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Preface

Introducing the Book Series

The book series consists of three parts.
The first book covers David Marr’s paradigm and various underlying statistical models for

vision. The mathematical foundations herein integrate three regimes of models (low-, mid-, and
high-entropy regimes) and provide essential foundation for research in visual coding, recognition,
cognition, and reasoning. Concepts in this book are first explained for understanding and then
supported by findings in psychology and neuroscience, after which they are established by statistical
models and further linked to research in other fields such as physics. A reader of this book will
gain a unified, cross-disciplinary view of artificial intelligence research in vision and will accrue
knowledge spanning from psychology to neuroscience to statistics.

The second book defines a stochastic grammar for parsing objects, scenes, and events, posing
computer vision as a joint parsing problem. It summarizes research efforts over the past 20 years
that have worked to extend King-Sun Fu’s paradigm of syntactic pattern recognition. Similar to
David Marr, King-Sun Fu was a pioneer and influential figure in the vision and pattern recognition
community.

The third book discusses visual commonsense reasoning by connecting vision to cognition and
artificial intelligence. Recent progress in deep learning is essentially based on a “big data for small
tasks” paradigm, under which massive amounts of data are used to train a classifier for a single
narrow task. In this work, we call for a shift that flips this paradigm upside down. Specifically, we
propose a “small data for big tasks” paradigm, wherein a single AI system is challenged to develop
“common sense,” enabling it to solve a wide range of tasks with little training data. We illustrate
the potential power of this new paradigm by reviewing models of common sense that synthesize
recent breakthroughs in both machine and human vision. We identify functionality, physics, intent,
causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common
sense. When taken as a unified concept, FPICU is concerned with the questions of “why” and
“how,” beyond the dominant “what” and “where” framework for understanding vision. They are
invisible in terms of pixels but nevertheless drive the creation, maintenance, and development of
visual scenes. We therefore coin them the “dark matter” of vision. Just as our universe cannot
be understood by merely studying observable matter, we argue that vision cannot be understood
without studying FPICU. We demonstrate the power of this perspective to develop cognitive AI
systems with humanlike common sense by showing how to observe and apply FPICU with little
training data to solve a wide range of challenging tasks, including tool use, planning, utility in-
ference, and social learning. In summary, we argue that the next generation of AI must embrace
“dark” humanlike common sense for solving novel tasks.

The authors would like to thank many current and former Ph.D. students at UCLA for their
contributions to this book: Siyuan Huang, Hangxin Liu, Mark Edmonds, Lifeng Fan, Baoxiong Jia,
and Tianmin Shu.
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Chapter 1

Introduction

If one hopes to achieve a full understanding of a system as complicated as a nervous
system, . . . , or even a large computer program, then one must be prepared to contem-
plate different kinds of explanation at different levels of description that are linked, at
least in principle, into a cohesive whole, even if linking the levels in complete details is
impractical. — David Marr [1], pp. 20–21

1.1 Three Types of Representation

Computer vision is the front gate to artificial intelligence (AI) and a major component of modern
intelligent systems. The classic definition of computer vision proposed by the pioneer David Marr [1]
is to look at “what” is “where.” Here, “what” refers to object recognition (object vision), and
“where” denotes three-dimensional (3D) reconstruction and object localization (spatial vision) [2].
Such a definition corresponds to two pathways in the human brain: (i) the ventral pathway for
categorical recognition of objects and scenes, and (ii) the dorsal pathway for the reconstruction
of depth and shapes, scene layout, visually guided actions, and so forth. This paradigm guided
the geometry-based approaches to computer vision of the 1980s-1990s, and the appearance-based
methods of the past 20 years.

1.1.1 Image-centered Representation

The image-based representation relies heavily on the appearance in an image and is the focus
of the first book in this book series. Such a representation is primarily a bottom-up process. To
provide a brief summary, David Marr [1] conjectured that the perception of a 2D image is an explicit
multi-phase information process, involving (i) an early vision system of perceiving textures [3, 4] and
textons [5, 6] to form a primal sketch as a perceptually lossless conversion from the raw image [7, 8],
(ii) a mid-level vision system to construct 2.1D (multiple layers with partial occlusion) [9, 10, 11]
and 2.5D [12] sketches, and (iii) a high-level vision system that recovers the full 3D [13, 14, 15].

