>
<tr>
<td>2.7</td>
<td>.9965</td>
<td>.9966</td>
<td>.9967</td>
<td>.9968</td>
<td>.9969</td>
<td>.9970</td>
<td>.9971</td>
<td>.9972</td>
<td>.9973</td>
<td>.9974</td>
</tr>
<tr>
<td>2.8</td>
<td>.9974</td>
<td>.9975</td>
<td>.9976</td>
<td>.9977</td>
<td>.9977</td>
<td>.9978</td>
<td>.9979</td>
<td>.9979</td>
<td>.9980</td>
<td>.9981</td>
</tr>
<tr>
<td>2.9</td>
<td>.9981</td>
<td>.9982</td>
<td>.9982</td>
<td>.9983</td>
<td>.9984</td>
<td>.9984</td>
<td>.9985</td>
<td>.9985</td>
<td>.9986</td>
<td>.9986</td>
</tr>
<tr>
<td>3.0</td>
<td>.9987</td>
<td>.9987</td>
<td>.9987</td>
<td>.9988</td>
<td>.9988</td>
<td>.9989</td>
<td>.9989</td>
<td>.9989</td>
<td>.9989</td>
<td>.9990</td>
</tr>
<tr>
<td>3.1</td>
<td>.9990</td>
<td>.9991</td>
<td>.9991</td>
<td>.9991</td>
<td>.9992</td>
<td>.9992</td>
<td>.9992</td>
<td>.9992</td>
<td>.9992</td>
<td>.9993</td>
</tr>
<tr>
<td>3.2</td>
<td>.9993</td>
<td>.9993</td>
<td>.9994</td>
<td>.9994</td>
<td>.9994</td>
<td>.9994</td>
<td>.9994</td>
<td>.9995</td>
<td>.9995</td>
<td>.9995</td>
</tr>
<tr>
<td>3.3</td>
<td>.9995</td>
<td>.9995</td>
<td>.9995</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
<td>.9996</td>
</tr>
<tr>
<td>3.4</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9997</td>
<td>.9998</td>
</tr>
</tbody>
</table>