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Abstract
This paper proposes a representational model for grid cells. In this model, the
2D self-position of the agent is represented by a high-dimensional vector, and
the 2D self-motion or displacement of the agent is represented by a matrix that
transforms the vector. Each component of the vector is a unit or a cell. The
model can learn hexagon patterns of grid cells from simulated trajectories, and
it is capable of error correction, path integral and path planning.

Background: grid cells

The activity of neurons are recorded when the rat is moving within a square
region. Each place cell fires at a particular location, but each grid cell fires at
multiple locations that form a hexagon grid.

Representational model of grid cells
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Sub-model 1 motion algebra: vector-matrix multiplication
Suppose at a position x, the self-motion or one-step displacement is ∆x. The
agent moves to x+ ∆x after one step. We assume that

v(x+ ∆x) = M(∆x)v(x), (1)

v(x): the vector representation of the self-position x
M(∆x): the matrix representation of the self-motion ∆x, which can be
parametrized as a polynomial function of ∆x.

Motion : xt
+∆x
−−−−−→ xt+1

↓ ↓ ↓

v(xt)
M(∆x)×
−−−−−→ v(xt+1)

(2)

• Disentangled blocks or modules: assume that M(∆x) is block diagonal, i.e.,

v = (v(k), k = 1, ...,K), (3)
v(k)(x+ ∆x) = M (k)(∆x)v(k)(x) (4)

Sub-model 2 local geometry: magnified local isometry
We assume that for each block,

〈v(k)(x), v(k)(x+ ∆x)〉 = d(1− αk|∆x|2), (5)

for all x and ∆x such that αk|∆x|2 ≤ c. αk can be either designed or learned.

• 1− αk|∆x|2 is a second order Taylor expansion of a function f(r) such that
f(0) = 1, f ′(0) = 0, i.e., 0 is the maximum, and f ′′(0) = −2αk.

• Let ∆θ be the angle between v(k)(x) and v(k)(x + ∆x). ωk =
√

2αk,
defining the metric of block k, we have

Magnified local isometry : ∆θ = ωk|∆x|, (6)

• Rotation: ‖v(k)(x)‖ is a constant, M (k)(∆x) is an orthogonal matrix, and
the self-motion is a rotation in the d-dimensional space. ωk|∆x|: angular speed.

Vector rotates fast, back to itself→ periodic pattern

• Projection: For a vector v(k), we can decode its position by projecting it onto
the 2D sub-manifold: x̂ = arg maxx〈v(k), v(k)(x)〉.

• Error correction: for ωk =
√

2αk � 1, the magnification offers error correc-
tion.

Sub-model 3 global geometry: adjacent kernel
We assume that for the whole vector,

〈v(x), v(y)〉 =
∑K

k=1
〈v(k)(x), v(k)(y)〉 = (Kd)f(|x− y|), (7)

f(r) is the adjacency kernel that decreases monotonically.

• Let θ be the angle between v(x) and v(y), and we have

Global adjacency : cos θ = f(|x− y|). (8)

• (v(x),∀x) forms a global codebook for x. h(x) = 〈v, v(x)〉 gives us the heat
map to decode the position of v uniquely: x̂ = arg maxx〈v, v(x)〉.

• Let V = (v(x),∀x), δx is a one-hot representation of a position x, we have
the following encoding and decoding process:

Localization : v
V >×
−−−−−→ h (heat map and decoding to δx)

δx
V×

−−−−−→ v(x) (encoding)

(9)

Learning representation

We can learn (v(x),∀x) and (M(∆x),∀∆x) (or the β coefficients that
parametrize M ) by minimizing the following loss functions.
Model 1 loss: L1 = Ex,∆x

[
‖v(x+ ∆x)−M(∆x)v(x)‖2

]
,

Model 2 loss: L2,k = Ex,∆x

[
(〈v(k)(x), v(k)(x+ ∆x)〉 − (d(1− αk|∆x|2))2

]
,

Model 3 loss: L3 = Ex,y

[
((Kd)f(|x− y|)− 〈v(x), v(y)〉)2

]
,

Regularization loss: L0 =
∑Kd

i=1(Ex[vi(x)2]− 1)2.
The total loss function is a linear combination of the above losses.
Simulated trajectories are used to learn the system.

Exp 1 learning single blocks: hexagon patterns and metrics
We first learn a single block with fixed αk by minimizing L1 + λ2L2,k + λ0L0.
The units within a block have patterns with similar scale and arrangement, yet
different phases. Learned each unit (or dimension) of v(x) over x:
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α = 180

(a) Learned single block with 6 units (b) Learned single block with 100 units

Exp 2 learning multiple blocks and metrics
We learn multiple blocks by minimizing L1 +λ2L2 +λ3L3 +λ0L0. Instead of
manually assigning αk, we learn αk by gradient descent, simultaneously with
v and M . A Gaussian kernel with σ = 0.08 is used for the global adjacency
measure f(|x− y|).

αk Learned blocks αk Learned blocks

3.9 44.1

4.7 56.3

11.9 57.0

17.0 61.7

17.3 73.0

35.7 85.7

39.1 87.5

39.7 94.7

(a) Learned multiple blocks and metrics (b) Disentangled blocks

Exp 3 path integral
Path integral (also referred to as dead-reckoning) is the task of inferring the
self-position based on self-motion (e.g., imagine walking in a dark room).
Input: initial position x0 and motion sequences {∆x1, ...,∆xT }.
Output: the prediction of one’s current position xT .
Algorithm: Encode the initial position x0 as v(x0). Then, the hidden vector
v(xT ) at time T can be predicted as: v(xT ) =

∏1
t=T M(∆xt)v(x0). We can

then decode xT from v(xT ).

(a) Predicted path (b) MSE over time step (c) Choice of block sizes and kernels

Exp 4 path planning

Input: the starting position x0, the target position y and some obstacles {zi}mi=1.
Output: the planned path to the target.
Algorithm: Let v0 = v(x0). ∆ is the set of allowable displacements ∆x. Then
the algorithm iterates

∆xt = arg max
∆x∈∆

[
〈v(y),M(∆x)vt〉 − a〈v(z),M(∆x)vt〉b

]
, (10)

vt = M(∆xt)vt−1, (11)

where a and b are the scaling and annealing parameters. The system is learned
with exponential kernel (σ = 0.3) as global adjacency.

(a) Simple planning (b) Planning with dot obstacle (c) Various obstacles
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