Alternatively, since appearance in natural 2D images varies significantly due to different camera
viewpoints, lighting, reflectance, occlusions, etc., enormous efforts have been dedicated to engineer
or learn features that are robust enough to handle such large variations. Notable efforts include the
engineered SIFT feature [16] and recent deep neural networks (DNNs)-based learned features [17].

1



CHAPTER 1. INTRODUCTION 2
Integrating Function, Geometry, Appearance for Scene Parsing 5

headboard

mattress

side table

picture
cabinet

table

chair

background

Functional space

Appearance space

bedroom

table      chair                 cabinet                bed           side table    picture 

sitting                      storing                       sleeping dwelling

mattress  headboard

detected linesdetected foregrounds detected orientation

generated linesgenerated foregrounds generated orientation

table

chair

cabinet

headboard

mattress

side table

Geometric space

side table

mattress

headboard

chair

table

cabinet

picture

sitting storing

sleeping

scene category

functional group

functional object

functional part

bottom-up proposal

top-down proposal

action as a hidden variable in the scene

(a) the Function-Geometry-Appearance hierarchy

(b) object affordance

(c) contextual relations from an overhead view

storing

sitting

sleeping

Fig. 3 (a) The function, geometry and appearance (FGA) hierarchy in our proposed scene parsing grammar. The scene
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in the scene. These actions impose the object affordance and contextual relations to the geometric entities. The final parsing
result is evaluated on top of the synthesis of appearance likelihood maps. (b) The 3D human-object interactions. (c) The
contextual relations between objects.

ple, three hinged rectangles form a 3D box, four linked

line segments form a rectangle, a background and in-
side objects form a scene; (ii) The SET rule in Fig. 4(ii)
represents an ensemble of entities, e.g. a set of 3D boxes

or a set of 2D regions; (iii) The OR rule in Fig. 4 (iii)
represents a switch between different sub-types, e.g. a
3D foreground and 3D background have several sub-
types. Each type represents a geometric viewpoint, from

which one can only see certain planes of a cuboid. The
choice of OR triggers different branches of the AND
rules, then combinations of them will become a SET

rule, i.e. cuboid → plane1 · plane2 · plane3 | plane2 ·
plane4 | · · ·

Two types of contextual relations: Cooperative

”+” and Competitive ”-”. If the visual entities satisfy
a cooperative ”+” relation, they tend to bind together,
e.g. hinged rectangles of a foreground box showed in
Fig. 4(a). In contrast, entities is a competitive ”-” rela-

tion, they compete against each other for their pres-
ences in the parse tree, e.g. two exclusive (conflict-
ing) foreground boxes competing for a same space in

Fig. 4(b) and thus cannot both exist in a valid parse
tree.

(II) A Function-Geometry-Appearance hierarchy.

Figure 1.1: An example illustrating the three types of representation. (a) On the bottom, the image- and
appearance-based representation handles large variations stemmed from raw pixel input, which is the focus
of the book 1 in this book series. One-level abstraction of the appearance-based representation is the scene-
and geometric-based representation. Together with the appearance-based representation, they collaboratively
describe contextual relations in an image. The modeling and learning of such representations is the theme
of the book 2 in this book series. On the top comes the task- and functional-based presentation of the scene.
Man-made scenes and objects are largely driven by these invisible tasks and functions. Together with the
geometric-space, they cooperatively model a crucial concept of object affordance in the scene. In this book,
we focus on modeling and learning of these “dark metters” inside the image.

1.1.2 Scene-centered Representation

Scenes in 3D world captured by camera ought to satisfy certain geometric prior. From a Bayesian
perspective at a scene level, such priors, independent of any 3D scene structures, were found in the
human-made scenes. A notable effect is known as the Manhattan World assumption [18].

