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A NOTE ON USING CROSS-SECTIONAL INFORMATION IN 
BAYESIAN ESTIMATION OF SECURITY BETAS 

OLDRICH A. VASICEK* 

BAYESIAN DECISION THEORY provides formal procedures which utilize informa- 
tion available prior to sampling, together with the sample information, to con- 
struct estimates which are optimal with respect to the minimization of the 
expected loss. This paper presents a method for generating Bayesian estimates 
of the regression coefficient of rates of return of a security against those of a 
market index. The distribution of the regression coefficients across securities 
is used as the prior distribution in the analysis. Explicit formulas are given for 
the estimates. The Bayesian approach is discussed in comparison with the cur- 
rent practice of sampling-theory procedures. 

I. INTRODUCTION 

The Capital Asset Pricing Model of Treynor [7], Sharpe [6], and Lintner 
[4] states that the expected rate of return on a security in excess of the risk- 
free rate is proportional to the slope coefficient of the regression of that 
security's rates of return on a market index. The slope coefficient, or beta, is 
for this reason one of the basic concepts of modern capital market theory, and 
considerable attention has been devoted to its measurement. 

Customarily, beta is estimated from past data by least-squares regression 
procedures. The least-squares technique consists of fitting a linear relationship 
between the rates of return on a security and the rates of return on a market 
index so that the sum of squared differences between the security's actual 
returns and those implied by the relationship is minimized. 

If yt, t- 1,2, . . ., T and xt, t = 1,2, . . ., T are the series of rates of 
return on a security and on a market index, respectively, the least-squares 
estimates of the parameters (3, C, y2 in the simple linear regression process 

yt = a + xt + et, t =1 ,2, ..., T (1) 

Eet - 0, Eete8= 0 for t ?ts, Eet2 -2 

are given as 

b -_(yt y)(Xt _ )/E(Xt _x)2 (2 ) 

a - k - bxR (3) 

Sres p(yt-aa tebxta (4) 

respectively, and the variance of b is estimated as 

* Wells Fargo Bank, N.A. This paper is a minor revision of the author's unpublished memoran- 
dum "Bayesian Estimates of Beta," Wells Fargo Bank, August 1971. 

1233 



1234 The Journal of Finance 

Sb 2 - 
S2/1 (Xt -x:)2. 5 

These are the best unbiased estimates of the parameters in the sense that the 
expected value of each of the estimates is equal to the corresponding parameter 
and the expected quadratic error attains the minimal value. In particular, 
when the beta coefficient of a stock is estimated by b, the following holds: 

E(bjI3)--. (6) 

Var(bl,() = minimum over all estimates of (3 satisfying (6). (7) 

For these reasons, the sampling-theory estimation procedures are commonly 
applied to the estimation of the beta of a security. Yet, the criteria as repre- 
sented by Equations (6) and (7) do not satisfactorily reflect the desired 
properties of a beta estimator. Equation (6) describes an aspect of the dis- 
tribution of the estimate assuming that the true value of the parameter is 
given. The actual situation is just the reverse: it is the sample coefficient that 
is known, and on the basis of this (and any prior or additional) information 
we want to infer about the distribution of the parameter. 

To illustrate this point, assume that the estimated beta of a stock traded 
on the New York Stock Exchange is b = .2. In the absence of any additional 
information, this value is taken by sampling theory as being the best estimate 
of the true beta because any given true beta is equally likely to be overesti- 
mated as underestimated by the sample b. This, however, does not imply that 
given the sample estimate b, the true parameter is equally likely to be below 
or above the value .2. In fact, it is known from previous measurements that 
betas of stocks traded on the New York Stock Exchange are concentrated 
around unity, and most of them range in value between .5 and 1.5. Thus, an 
observed beta as low as 0.2 is more likely to be a result of underestimation 
than overestimation. The question of whether the estimate b is equally likely 
to lie below or above the true beta is irrelevant, since the true beta is not 
known. What is desired is an estimate such that given the sample information 
(which is available), the true beta will with equal probability lie below or 
above it. 

To pursue this example further, assume that there are 1000 stocks under 
consideration, the betas of which are known to be distributed approximately 
normally around 1.0 with standard deviation of .5. Each of these true betas 
is equally likely to be underestimated or overestimated by b. Therefore, there 
are 500 stocks with true beta higher than the observed estimate, and 500 with 
true beta lower than the estimate. If an estimate of b .2 is observed, the 
stock might be any of the approximately 500 X .945 473 stocks with f 
larger than .2 and underestimated, of any of the approximately 500 X .055 
= 27 stocks with : smaller than .2 and overestimated. Apparently, given the 
sample and our prior knowledge of beta distribution, the former is much 
more likely, and thus, it is not correct to take .2 for an unbiased estimate. 

