University of California, Los Angeles Department of Statistics

Statistics C183/C283

Instructor: Nicolas Christou

Single index model - short sales not allowed Risk free asset exists Kuhn-Tucker conditions

If we assume short sales then we can simply maximize the slope and find the tangent to the efficient frontier subject to the constraint $\sum_{i=1}^{N} x_1 = 1$

$$\max \theta = \frac{\bar{R}_G - R_f}{\sigma_G}$$

To find the $x'_i s$ we take derivatives w.r.t. each x_i set them equal to zero and solve \cdots

$$\frac{d\theta}{dx_i} = z_i \sigma_i^2 + \sum_{j \neq i}^N z_j \sigma_{ij} = 0, \ i = 1, \cdots N$$

or

$$\bar{R}_i - R_f = z_i \sigma_i^2 + \sum_{j \neq i}^N z_j \sigma_{ij}, \ i = 1, \cdots N$$

If short sales are not allowed we have an extra set of constraints $x_i \ge 0$. We still take the derivative w.r.t. each x_i but now if the maximum occurs at $x_i < 0$ then it is not feasible for our problem. Then $\frac{d\theta}{dx_i} < 0$. But if the maximum occurs at a positive x_i then $\frac{d\theta}{dx_i} = 0$ (see figure below). To summarize

$$\frac{d\theta}{dx_i} \le 0$$

which can me written as equality

 $\frac{d\theta}{dx_i}+u_i=0, \mbox{ this is the first Kuhn-Tucker condition}.$

About u_i : If the maximum occurs at a positive x_i then $u_i = 0$. If the maximum occurs at $x_i = 0$ then $\frac{d\theta}{dx_i} < 0$ and therefore $u_i > 0$. This is the second Kuhn-Tucker condition and can be written as

 $\begin{array}{rcl} x_i u_i &=& 0 \\ x_i &\geq& 0 \\ u_i &\geq& 0 \end{array}$

Now the system of equations with the Kuhn-Tucker conditions will be:

$$\bar{R}_i - R_f = z_i \sigma_i^2 + \sum_{j \neq i}^N z_j \sigma_{ij} - u_i, \ i = 1, \dots N.$$

$$z_i u_i = 0, \ i = 1, \dots N.$$

$$z_i \geq 0, \ i \dots N.$$

$$u_i \geq 0, \ i \dots N.$$

If the single index model is assumed then

$$\sigma_{ij} = \beta_i \beta_j \sigma_m^2$$
, and $\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{\epsilon_i}^2$

If we substitute this into the first Kuhn-Tucker condition we get

$$\bar{R}_i - R_f = z_i (\beta_i^2 \sigma_m^2 + \sigma_{\epsilon_i}^2) + \sum_{j \neq i}^N z_j \beta_i \beta_j \sigma_m^2 - u_i, \ i = 1, \cdots N$$

If we combine the terms on the right side we get

$$\bar{R}_i - R_f = z_i \sigma_{\epsilon_i}^2 + \sum_{j=1}^N z_j \beta_i \beta_j \sigma_m^2 - u_i, \ i = 1, \cdots N$$

Suppose now that k out of N securities will be included in the optimum portfolio. For those that are not included $z_i = 0$ and the summation in the previous expression will concern only the securities in the set of k securities

$$\bar{R}_i - R_f = z_i \sigma_{\epsilon_i}^2 + \sum_{j \in k} z_j \beta_i \beta_j \sigma_m^2 - u_i, \ i = 1, \dots N$$

But then for those securities that have positive z_i the corresponding $u_i = 0$. We can write now

$$\bar{R}_i - R_f = z_i \sigma_{\epsilon_i}^2 + \sum_{j \in k} z_j \beta_i \beta_j \sigma_m^2$$
, for $j \epsilon k$

Solve for z_i

$$z_{i} = \frac{\beta_{i}}{\sigma_{\epsilon_{i}}^{2}} \left[\frac{\bar{R}_{i} - R_{f}}{\beta_{i}} - \sigma_{m}^{2} \sum_{j \in k} z_{j} \beta_{j} \right], \text{ for } i \epsilon k$$

$$\tag{1}$$

We need an expression of $\sum z_j \beta_j$. If we multiply (1) by β_i and some over the set of k securities we get

$$\sum_{i \in k} z_i \beta_i = \sum_{i \in k} \frac{(R_i - R_f)\beta_i}{\sigma_{\epsilon_i}^2} - \sigma_m^2 \sum_{i \in k} \frac{\beta_i^2}{\sigma_{\epsilon_i}^2} \sum_{j \in k} z_j \beta_j$$

Solve for $\sum z_j \beta_j$ to get:

$$\sum_{j \in k} z_j \beta_j = \frac{\sum_{j \in k} \frac{(\bar{R}_i - R_f) \beta_j}{\sigma_{\epsilon_i}^2}}{1 + \sigma_m^2 \sum_{j \in k} \frac{\beta_j^2}{\sigma_{\epsilon_j}^2}}$$

Expression (1) can be written as:

$$z_i = \frac{\beta_i}{\sigma_{\epsilon_i}^2} \left[\frac{\bar{R}_i - R_f}{\beta_i} - C^* \right]$$

where

$$C^* = \sigma_m^2 \sum_{j \in k} z_j \beta_j = \sigma_m^2 \frac{\sum_{j \in k} \frac{(\bar{R}_i - R_f)\beta_j}{\sigma_{\epsilon_i}^2}}{1 + \sigma_m^2 \sum_{j \in k} \frac{\beta_j^2}{\sigma_{\epsilon_j}^2}}$$