These geometric priors are more robust than appearance features; one can view them as a one-
level abstract of the appearance-based representation, as such a geometric representation removes
the detailed color, reflectance, etc., but only focuses on the geometric structure of the environment.
This type of geometric structure can still be directly perceived and parsed from the image, although
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not as straightforward as detecting a face or an object; see an illustration in Fig. 1.1(a).
The geometric-based scene-centered representation enables a stream of work called “analysis

by synthesis” [19], which fuses the bottom-up proposals together with the top-down parsing that
incorporates the geometric priors. The central idea is: Bottom-up process proposes by detecting
primitives and grouping (similar to Gestalt laws [20, 21]) provides hypothesis of the scenes and
their structures. By directly comparing with an image, in particular, the filtered geometric-focused
version, these hypotheses could be accepted or rejected on the basis of how closely the proposal is
compared to the filtered version.

Combining geometric- and appearance-based representations, an algorithm can learn or derive
a set of contextual relations among objects in 3D within a given scene; see an example in Fig. 1.1
(c). These relations could pose additional constraints in scene understanding and synthesis, and
book 2 of this book series focuses on this perspective.

1.1.3 Task-centered Representation

Man-made scenes and objects are everything but randomly generated; they have been designed to
serve certain intrinsic functions for human activities and tasks. Crucially, these activities and tasks
are beyond the visible pixels in a given image, and an algorithm has to infer from these missing
dimensions—humanlike common sense.

These invisible dimensions drives a scene configuration of man-made environments. Take Fig. 1.1
(a) for example, a bedroom serves functions of sitting, storing, sleeping, and dwelling. Each function
generates a prior of how likely a person would interact with the environment. Combining these priors
with the geometric space, they form a crucial concept of object affordance (see Fig. 1.1 (b)), which
provides additional constraints for parsing of the man-made environments.

This task-centered perspective of the scene is the main theme of this book. Below, we start with
a more detailed introduction on task-oriented vision.

1.2 Dark Matter in Vision and AI

Over the past several years, progress has been made in object detection and localization with the
rapid advancement of DNNs, fueled by hardware accelerations and the availability of massive sets
of labeled data. However, we are still far from solving computer vision or real machine intelligence;
the inference and reasoning abilities of current computer vision systems are narrow and highly
specialized, require large sets of labeled training data designed for special tasks, and lack a general
understanding of common facts—that is, facts that are obvious to the average human adult—that
describe how our physical and social worlds work. To fill in the gap between modern computer
vision and human vision, we must find a broader perspective from which to model and reason
about the missing dimension, which is humanlike common sense.

This state of our understanding of vision is analogous to what has been observed in the fields
of cosmology and astrophysicists. In the 1980s, physicists proposed what is now the standard
cosmology model, in which the mass-energy observed by the electromagnetic spectrum accounts
for less than 5% of the universe; the rest of the universe is dark matter (23%) and dark energy
(72%)1. The properties and characteristics of dark matter and dark energy cannot be observed
and must be reasoned from the visible mass-energy using a sophisticated model. Despite their
invisibility, however, dark matter and energy help to explain the formation, evolution, and motion
of the visible universe.

1https://map.gsfc.nasa.gov/universe/

https://map.gsfc.nasa.gov/universe/
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Figure 1.2: An example of in-depth understanding of a scene or event through joint parsing and cognitive
reasoning. From a single image, a computer vision system should be able to jointly (i) reconstruct the
3D scene; (ii) estimate camera parameters, materials, and illumination; (iii) parse the scene hierarchically
with attributes, fluents, and relationships; (iv) reason about the intentions and beliefs of agents (e.g ., the
human and dog in this example); (v) predict their actions in time; and (vi) recover invisible elements such
as water, latent object states, and so forth. We, as humans, can effortlessly (i) predict that water is about
to come out of the kettle; (ii) reason that the intent behind putting the ketchup bottle upside down is to
utilize gravity for easy use; and (iii) see that there is a glass table, which is difficult to detect with existing
computer vision methods, under the dog; without seeing the glass table, parsing results would violate the
laws of physics, as the dog would appear to be floating in midair. These perceptions can only be achieved
by reasoning about unobservable factors in the scene not represented by pixels, requiring us to build an AI
system with humanlike core knowledge and common sense, which are largely missing from current computer
vision research. H: height; L: length; W: width. 1 in = 2.54 cm. Reproduced from Ref. [22] with permission
of Elsevier, © 2020.

