

Abstract

This paper proposes a representational model for grid cells. In this model, the 2D self-position of the agent is represented by a high-dimensional vector, and the 2D self-motion or displacement of the agent is represented by a matrix that transforms the vector. Each component of the vector is a unit or a cell. The model can learn hexagon patterns of grid cells from simulated trajectories, and it is capable of error correction, path integral and path planning.

Background: grid cells

The activity of neurons are recorded when the rat is moving within a square region. Each place cell fires at a particular location, but each grid cell fires at multiple locations that form a hexagon grid.

Representational model of grid cells

(1) Vector-matrix multiplication

(2) Magnified local isometry

 $\underbrace{\int \omega |\Delta x|}{v(x + \Delta x)}$

(3) Global adjacency kernel

Sub-model 1 motion algebra: vector-matrix multiplication

Suppose at a position x, the self-motion or one-step displacement is Δx . The agent moves to $x + \Delta x$ after one step. We assume that

$$v(x + \Delta x) = M(\Delta x)v(x), \tag{1}$$

v(x): the vector representation of the self-position x $M(\Delta x)$: the matrix representation of the self-motion Δx , which can be parametrized as a polynomial function of Δx .

• Disentangled blocks or modules: assume that $M(\Delta x)$ is block diagonal, i.e.,

$$v = (v^{(k)}, k = 1, ..., K),$$
(3)

$$v^{(k)}(x + \Delta x) = M^{(k)}(\Delta x)v^{(k)}(x)$$
(4)

Learning Grid Cells as Vector Representation of Self-position Coupled with Matrix Representation of Self-motion

Ruiqi Gao^{1,*}, Jianwen Xie^{2,*}, Song-Chun Zhu¹, Ying Nian Wu¹ (*equal contribution) ¹ University of California, Los Angeles, ² Hikvision Research Institute

Sub-model 2 local geometry: magnified local isometry

We assume that for each block,

$$\langle v^{(k)}(x), v^{(k)}(x + \Delta x) \rangle = d(1 - \alpha_k |\Delta x|^2), \tag{5}$$

for all x and Δx such that $\alpha_k |\Delta x|^2 \leq c$. α_k can be either designed or learned.

• $1 - \alpha_k |\Delta x|^2$ is a second order Taylor expansion of a function f(r) such that f(0) = 1, f'(0) = 0, i.e., 0 is the maximum, and $f''(0) = -2\alpha_k$.

• Let $\Delta \theta$ be the angle between $v^{(k)}(x)$ and $v^{(k)}(x + \Delta x)$. $\omega_k = \sqrt{2\alpha_k}$, defining the metric of block k, we have

> **Magnified local isometry** : $\Delta \theta = \omega_k |\Delta x|$, (6)

• Rotation: $||v^{(k)}(x)||$ is a constant, $M^{(k)}(\Delta x)$ is an orthogonal matrix, and the self-motion is a rotation in the d-dimensional space. $\omega_k |\Delta x|$: angular speed.

Vector rotates fast, back to itself \rightarrow periodic pattern

• Projection: For a vector $v^{(k)}$, we can decode its position by projecting it onto the 2D sub-manifold: $\hat{x} = \arg \max_x \langle v^{(k)}, v^{(k)}(x) \rangle$.

• Error correction: for $\omega_k = \sqrt{2\alpha_k} \gg 1$, the magnification offers error correction.

Sub-model 3 global geometry: adjacent kernel

We assume that for the whole vector,

$$\langle v(x), v(y) \rangle = \sum_{k=1}^{K} \langle v^{(k)}(x), v^{(k)}(y) \rangle = (Kd)f(|x-y|),$$
 (7)

f(r) is the adjacency kernel that decreases monotonically.

• Let θ be the angle between v(x) and v(y), and we have

Global adjacency : $\cos \theta = f(|x - y|)$. (8)

• $(v(x), \forall x)$ forms a global codebook for x. $h(x) = \langle v, v(x) \rangle$ gives us the heat map to decode the position of v uniquely: $\hat{x} = \arg \max_x \langle v, v(x) \rangle$.

