Stats M12 - Spring 2001

Homework Solutions \#9

Section 8.3-p. 354

2-
a) $\mathrm{X}-\mathrm{sqr}=6.4$
b) P-hat $(\mathrm{X}-\mathrm{sqr}>=6.4)=153 / 400=.3825$

Ans.: There's no reason to suspect it's unfair, because there is about 38% probability of getting this outcome.

4 -
$\mathrm{E}(\mathrm{x})=$ total tickets $/ \#$ locations $=90 / 6=15$
X -squr $=13.73$
Ans.: No, it has probability close to zero to get this outcome.
5 -
a) $\mathrm{X}-\mathrm{sqr}=3.8$
b) No, there is no evidence that the die is unfair for that outcome has 42% of chances to occur. $(72+49+23+11+9+1+2+1 / 400)$

Section 8.4, p. 365

3-
$\mathrm{E}(\mathrm{x})=10$
$\mathrm{X}-\mathrm{sqr}=22.8$
Ans.: Yes, the students tend to prefer certain numbers over others, for the probability of having that outcome is less than 2.3%.

Section 8.5, p. 376

1-
d.f. $=3$
a) $\mathrm{P}-\mathrm{hat}(\mathrm{X}-\mathrm{sqr}>=5.7)=.08(=4 / 50)$
b) P-hat $(\mathrm{X}-\mathrm{sqr}>=9.9)=.04(=2$ outcomes out of 50$)$.

2-
d.f. $=5$
a) P-hat $(\mathrm{X}-\mathrm{sqr}>=6)=.24$
b) P-hat $(X-s q r>=9.9)=.04$
c) P-hat $(\mathrm{X}-\mathrm{sqr}>=11.2)=.04$
d) P-hat $(\mathrm{X}$-sqr $>=9.6)=.06$

5-
$\mathrm{E}(\mathrm{x})=15$
a) $\mathrm{X}-\mathrm{sqr}=4$
b) $\mathrm{N}-1=5$
c) P-hat $(\mathrm{X}-\mathrm{sqr}>=4)=.50$
d) Yes, because this outcome is likely to happen on average 50% of the time.

Section 8.6, p. 383

1-
Using table 8.14, P -hat $(\mathrm{X}-\mathrm{sqr}>=4.4)=\sim .50$
Using table 8.21, P-hat $(\mathrm{X}-\mathrm{sqr}>=4.4)=\sim .50$
2-
Using table 8.14, P-hat (X-sqr $>=7.4$) $=\sim$. 24
Using table 8.21, P-hat $(\mathrm{X}-\mathrm{sqr}>=7.4)=\sim .20$

3-
Using table 8.14, P-hat (X-sqr $>=9.2$) $=\sim .11$
Using table 8.21, P-hat $(\mathrm{X}-\mathrm{sqr}>=9.2)=\sim .10$

4-
Using table 8.14, P-hat $(\mathrm{X}-\mathrm{sqr}>=11.2)=\sim .07$
Using table 8.21, P-hat $(\mathrm{X}-\mathrm{sqr}>=11.2)=\sim .05$
5 -
Using table 8.15, P -hat $(\mathrm{X}-\mathrm{sqr}>=4.6)=\sim .12$
Using table 8.21, P-hat $(\mathrm{X}-\mathrm{sqr}>=4.6)=\sim .20$
11-
$\mathrm{E}(\mathrm{x})=16$
X-sqr $=204 / 16=12.75$
P-hat $(\mathrm{X}-\mathrm{sqr}=12.75)=\sim .05$
12-
$\mathrm{E}(\mathrm{x})=38$
$\mathrm{X}-\mathrm{sqr}=203.37$
$\mathrm{P}(\mathrm{X}-\mathrm{sqr}=203.37)=\sim 0$

Section 8.7, p. 390

1-
a) $\mathrm{E}(\mathrm{x})=5$
b) $\mathrm{X}-\mathrm{sqr}=11.6=>\operatorname{Pr}(\mathrm{X}-\mathrm{sqr}>=11.6)<.05$ (From Table C, $\mathrm{df}=5$)
c) $\left(30^{*} .23\right)=6.9,\left(30^{*} .18\right)=5.4,\left(30^{*} .18\right)=5.4,\left(30^{*} .15\right)=4.5,\left(30^{*} .15\right)=4.5$, $(30 * .11)=3.3$
d) X -sqr $=1.39+1.07+1.07+2.72+2.72+.88=9.85$

P $(\mathrm{X}$-sqr $>=9.85)<\sim .10$ but >0.05

2-
X -sqr $=(314-312)^{\wedge} 2 / 312+(101-104)^{\wedge} 2 / 104+(108-104)^{\wedge} 2 / 104+(32-35)^{\wedge} 2 / 35$
X -sqr $=.013+.087+.154+.257=.511$
$\mathrm{P}(\mathrm{X}-\mathrm{sqr}>=.511)=\sim .90$
This does not cast doubt on the theory. However, many have questioned that perhaps this data set is a little too good to be true. In fact, there is evidence that Mendel "fudged" his data to get it to fit the theory!

6-
a) $\left(167^{*} .59\right)=98.53,\left(167^{*} .31\right)=51.77,\left(167^{*} .08\right)=13.36,\left(167^{*} .02\right)=3.34$
$\mathrm{X}-\mathrm{sqr}=.2028+.8853+.5217+.0346=1.6444$
$\mathrm{P}(\mathrm{X}-\mathrm{sqr}=1.6444)$ is between .90 and .50 .