We intend to borrow this physics concept to raise awareness, in the vision community and
beyond, of the missing dimensions and the potential benefits of joint representation and joint in-
ference. We argue that humans can make rich inferences from sparse and high-dimensional data,
and achieve deep understanding from a single picture, because we have common yet visually imper-
ceptible knowledge that can never be understood just by asking “what” and “where.” Specifically,
human-made objects and scenes are designed with latent functionality, determined by the unobserv-
able laws of physics and their down-stream causal relationships; consider how our understanding of
water’s flow from of a kettle, or our knowledge that a transparent substance such as glass can serve
as a solid table surface, tells us what is happening in Fig. 1.2. Meanwhile, human activities, espe-
cially social activities, are governed by causality, physics, functionality, social intent, and individual
preferences and utility. In images and videos, many entities (e.g ., functional objects, fluids, object
fluents, and intent) and relationships (e.g ., causal effects and physical supports) are impossible to
detect by most of the existing approaches considering appearance alone; these latent factors are not
represented in pixels. Yet they are pervasive and govern the placement and motion of the visible
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entities that are relatively easy for current methods to detect.
These invisible factors are largely missing from recent computer vision literature, in which most

tasks have been converted into classification problems, empowered by large-scale annotated data
and end-to-end training using neural networks. This is what we call the “big data for small tasks”
paradigm of computer vision and AI.

In this book, we aim to draw attention to a promising new direction, where consideration of
“dark” entities and relationships is incorporated into vision and AI research. By reasoning about the
unobservable factors beyond visible pixels, we could approximate humanlike common sense, using
limited data to achieve generalizations across a variety of tasks. Such tasks would include a mixture
of both classic “what and where” problems (i.e., classification, localization, and reconstruction),
and “why, how, and what if” problems, including but not limited to causal reasoning, intuitive
physics, learning functionality and affordance, intent prediction, and utility learning. We coin this
new paradigm “small data for big tasks.”

Of course, it is well-known that vision is an ill-posed inverse problem [1] where only pixels are
seen directly, and anything else is hidden/latent. The concept of “darkness” is perpendicular to
and richer than the meanings of “latent” or “hidden” used in vision and probabilistic modeling;
“darkness” is a measure of the relative difficulty of classifying an entity or inferring about a re-
lationship based on how much invisible common sense needed beyond the visible appearance or
geometry. Entities can fall on a continuous spectrum of “darkness”—from objects such as a generic
human face, which is relatively easy to recognize based on its appearance, and is thus considered
“visible,” to functional objects such as chairs, which are challenging to recognize due to their large
intraclass variation, and all the way to entities or relationships that are impossible to recognize
through pixels. In contrast, the functionality of the kettle is “dark;” through common sense, a
human can easily infer that there is liquid inside it. The position of the ketchup bottle could also
be considered “dark,” as the understanding of typical human intent lets us understand that it has
been placed upside down to harness gravity for easy dispensing.