This has been recognized before in the special situation where portfolios 
were formed by ranking of sample estimates (cf. Wagner and Vasicek [8]). 
The knowledge of the cross-sectional distribution of betas, however, can be 



Bayesian Estimation of Security Betas 1235 

used as a prior information whenever a beta of a security is estimated. Also, 
as a referee pointed out to the author, a similar problem has been recently 
addressed by Bogue [ 1 ]. Following is a Bayesian analysis of the simple normal 
regression process with the cross-sectional prior information. For information 
about the principles and techniques of Bayesian statistical theory, the reader 
is referred to Raiffa and Schlaifer [5]. 

II. BAYESIAN ESTIMATES 

For computational convenience, reparametrize the regression process (1) 
as follows: 

yt=ri + ((xt-i) +et, t= 1,2,1. . .,T (8) 

where 

- a + fix. 

Assuming normal distribution of the disturbances, the kernel k(b,y,siv,fY],q) 
of the likelihood is proportional to (see [5], p. 335) 

- Texp[-(T - 2)s2/(2o2)].exp - 2 (T(5 - 11)2 + v(b - P)2) (9) 

where b, s2 is given by Equations (2), (4), 

Y- - EYt, 

and 

v = e(Xt -)2. 

Let the information available prior to sampling consist of knowledge of the 
cross-sectional distribution of betas. Assuming that the distribution is approxi- 
mately normal with parameters b', s'b, the marginal prior density of 3 is 

f'(IP) c exp [-(- ( b')2/(2s'b2)] (10) 

(In accordance with practice, the prior distributions and parameters are de- 
noted by primed letters, the posterior by letters with double primes, and the 
sample information without superscripts.) 

Unless some prior information is available on a, a, it is assumed that the 
prior density of these parameters is assessed as 

f'(N) O cc a-,(11) 

and independent of f'((s). The density (11) is an improper density function 
corresponding to the limiting case where the prior information on I, a is 
totally negligible. The joint prior density of the parameters (3, a, a is then 

f'(,r n, ) c - Iexp [-(( -b')2/( 2s'b2) ]. (12) 

Note that the prior distribution (12) is not of the natural conjugate form 
(the bivariate normal-gamma distribution for the simple normal regression 
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process). The reason why the natural conjugate density is not suitable here 
is that the conjugate prior expresses prior information in the form as if it 
were results of previous sampling from the same process, and it is not rich 
enough to give a good representation of the case when the prior information 
involves a cross-sectional relationship among several regression processes. 

Given the prior density (12), the posterior density f" of the parameters 
(S, I, a is evaluated using Bayes' theorem: 

*(P, oIvb,y , s) (13) 

_f',I, Y) k (b, y , s Iv, A, a, Y) N (b, y, s) 

where 

N-'(b, 5, s) = f'((, a, o)k(b, 5, sjv, (, r, (3)d( dq do. 

The marginal posterior density of 13 is evaluated as 

f" (PIv, b,y, s) -ff" (P,q, a Iv, b,y, s) dqda. 

After substitution, this yields 

(14) 
-- (T-1) 

f"(Piv, b, y, s) ocexp[-( - 
-b') 2/( 2s'b2)]. T -2 + v(3 >b)2 2 

When T is larger than 20, the posterior distribution of (3 is approximately 
normal with mean b" and variance S"b2, where 

=b/s'b2 + b/sb2 (15) 
1/s'b2 + 1/Sb2 

1 /s'b2 + 1/Sb2 (16) 

Here 

Sb2 = S2/V 

is the estimated variance of b as given by Equation (5). (In sampling-theory 
terminology, Sb is usually called the standard error of the estimate b.) 

The marginal posterior density of j describes the knowledge about the dis- 
tribution of the estimated parameter, given the information from the sample 
and the prior information. The choice of a point estimate of P depends on this 
posterior distribution as well as the utility function on the space of decisions 
(estimates). Under a quadratic terminal loss function (which is a Bayesian 
analogue to the sampling-theory concept of minimum variance estimates) the 
optimal estimate of (3 is the mean of the posterior distribution (14). For T > 20, 
the error of approximating the posterior mean by b" does not exceed .01 and 
decreases approximately linearly with 1/T. Since this error is small in com- 
parison with the dispersion s"b of the posterior distribution, no material 
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loss is incurred when b" is taken for the estimate that minimizes the expected 
quadratic opportunity loss. 

III. DISCUSSION AND CONCLUSIONS 
The Bayesian estimate b" as given by Equation (15) can be interpreted as 

an adjustment of the sample estimate b toward the best prior estimate b', 
the degree of adjustment being proportionate to the precision h 1 l/sb2, 
h' = 1/S'b2 of the sample estimate and the prior distribution, respectively. 
Equation (16) can be interpreted as stating that the precision h"' =/s" b2 
of the posterior distribution is the sum of the precision of b and that of the 
prior distribution. 

The choice of the parameters b', sb of the prior density f(() depends on 
the prior information available. If nothing is known about a stock prior to 
sampling except that it comes from a certain population of stocks (for instance, 
from the population of all stocks traded on the New York Stock Exchange), 
an appropriate choice of the prior density is the cross-sectional distribution of 
betas observed for that population. For the New York Stock Exchange popula- 
tion, the prior parameters might be approximately b' - 1, s'b = .5. In this 
case, the regression coefficient estimated from the sample is linearly adjusted 
toward unity, the degree of the adjustment depending upon the standard error 
Sb of the estimate. 

