
Principal components

Principal components is a general analysis technique that has some application within regression, 
but has a much wider use as well.

Technical Stuff

We have yet to define the term “covariance”, but do so now.  Remember when we pointed out 
that if adding two independent random variables X and Y, then 
Var(X + Y ) = Var(X) + Var(Y).

What happens if X and Y are not independent?  Then 
Var(X + Y) = Var(X) + Var(Y) + something left-over.

This something left over is called the covariance.  It’s definition can be found be examining the 
definition of the variance:

Var(X) = E(X - m)2  where m is the mean E(X).

So Var(X + Y) = E((X+Y) - (mx + my))2 = E(X - mx)2 + E(Y - my)2 + E(X-mx)(Y-my)
(This is just a bit of algebra and some applications of using the Expectation as a linear operator.)

This last term, E(X-mx)(Y-my) == Cov(X,Y) is the covariance.  It is positive if, when X is bigger 
than its mean, Y tends to be bigger then its mean, or if both are negative, etc.  It measures the 
relation between X and Y.  It’s the numerator in the correlation:
Cov(X,Y)/SD(X)SD(Y)

Often, when examining several variables simultaneously, it’s productive to look at the covariance 
matrix.  This is the matrix that has the variances on the diagonal, and the covariances on the off-
diagonals.  It is a symmetric matrix, since Cov(X,Y) = Cov(Y,X).  Here’s a covariance matrix for 
two-variables:

Cov(X,X) Cov(X,Y)
Cov(Y,X) Cov(Y,Y)

Here’s the covariance matrix for the first four variables of the ozone data set:
> cov(cbind(ozone, temp, inversionht, pressure))
                  ozone         temp inversionht    pressure
ozone          67.60740     82.98688   -9264.183    77.97842
temp           82.98688    160.97822  -13410.142   165.61216
inversionht -9264.18278 -13410.14220 3344832.428 -2716.72462
pressure       77.97842    165.61216   -2716.725  1029.90152



It’s difficult to interpret the magnitudes of the covariances, although the signs have some 
interesting meanings.  Often, a correlation matrix is easier to interpret:
> cor(cbind(ozone, temp, inversionht, pressure))
                 ozone       temp inversionht    pressure
ozone        1.0000000  0.7954791 -0.61605974  0.29551496
temp         0.7954791  1.0000000 -0.57791324  0.40673431
inversionht -0.6160597 -0.5779132  1.00000000 -0.04628717
pressure     0.2955150  0.4067343 -0.04628717  1.00000000

The 1’s on the diagonal reflect the fact that variables are perfectly correlated with themselves.  At 
a glance we can see that pressure has the lowest correlation with ozone, and that there are strong 
correlations within the predictors.  (Word of warning: correlations measure only linear 
relationships.)

What is a principal component?

For simplicity sake, we’ll consider only two variables: log(ozone) and temp:

The SD of temp (horizontal axis) is 12.7, and the sd of log of ozone is .80. These SDs measure 



the spread of each variable across the horizontal and vertical axes, respectively.  What if we 
wanted to rotate the coordinate system so that the SDs were maximized?  This would be 
equivalent to re-drawing the axes to coincide with the axes of the ellipse formed by the cloud of 
data-points.  (It’s an approximate ellipse in this case, because the data are not quite normal.)

The “first principal component” finds the direction which has the maximum variation.  This 
direction turns out to be determined by the  eigen-vector of the covariance matrix associated with 
the largest eigen value.  The first eigenvalue turns out to be the variance along this direction.  The 
second principal component is constrained to be statistically indepedent of the fist and to 
maximize the variation.  This turns out to be the second eigenvector.  There are as many principal 
components as there are variables.

There are three ways to find these in R.  The first is to apply the “eigen” function to the 
covariance matrix:
   
> eigen(cov(cbind(temp,lozone)))
$values
[1] 161.3894110   0.2172475

$vectors
            lozone        temp
temp   -0.99872355  0.05051013
lozone -0.05051013 -0.99872355  

The second is to apply the “prcomp” command to a matrix containing the data, or a data frame or 
table:
> out <- prcomp(cbind(lozone, temp))
> names(out)
[1] "sdev"     "rotation" "x"       
> out$rotation
               PC1         PC2
lozone -0.05051013  0.99872355
temp   -0.99872355 -0.05051013
> out$sdev
[1] 12.7039132  0.4660981
Note that these are the square-roots of the eigenvalues above.

The third is to apply the “princomp” command -- which does the same as prcomp but using a 
slightly different numerical procedure (one that can be elss stable.)

What do we do with this information?  First, think about how we would go about “converting” 
the data from the old  coordinate system to the new.  The new axes are given by the column 



vectors labeled PC1 (new horizontal axis) and PC2 above.  So to find where a point belongs on 
the new horizontal axis, we multiple the old coordinates by PC1.  (This is equivalent to 
projecting the old point onto the new axis.)  Thus, the PC1 vector gives us a recipe: the new 
point is -.05 parts lozone and -.99872 temp.

The values of the PCs (the eigenvectors) are sometimes called the “loadings”.

This tells us that, in the direction of maximal variation, temperature matters more than ozone. So 
we might interpret temperature to be the factor that accounts for the most variation.

To carry this further:  the sum of the eigenvalues can be used as a measure of “total” variation.  
The eigenvalue associated with a particular principal component measures the percent of the total 
variation “explained” by that principal covariance.  Thus, the total variation in temperature and 
ozone is  the sum of the eigenvalues: 161.6067.  99.8% of this variation, (161.389441/1161.9067) 
is carried by the first principal component.

One way of interpreting this is to say that once we’ve calculated the first principle component, 
there’s little to be gained by translating the second.  Thus, we can throw away the second, and 
we now have a one-dimensional data set.