Below, we start by revisiting a classic view of computer vision in terms of “what” and “where”
in Section 1.2.1, in which we show that the human vision system is essentially task-driven, with
its representation and computational mechanisms rooted in various tasks. In order to use “small
data” to solve “big tasks,” we then identify and review five crucial axes of visual common sense:
Functionality, Physics, perceived Intent, Causality, and Utility (FPICU). Causality (Section 1.2.2)
is the basis for intelligent understanding. The application of causality (i.e., intuitive physics; Sec-
tion 1.2.3) affords humans the ability to understand the physical world we live in. Functionality
(Section 1.2.4) is a further understanding of the physical environment humans use when they in-
teract with it, performing appropriate actions to change the world in service of activities. When
considering social interactions beyond the physical world, humans need to further infer intent
(Section 1.2.5) in order to understand other humans’ behavior. Ultimately, with the accumulated
knowledge of the physical and social world, the decisions of a rational agent are utility-driven (Sec-
tion 1.2.6). In a series of studies, we demonstrate that these five critical aspects of “dark entities”
and “dark relationships” indeed support various visual tasks beyond just classification. We sum-
marize and discuss our perspectives in Section 1.2.7, arguing that it is crucial for the future of
AI to master these essential unseen ingredients, rather than only increasing the performance and
complexity of data-driven approaches.

1.2.1 Vision: From Data-driven to Task-driven

What should a vision system afford the agent it serves? From a biological perspective, the majority
of living creatures use a single (with multiple components) vision system to perform thousands
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(a)

(b)

(c)

Figure 1.3: Even for as “simple” a task as making a cup of tea, a person can make use of his or her single
vision system to perform a variety of subtasks in order to achieve the ultimate goal. (a) Record of the visual
fixations of three different subjects performing the same task of making a cup of tea in a small rectangular
kitchen; (b) examples of fixation patterns drawn from an eye-movement videotape; (c) a sequence of visual
and motor events during a tea-making session. Rot: rotate; ktl: kettle. Reproduced from Ref. [24] with
permission of SAGE Publication, © 1999.

of tasks. This contrasts with the dominant contemporary stream of thought in computer vision
research, where a single model is designed specifically for a single task. In the literature, this
organic paradigm of generalization, adaptation, and transfer among various tasks is referred to as
task-centered vision [23]. In the kitchen shown in Fig. 1.3 [24], even a task as simple as making a
cup of coffee consists of multiple subtasks, including finding objects (object recognition), grasping
objects (object manipulation), finding milk in the refrigerator, and adding sugar (task planning).
Prior research has shown that a person can finish making a cup of coffee within 1 min by utilizing
a single vision system to facilitate the performance of a variety of subtasks [24].

Neuroscience studies suggest similar results, indicating that the human vision system is far more
capable than any existing computer vision system, and goes beyond merely memorizing patterns
of pixels. For example, Fang and He [25] showed that recognizing a face inside an image utilizes
a different mechanism from recognizing an object that can be manipulated as a tool, as shown
in Fig. 1.4; indeed, their results show that humans may be even more visually responsive to the
appearance of tools than to faces, driving home how much reasoning about how an object can
help perform tasks is ingrained in visual intelligence. Other studies [26] also support the similar
conclusion that images of tools “potentiate” actions, even when overt actions are not required.
Taken together, these results indicate that our biological vision system possesses a mechanism for
perceiving object functionality (i.e., how an object can be manipulated as a tool) that is independent
of the mechanism governing face recognition (and recognition of other objects). All these findings
call for a quest to discover the mechanisms of the human vision system and natural intelligence.
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(a) (b)

Figure 1.4: Cortical responses to invisible objects in the human dorsal and ventral pathways. (a) Stimuli
(tools and faces) and experimental procedures; (b) both the dorsal and ventral areas responded to tools
and faces. When stimuli were suppressed by high-contrast dynamic textures, the dorsal response remained
responsive to tools, but not to faces, while neither tools or faces evoked much activation in the ventral area.
BOLD: blood oxygen level-dependent. Reproduced from Ref. [25] with permission of Nature Publishing
Group, © 2005.

“What”: Task-centered Visual Recognition

The human brain can grasp the “gist” of a scene in an image within 200 ms, as observed by Potter
in the 1970s [27, 28], and by Schyns and Oliva [29] and Thorpe et al . [30] in the 1990s. This line
of work often leads researchers to treat categorization as a data-driven process [31, 32, 33, 34, 35],
mostly in a feed-forward network architecture [36, 37]. Such thinking has driven image classification
research in computer vision and machine learning in the past decade and has achieved remarkable
progress, including the recent success of DNNs [38, 39, 40].