• Let $V = (v(x), \forall x)$, δ_x is a one-hot representation of a position x, we have the following encoding and decoding process:

 $V^{\top} \times$ (heat map and decoding to δ_x) Localization : (9) $V \times$ $\delta_x \longrightarrow v(x)$ (encoding)

Learning representation

Exp 1 learning single blocks: hexagon patterns and metrics

 $\alpha = 18$

 $\alpha = 36$

 $\alpha = 72$

 $\alpha = 108$

 $\alpha = 144$

Exp 2 learning multiple blocks and metrics

We can learn $(v(x), \forall x)$ and $(M(\Delta x), \forall \Delta x)$ (or the β coefficients that parametrize M) by minimizing the following loss functions. Model 1 loss: $L_1 = \mathbb{E}_{x,\Delta x} \left[\| v(x + \Delta x) - M(\Delta x)v(x) \|^2 \right],$ Model 2 loss: $L_{2,k} = E_{x,\Delta x} \left[(\langle v^{(k)}(x), v^{(k)}(x + \Delta x) \rangle - (d(1 - \alpha_k |\Delta x|^2))^2 \right]$ Model 3 loss: $L_3 = E_{x,y} \left[((Kd)f(|x-y|) - \langle v(x), v(y) \rangle)^2 \right],$ Regularization loss: $L_0 = \sum_{i=1}^{Kd} (E_x [v_i(x)^2] - 1)^2$. The total loss function is a linear combination of the above losses. Simulated trajectories are used to learn the system.

We first learn a single block with fixed α_k by minimizing $L_1 + \lambda_2 L_{2,k} + \lambda_0 L_0$. The units within a block have patterns with similar scale and arrangement, yet different phases. Learned each unit (or dimension) of v(x) over x:

(a) Learned single block with 6 units

(b) Learned single block with 100 units

We learn multiple blocks by minimizing $L_1 + \lambda_2 L_2 + \lambda_3 L_3 + \lambda_0 L_0$. Instead of manually assigning α_k , we learn α_k by gradient descent, simultaneously with v and M. A Gaussian kernel with $\sigma = 0.08$ is used for the global adjacency measure f(|x - y|).

Exp 3 path integral

then decode x_T from $v(x_T)$.

(b) MSE over time step (c) Choice of block sizes and kernels (a) Predicted path

Exp 4 path planning

the algorithm iterates

$$\Delta x_t$$

 $v_t = I$

where a and b are the scaling and annealing parameters. The system is learned with exponential kernel ($\sigma = 0.3$) as global adjacency.

Reference

ICLR(2018).

Path integral (also referred to as dead-reckoning) is the task of inferring the self-position based on self-motion (e.g., imagine walking in a dark room). **Input**: initial position x_0 and motion sequences $\{\Delta x_1, ..., \Delta x_T\}$.

Output: the prediction of one's current position x_T .

Algorithm: Encode the initial position x_0 as $v(x_0)$. Then, the hidden vector $v(x_T)$ at time T can be predicted as: $v(x_T) = \prod_{t=T}^{1} M(\Delta x_t) v(x_0)$. We can

Input: the starting position x_0 , the target position y and some obstacles $\{z_i\}_{i=1}^m$. **Output**: the planned path to the target.

Algorithm: Let $v_0 = v(x_0)$. Δ is the set of allowable displacements Δx . Then

$$= \arg \max_{\Delta x \in \Delta} \left[\langle v(y), M(\Delta x)v_t \rangle - a \langle v(z), M(\Delta x)v_t \rangle^b \right], \quad (10)$$
$$M(\Delta x_t)v_{t-1}, \quad (11)$$

[1] Banino, Andrea, et al. "Vector-based navigation using grid-like representations in artificial agents." Nature 557.7705 (2018): 429.

[2] Cueva, Christopher J., and Xue-Xin Wei. "Emergence of grid-like representations by training recurrent neural networks to perform spatial localization."