A somewhat similar procedure is used in the Security Risk Evaluation 
service by Merrill Lynch, Pierce, Fenner & Smith, Inc. Their simplified 
method utilizes a formula of the form 

b"1? +k(b-1) (17) 

where k is a constant common for all stocks. This constant can be interpreted 
as the slope of the cross-sectional regression of beta estimates on those ob- 
tained over a prior non-overlapping period. Comparison of Equation (17) 
with Equation (15) shows that this method assumes that the variance sb2 

of the sample regression coefficient is the same for all securities. The effect 
of this procedure is thus to overadjust more accurate estimates and under- 
adjust the less accurate ones. 

In some cases, more can be known about a stock than that it comes from a 
certain population. Assume, for instance, that a stock is selected on the basis of 
an instrumental variable, which may be related to the true betas but not to the 
estimation error of the sample estimates b. In this case, a proper choice of the 
prior distribution is the distribution of betas implied by the knowledge of the 
instrumental variable. Thus, if a utility stock is considered, and t is known 
from previous measurements that betas of utilities are centered around .8 with a 
dispersion of .3, the estimate b is adjusted toward .8 by the formula (15) with 
b -.8, s'b = .3. In general, the degree and direction of the adjustment depend 
on the prior distribution f'(() as characterizing the information pertaining to (3 
that is contained in the instrumental variable. 

When estimating beta of a portfolio composed of N stocks, the sample esti- 
mate b is again adjusted through the formula (15). In this case, however, the 
value used for s'b is the cross-sectional dispersion of betas of portfolios of size N. 
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In most instances, a good approximation for this dispersion is obtained by as- 
suming cross-sectional independence of the regression residuals (as in the 
diagonal model) and consequently using the cross-sectional dispersion of in- 
dividual securities' betas reduces by the factor of 1/aN. 

In some cases, the prior information may contain information of another 
sample from the same process (as, regression results over a previous period) 
but the two samples cannot be pooled. This situation arises, for example, when 
a portfolio is formed by ranking securities on the basis of their estimated 
betas and then the portfolio's beta is estimated over the next period. In such 
cases, the estimation proceeds in two steps. First, the posterior distribution 
based on the first sample and the cross-sectional prior is obtained. Next, this 
posterior distribution is used as the prior density to utilize the information 
of the second sample. Thus, the sample estimate from the second sample is 
adjusted toward the adjusted first sample estimate. 

In summary, the estimate of a security's beta that minimizes the expected 
squared estimation error is- given by Equation (15), where the parameters 
b', Sib of the prior distribution are chosen to reflect all the information on beta 
available prior to sampling. The mean squared estimation error s"b2 is given 
by Equation (16). 

The relative merit of this Bayesian estimation method as contrasted to 
procedures of sampling theory will now be briefly discussed. The main objec- 
tion to the Bayesian estimation method is that the estimate b" is not an 
unbiased estimate of f (in the sampling-theory sense), while b is unbiased, 

E(b"Jl) # (, 

E(blj) - P. (18) 

To discuss this objection, it is useful to ask why unbiasedness in the sense of 
Equation (18) is desirable. One can identify two reasons, the first of which 
is that, in virtue of the law of large numbers, an unbiased estimate converges 
in probability to the estimated parameter as the sample size increases, 

Plimb (b. 
T-o oo 

The same, however, is true for the estimate b", 
Plimby (3, 
T-o oo 

since with increasing sample size Sb 2 0 and the degree of the adjustment 
decreases. 

The second reason for requiring an unbiased estimate is that the mean 
quadratic error 

E((P 0) WIN) (19) 

is minimized in a class of estimates P8 of the same variance by an unbiased 
estimate. The expected value (19) is taken with respect to the conditional 
likelihood (9) of the sample. This, however, is not justified. Rather than 
minimizing the squared sampling error, what should be done is to minimize 
the squared estimation error. That is, minimize 
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Elf( -)2 (20) 

the expectation being taken with respect to the posterior distribution of f. 
The estimate b", not b, is the estimate AP to minimize (20). 

This is more than a mere philosophical point. If two persons, one using the 
estimate b and the other b", were penalized proportionally to the squared 
difference of their respective estimates from the true parameter value P8 (or, 
for that matter, from the next-period sample estimate), the former would go 
broke first. 

In conclusion, Bayesian estimates (15) are preferred to the classical samp- 
ling-theory estimates (2) for the following reasons: First, Bayesian procedures 
provide estimates that minimize the loss due to misestimation, while sampling- 
theory estimates minimize the error of sampling. This is because Bayesian 
theory deals with the distribution of the parameters given the available infor- 
mation, while sampling theory deals with the properties of sample statistics 
given the true value of the parameters. Secondly, Bayesian theory weights 
the expected losses by a prior distribution of the parameters, thus incorporating 
knowledge which is available in addition to the sample information. This is 
particularly important in the case of estimating betas of stocks, where the 
prior information is usually sizeable. 
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