Despite the fact that these approaches achieved good performances on scene categorization
in terms of recognition accuracy in publicly available datasets, a recent large-scale neuroscience
study [41] has shown that current DNNs cannot account for the image-level behavior patterns of
primates (both humans and monkeys), calling attention to the need for more precise accounting
for the neural mechanisms underlying primate object vision. Furthermore, data-driven approaches
have led the focus of scene categorization research away from an important determinant of visual
information—the categorization task itself [42, 43]. Simultaneously, these approaches have left un-
clear how classification interacts with scene semantics and enables cognitive reasoning. Psychological
studies suggest that human vision organizes representations during the inference process even for
“simple” categorical recognition tasks. Depending on a viewer’s needs (and tasks), a kitchen can
be categorized as an indoor scene, a place to cook, a place to socialize, or specifically as one’s own
kitchen (Fig. 1.5) [44]. As shown in Ref. [44], scene categorization and the information-gathering
process are constrained by these categorization tasks [45, 46], suggesting a bidirectional interplay
between the visual input and the viewer’s needs/tasks [43]. Beyond scene categorization, similar
phenomena were also observed in facial recognition [47].

In an early work, Ikeuchi and Hebert [48] proposed a task-centered representation inspired by
robotic grasping literature. Specifically, without recovering the detailed 3D models, their analysis
suggested that various grasp strategies require the object to afford different functional capabilities;
thus, the representation of the same object can vary according to the planned task (Fig. 1.6) [48].
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(a) (b) (c)

Figure 1.5: The experiment presented in Ref. [44], demonstrating the diagnostically driven, bidirectional
interplay between top-down and bottom-up information for the categorization of scenes at specific hierarchical
levels. (a) Given the same input image of a scene, subjects will show different gaze patterns if they are asked
to categorize the scene at (b) a basic level (e.g ., restaurant) or (c) a subordinate level (e.g ., cafeteria),
indicating a task-driven nature of scene categorization. Reproduced from Ref. [44] with permission of the
authors, © 2014.

Figure 1.6: Different grasping strategies require various functional capabilities. Reproduced from Ref. [48]
with permission of IEEE, © 1992.

For example, grasping a mug could result in two different grasps—the cylindrical grasp of the
mug body and the hook grasp of the mug handle. Such findings also suggest that vision (in this
case, identifying graspable parts) is largely driven by tasks; different tasks result in diverse visual
representations.

“Where”: Constructing 3D Scenes as a Series of Tasks

In the literature, approaches to 3D machine vision have assumed that the goal is to build an
accurate 3D model of the scene from the camera/observer’s perspective. These structure-from-
motion (SfM) and simultaneous localization and mapping (SLAM) methods [49] have been the
prevailing paradigms in 3D scene reconstruction. In particular, scene reconstruction from a single
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Figure 1.7: Illustration of 3D indoor scene parsing and reconstruction in an analysis-by-synthesis fashion [56].
A 3D representation is initialized by individual vision tasks (e.g ., object detection, 2D layout estimation).
A joint inference algorithm compares the differences between the rendered normal, depth, and segmentation
maps and the ones estimated directly from the input RGB image, and adjusts the 3D structure iteratively.
Reproduced from Ref. [56] with permission of Springer, © 2018.

two-dimensional (2D) image is a well-known ill-posed problem; there may exist an infinite number
of possible 3D configurations that match the projected 2D observed images [50]. However, the goal
here is not to precisely match the 3D ground-truth configuration, but to enable agents to perform
tasks by generating the best possible configuration in terms of functionality, physics, and object
relationships. This line of work has mostly been studied separately from recognition and semantics
until recently [51, 52, 53, 54, 55, 56, 57, 58]; see Fig. 1.7 [56] for an example.