The translated data are stored under the “x” name in the output.  Here’s a plot:



Of course, it looks just like that last, but rotated.

What do we do with it?

PCs are useful in regression for mitigating the problem of multi-colinearity -- predictors that are 
correlated with each other.

Here’s the idea:
Rotate the predictors to principal components
The principal components are statisticall independent
If most of the total variation is explained by only a few principal components, then 
there’s no need to keep the rest.

This falls under the more general heading of “dimension reduction”.  We take a p-dimensional 
data-set and reduce its dimensions  while, hopefully, retaining most of the important information.
The main thing that’s lost is interpretability.  But sometimes, the PC results in a linear 
combination of predictors that makes sense.  If that happens, you call the new variable an 
“index” and viola, you have a useful model.



Other applications:
Sometimes the PC analysis is the endpoint.  It can be a useful way for exploring the relations 
among variables, particularly if you’re not sure which should be the predictor.  Biologists 
sometimes find this useful.  For example, a biologist is interested in studying the biological 
diversity of a certain type of squirrel.  So in a particular ecological “niche”, a few squirrels are 
captured, and various characteristics: height, weight, waist, tail length, etc. are measured.  A PC 
analysis then determines that the first PC “loads heavily” on variables that determine the overall 
size of the squirrel, and the next PC seems to determine general “shape” characteristics.  (the 
phrase “loads heavily” means that those variables get high values on a particular PC.)  The other 
PCs explain very little of the variation, and are discarded.  The biologist now has two indices: 
shape and size, with which to do her analysis.

Correlation vs. Covariance
One can also do a PC analysis on the correlation matrix, rather than the covariance matrix.  You 
will get slightly different results.  A guiding rule is this:  if the variables are measured on different 
scales or have very different variances, use correlation.  (Correlations are unitless).  Otherwise, 
use covariances.

Application to Ozone
One problem with the ozone data set was that there was a lot of colinearity among the 
predictors.  Can we produce a useful model using PC?

Because the variables are measured in different units, it makes sense to use the correlation matrix 
rather than the covariance matrix.  

The results are mixed, which isn’t surprising.  Here’s the output:
> out2 <- prcomp(cbind(temp, inversionht, pressure, visibility, 
height, humidty, temp2, windspeed), scale=T)
> summary(out2)
Importance of components:
                         PC1   PC2   PC3    PC4    PC5    PC6    PC7    PC8
Standard deviation     1.919 1.350 1.036 0.7973 0.6519 0.4141 0.3912 0.1832
Proportion of Variance 0.461 0.228 0.134 0.0795 0.0531 0.0214 0.0191 0.0042
Cumulative Proportion  0.461 0.688 0.823 0.9021 0.9552 0.9767 0.9958 1.0000
> names(out2)
[1] "sdev"     "rotation" "x"       
> out2$rotation
                   PC1          PC2         PC3          PC4        PC5
temp        -0.4750898 -0.006356703 -0.23656449 -0.061962588  0.2651884
inversionht  0.4055684 -0.265532894 -0.18068873  0.199125002  0.6500196
pressure    -0.2096776 -0.590569963 -0.05010618 -0.440499507  0.2067317
visibility   0.2505009  0.009950117 -0.71428618 -0.518268335 -0.3004242



height      -0.3950753  0.288023619 -0.32341566  0.076227499  0.4643747
humidty     -0.3180481 -0.467044124  0.32385135 -0.181507254 -0.1092342
temp2       -0.4740096  0.260226425 -0.08993665  0.004649711 -0.1680065
windspeed   -0.1454797 -0.460189502 -0.42556722  0.674604220 -0.3440273
                     PC6         PC7          PC8
temp        -0.056048668 -0.67180322 -0.435501227
inversionht  0.258402087 -0.24814687  0.376607822
pressure    -0.535397537  0.22404041  0.176435088
visibility   0.260396995 -0.01660971 -0.002505468
height       0.207737901  0.61714059 -0.104346309
humidty      0.727282617  0.04064863 -0.019135473
temp2        0.008634943 -0.21544566  0.790423464
windspeed   -0.058823366  0.08776061 -0.036688417

From this we see that we need to keep at least 5 PCs to have 95% of the variation preserved.  
The first PC is interesting in that it seems to contrast inversionht and visibility with a roughly 
equal average of the others.  So the first PC is biggest when the difference between visibility and 
inversionht with the other variables is biggest.  Perhaps someone well aquainted with this 
phenomenon could explain this, but I can’t.

We could, if we wished, keep the first 5 PCs, and redo the regression using them.
> newdata <- out2$x[,1:5]
> fit4 <-lm(ozone ~ newdata)
> summary.lm(fit4)

Call:
lm(formula = ozone ~ newdata)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.5015  -3.0063  -0.1044   2.7530  13.4531 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 11.46099    0.38734  29.589   <2e-16 ***
newdataPC1  -3.55333    0.20252 -17.545   <2e-16 ***
newdataPC2   0.21450    0.28787   0.745   0.4575    
newdataPC3   0.24829    0.37512   0.662   0.5092    
newdataPC4   0.01843    0.48754   0.038   0.9699    
newdataPC5   1.13138    0.59626   1.897   0.0599 .  
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 



Residual standard error: 4.599 on 135 degrees of freedom
Multiple R-Squared: 0.6983, Adjusted R-squared: 0.6871 
F-statistic: 62.49 on 5 and 135 DF,  p-value:     0 

The fit is somewhat less than successful.  The residuals suggest the fit is quite poor.

What went wrong?  Well, in some sense, nothing.  This is a tool which sometimes works, 
sometimes doesn’t.  But one problem is that PC works best when the distributions are all normal, 
which is not the case here.  Transformations followed by PC might do a better job.


