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Implied volatilities

One of the most important uses of the Black-Scholes model is the calculation of implied volatilities. These
are the volatilities implied by the option prices observed in the market. Given the price of a call option, the
implied volatility can be computed from the Black-Scholes formula. However o cannot be expressed as a
function of Sy, E, 7, t, ¢ and therefore a numerical method must be employed:

a. By trial and error. Begin with some value of o and compute ¢ using the Black-Scholes model. If the
price of ¢ is too low (compare to the market price) increase o and iterate the procedure until the value
of ¢ in the market is found. Note: the price of the call increases with volatility.

b. Use the method of Newton-Raphson to estimate o. The method works as follows:
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To find o we begin with an initial value oy and iterate as follows:
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The procedure stops when the |o,,11 — 0, is small.

Note:
The derivative of f(o) above is
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where f(d;) is the density of the standard normal distribution at dy, i.e.
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Example:
Suppose the value of a European call is C' = 1.875 when s0 = 21, E = 20,7 = 0.1,¢t = 0.25. Use the method of Newton-Raphson
to compute the implied volatility:

#Inputs:
sO <- 21
<- 20
<- 0.1
<- 0.25
<- 1.875

O ¢ KR m

#Initial value of volatility:
sigma <- 0.10

sig <- rep(0,10)

sig[1] <- sigma
#Newton-Raphson method:

for(i in 2:100){

dl <- (log(sO/E)+(r+sigma~2/2)*t)/(sigma*sqrt(t))
d2 <- di-sigma*sqrt(t)
f <- sO*pnorm(dl)-Exexp(-r*t)*pnorm(d2)-c

#Derivative of dl w.r.t. sigma:

d1l <- (sigma”2*t*sqrt(t)-(log(sO0/E)+(r+sigma”2/2)*t)*sqrt(t))/(sigma~2*t)
#Derivative of d2 w.r.t. sigma:

d22 <- dili-sqrt(t)

#Derivative of f(sigma):

f1 <- sO*dnorm(d1l)*d11-Exexp(-r*t)*dnorm(d2)*d22

#Update sigma:

sigma <- sigma - f/f1

sig[i] <- sigma

if (abs(sig[i]l-sig[i-1]) < 0.00000001){sig<- sigl[1:i]; break}
}

Here is the vector that contains the volatility at each step:

> sig
[1] 0.1000000 0.3575822 0.2396918 0.2345343 0.2345129 0.2345129

The implied volatility is o = 0.2345.

Plot of f(c) = Se®(d,) — Ee"®(d,) — ¢ against volatility
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The graph shows the plot of the function f(o) against o. The implied volatility is the value of o such that f(o) = 0.



