University of California, Los Angeles Department of Statistics

Statistics C183/C283

Instructor: Nicolas Christou

Homework 7 - Solutions

Exercise 1:

The call option will be exercised if $S_1 > 50$. The seller of the call will make profit if $E - S_1 + C > 0$, or $50 - S_1 + 4 > 0 \Rightarrow S_1 < 54$.

Profit from selling a call: C=4, E=50

Exercise 2:

The put option will be exercised if $S_1 < 40$. The holder of the put will make profit if $E - S_1 - P > 0$ or $40 - S_1 - 3 > 0 \Rightarrow S_1 < 37$.

Profit from buying a put: P=3, E=40

Exercise 3:

Let S_1 be the stock price at expiration.

- a. Then the 2 puts will be exercised if $S_1 < 50$. Therefore for the 2 puts the profit is: $2(50 S_1) 12 = 88 2S_1$. If $S_1 \ge 50$ then the profit is -12.
- b. The call will be exercised if $S_1 > 50$. Therefore for the call the profit is: $(S_1 50) 5 = S_1 55$. If $S_1 \le 50$ then the profit is -5.
- c. The 2 puts will be exercised if $S_1 < 50$, while the call will be exercised if $S_1 > 50$. Therefore for the 2 puts the profit is: $2(50 S_1) 17 = 83 2S_1$. For the call the profit is: $(S_1 50) 17 = S_1 67$.

Exercise 4: Profit from writing the two calls: If $S_1 \le 45$ the profit is 10. If $S_1 > 50$ the profit is $10 - 2(S_1 - 45) = 100 - 2S_1$. Profit from buying one call: If $S_1 \le 40$ the profit is -8. If $S_1 > 40$ the profit is $S_1 - 40 - 8 = S_1 - 48$.

Exercise 6: The table that shows the payoffs for each position:

S_T	Payoff from	Payoff from	Payoff from	Payoff from	Total
	long call	short call	long put	short put	
$S_T > E_2$	$S_T - E_1$	$E_2 - S_T$	0	0	E_2-E_1
$E_1 < S_T < E_2$	$S_T - E_1$	0	$E_2 - S_T$	0	$E_2 - E_1$
$S_T < E_1$	0	0	$E_2 - S_T$	$S_T - E_1$	$E_2 - E_1$