Finding p-Values can be a difficult part of this class because each professor and textbook covers it differently. When a textbook does not explain something clearly, it is a good idea to look in another book. However, in the case of p-values, using another book may confuse you even more.

Here are some reasons why computing p-values is different in many books:

- some books provide only one z table (usually negative z values)
- most books provide two tables, one for negative values and one for positive values.
- some books also add tables for two-tailed tests.
- Most books provide p-values for $P(Z < z)$.
- Few books provide tables for $P(Z > z)$.
- p-values for t tests cannot be computed directly without a computer or calculator, even though the t distribution is symmetric because t distribution depends on degrees of freedom.
- p-values for χ^2 and F tests cannot be computed in the same way as with z scores because there are degrees of freedom associated with the distributions, and the distributions are not even symmetric.

Definition of p-value:

The probability that a test statistic is at least as extreme as the one you computed, assuming that H_0 is true.

The definition may not mean much, but if you understand it, you will never get confused.

When performing a hypothesis test, it is important to understand where the rejection region is. When a test statistic falls in the rejection region, we reject the null hypothesis, otherwise we fail to reject H_0 in favor of H_A or H_1.

p-values are always computed in the direction of the rejection region(s). Here, I provide an explanation for each type of alternative hypothesis.
One-Tailed H_A

A one-tailed alternate has a $>$ or $<$ in it. It is called one-sided, or *one-tailed* because there is only one rejection region.

$H_A : \mu < \mu_0$

The first case is the simplest because textbooks contain a z table for a region rejection in the left tail of the distribution (referred to as $P(Z < z)$).

Case 1: z negative

You’re in luck. Just look up the z value in the table and report the p-value provided. If you have a positive and a negative z table, obviously use the negative z table.

Case 2: z positive

Draw the distribution. You have something that looks like the following. You have a rejection region on the left side, and your z score is somewhere on the right side. The p-value is computed *towards* the rejection region (hence the left arrow). Since H_A is less-than, the p-value is the probability that a z value is less than the z value you computed.

If you are given both a negative and positive z table, use the positive table and simply report the p-value given.

If you are given *just a negative* table, we have to be a bit creative. Note that the normal distribution is symmetric. This means that

$$P(Z > +z) = P(Z < -z)$$

Note that the shaded areas in the diagrams below are the same!

This means that if you only have a negative table and H_A is $<$, and z is positive, then look up the *negative* of the z value and subtract from 1, because

$$1 - P(Z < -z) = P(Z > -z) = P(Z < +z)$$
\(H_A : \mu > \mu_0 \)

The > is a little more difficult because most books do not contain a table with an upper rejection region, but it is easy once we use the properties of the normal distributions.

Case 1: \(z \) negative The rejection region is on the right side of the distribution, and our \(z \) score is negative. Recall that we compute the \(p \) in the direction of the rejection region. We need to compute \(P(Z > z) \) where \(z \) is negative.

Using the negative \(z \) table, look up \(z \) and get a probability. If we subtract that probability from 1, we get the \(p \)-value.

\[
P(Z > -z) = 1 - P(Z < -z)
\]

Case 2: \(z \) positive The rejection region is still on the right side of distribution, but our \(z \) score is also on the right side (it is positive).

If we have a positive \(z \) table, we just look up the \(z \) score and subtract the probability from 1.

\[
P(Z > +z) = 1 - P(Z < +z)
\]

If we have only a negative \(z \) table, we look up the *negative* of the \(z \) score.

\[
P(Z < -z) = P(Z > +z)
\]

Regardless of these cases, for a one-tailed test, compare the \(p \)-value to \(\alpha \). If \(p \)-value < \(\alpha \), then we reject \(H_0 \).
Two-Tailed H_A

A two-tailed alternate has a \neq in it. It is called two-sided, or *two-tailed* because there are two rejection regions, one on the left, and one on the right. Due to symmetry, the two tails always have equal area.

Computing p-values for two-tailed tests is actually easier! We have two critical values: one negative, and one positive. (The absolute values of the critical values are the same)

Look up the negative z value to get a probability. Then what? Two choices:

1. compare it to $\frac{\alpha}{2}$ and if the probability is less than $\frac{\alpha}{2}$, then reject H_0.

\[
\begin{align*}
\text{ } & = 2 \times \\
\end{align*}
\]

2. multiply the probability by 2, and this can then be called the p-value. Compare the p-value to α. If $p < \alpha$, reject H_0.

IMPORTANT! Although I have used μ and μ_0 throughout this handout, the procedure for computing the p-value for a z test is the same for proportion tests. Use p or $p_i - p_j$ instead of μ and p_0 or $p_i - p_{j0}$ instead of μ_0.