Chapter 5 - Review

$1-\mathrm{E}(\mathrm{x})=\mathrm{np}=22.5$
$2-\mathrm{E}(\mathrm{x})=60^{*} 1 / 6=10$
3- Type $0=150 * .49=73.5$
Type $\mathrm{A}=150 * .27=40.5$
Type B $=150 * .20=30$
Type $\mathrm{AB}=150 * .04=6$
$4-\mathrm{P}(0$ and 0$)=.49^{*} .49=.24$
$5-\mathrm{E}(\mathrm{x})=\mathrm{np}=50^{*} .24=12$

7-
$\mathrm{E}($ purple $/$ normal $)=(624 * 9 / 16)=351$
$\mathrm{E}($ purple $/$ shrunken $)=(624 * 3 / 16)=117$
$\mathrm{E}($ yellow/normal $)=(624 * 3 / 16)=117$
$\mathrm{E}($ yellow/shrunken $)=(624 * 1 / 16)=39$
9-
a) $\mathrm{E}(\mathrm{x})=(-1)^{*} 3 / 4+(4) * 1 / 4=.25$
b) He should try to answer the questions anyway for he's likely to win on average 0.25 for each attempted answer.

10-
a) It's $(1 / 10)^{\wedge} 3=1 / 1000$ or .001
b) $5^{*} 1 / 1000=1 / 200$ or .005

Part. A

a) $\mathrm{E}(\mathrm{X})=-1$ *. $999+500$ *. $001=-\$.50$
$\mathrm{E}($ total winning $)=2 *-.50=-\$ 1.00$
$\mathrm{SD}(\mathrm{X})=\sqrt{ } \sum(\mathrm{x}-\mathrm{xbar})^{\wedge} 2 \mathrm{p}(\mathrm{x})=\sqrt{ }(-1-(-.50))^{\wedge} 2.999=(500-(-.50))^{\wedge} 2^{*} .001=$ \$ 15.84
SD $($ total winning $)=\sqrt{ }(2) * 15.84=\$ 22.40$
b) $\mathrm{E}\left(\right.$ every day of the year) $=365^{*}(-.5)=-\$ 182.00$

SD $($ total year $)=\sqrt{ }(365) * 15.84=\$ 302.62$
Let $\mathrm{Y}=\mathrm{X} 1+\mathrm{X} 2+\ldots+\mathrm{x} 365$, represent your total "winnings" after 365 plays. $\mathrm{P}(\mathrm{Y}<-.5)=\mathrm{P}(\mathrm{Z}<-.5-(-182)) / 302.62)=\mathrm{P}(\mathrm{Z}<.60)=.7257$ or 72.57%

Chapter 9-Review

a) $\mathrm{Z}=(4.392-5) / 2=-.304$
b) $\mathrm{Z}=(6.921-5) / 2=.9605$
c) $\mathrm{Z}=(8.936-5) / 2=1.968$
d) $\mathrm{Z}=(.0638-5) / 2=-2.4681$

9 -
a) Continuous
b) Discrete
c) Discrete
d) Continuous
a) $Z=(4-5) / 1=-1$
$\mathrm{P}(\mathrm{x}<4.0)=\mathrm{P}(\mathrm{Z}<-1)=.1587$
b) $\mathrm{Z}=(6.5-5.5) / .75=1.33$
$1-.9082=.0918$
$\mathrm{P}(\mathrm{X}>6.5)=.0918$
c) $\mathrm{Z}=(-5.44-(-7)) / .6=.26$

1-. $6026=.3974$
$\mathrm{P}(\mathrm{X}>-5.44)=.3974$
d) $\mathrm{Z}=(4-6) / 1.5=-1.33$
$\mathrm{Z}=(7-6) / 1.5=.67$
$\mathrm{P}(4<\mathrm{X}<7)=.7486-.0918=.6508$

13 -
a)
$\mathrm{Z}=(15.5-14.5) / .5=2$
$X=$ height of a randomly chosen semi
$\mathrm{P}(\mathrm{X}>15.5)=\mathrm{P}(\mathrm{Z}>2)=1-\mathrm{P}(\mathrm{Z}<=2)=$ $1-.9772=.0228$ or 2.28%
b) 99.9% corresponds to 3.8 Z-scores
$3.8=(\mathrm{X}-14.5) / .5$
$\mathrm{X}=1.5+14.5=16$ feet height
14 -
a) Let X represent the \# of people in a car. the pdf of X is, we're told, uniform and discrete on $1,2,3,4,5,6 . \mathrm{E}(\mathrm{X})=1 *(1 / 6)+2 *(1 / 6)+\ldots+6^{*}(1 / 6)=3.5$ people per car. $\mathrm{SD}(\mathrm{X})=1.708$
b)

person	observed	expected
1	42	20
2	31	20
3	12	20
4	18	20
5	12	20
6	5	20

X -sqr $=48.1$
P (X-sqr >=48.1) $=\sim 0$
Ans.: No, the goal hasn't been met.
18 -
Note that X is binomial, $\mathrm{n}=10, \mathrm{p}=0.75$
$\mathrm{P}(\mathrm{X}=10)=10!/ 0!10!(.75)^{\wedge} 10(.25)^{\wedge} 0=.75^{\wedge} 10=0.0563$
b) $\mathrm{P}(\mathrm{X}>=7)=\mathrm{P}(\mathrm{X}=7)+\mathrm{P}(\mathrm{X}=8)+\mathrm{P}(\mathrm{X}=9)+\mathrm{P}(\mathrm{X}=10)=0.775875$
c) $\mathrm{P}(\mathrm{X}=6)+\mathrm{P}(\mathrm{X}=7)+\mathrm{P}(\mathrm{X}=8)=0.677848$