The idea of reconstruction as a “cognitive map” has a long history [59]. However, our biological
vision system does not rely on such precise computations of features and transformations; there is
now abundant evidence that humans represent the 3D layout of a scene in a way that fundamentally
differs from any current computer vision algorithms [60, 61]. In fact, multiple experimental studies
do not countenance global metric representations [62, 63, 64, 65, 66, 67]; human vision is error-prone
and distorted in terms of localization [68, 69, 70, 71, 72]. In a case study, Glennerster et al . [73]
demonstrated an astonishing lack of sensitivity on the part of observers to dramatic changes in the
scale of the environment around a moving observer performing various tasks.

Among all the recent evidence, grid cells are perhaps the most well-known discovery to indicate
the non-necessity of precise 3D reconstruction for vision tasks [74, 75, 76]. Grid cells encode a
cognitive representation of Euclidean space, implying a different mechanism for perceiving and
processing locations and directions. This discovery was later awarded the 2014 Nobel Prize in
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Physiology or Medicine. Surprisingly, this mechanism not only exists in humans [77], but is also
found in mice [78, 79], bats [80], and other animals. Gao et al . [81] and Xie et al . [82] proposed
a representational model for grid cells, in which the 2D self-position of an agent is represented by
a high-dimensional vector, and the 2D self-motion or displacement of the agent is represented by
a matrix that transforms the vector. Such a vector-based model is capable of learning hexagon
patterns of grid cells with error correction, path integral, and path planning. A recent study also
showed that view-based methods actually perform better than 3D reconstruction-based methods
in certain human navigation tasks [83].

Despite these discoveries, how we navigate complex environments while remaining able at all
times to return to an original location (i.e., homing) remains a mystery in biology and neuro-
science. Perhaps a recent study from Vuong et al . [84] providing evidence for the task-dependent
representation of space can shed some light. Specifically, in this experiment, participants made
large, consistent pointing errors that were poorly explained by any single 3D representation. Their
study suggests that the mechanism for maintaining visual directions for reaching unseen targets is
neither based on a stable 3D model of a scene nor a distorted one; instead, participants seemed to
form a flat and task-dependent representation.

Beyond “What” and “Where”: Towards Scene Understanding with Humanlike Com-
mon Sense

Psychological studies have shown that human visual experience is much richer than “what” and
“where.” As early as infancy, humans quickly and efficiently perceive causal relationships (e.g .,
perceiving that object A launches object B) [85, 86], agents and intentions (e.g ., understanding
that one entity is chasing another) [87, 88, 89], and the consequences of physical forces (e.g .,
predicting that a precarious stack of rocks is about to fall in a particular direction) [90, 91]. Such
physical and social concepts can be perceived from both media as rich as videos [92] and much
sparser visual inputs [93, 94].

To enable an artificial agent with similar capabilities, we call for joint reasoning algorithms on
a joint representation that integrates (i) the “visible” traditional recognition and categorization of
objects, scenes, actions, events, and so forth; and (ii) the “dark” higher level concepts of fluent,
causality, physics, functionality, affordance, intentions/goals, utility, and so forth. These concepts
can in turn be divided into five axes: fluent and perceived causality, intuitive physics, functionality,
intentions and goals, and utility and preference, described below.

1.2.2 Fluent and Perceived Causality

A fluent, which is a concept coined and discussed by Isaac Newton [95] and Maclaurin [96], respec-
tively, and adopted by AI and commonsense reasoning [97, 98], refers to a transient state of an
object that is time-variant, such as a cup being empty or filled, a door being locked, a car blinking
to signal a left turn, and a telephone ringing; see Fig. 1.8 for other examples of “dark” fluents
in images. Fluents are linked to perceived causality [99] in the psychology literature. Even infants
with limited exposure to visual experiences have the innate ability to learn causal relationships from
daily observation, which leads to a sophisticated understanding of the semantics of events [100].

Fluents and perceived causality are different from the visual attributes [101, 102] of objects. The
latter are permanent over the course of observation; for example, the gender of a person in a short
video clip should be an attribute, not a fluent. Some fluents are visible, but many are “dark.” Human
cognition has the innate capability (observed in infants) [100] and strong inclination to perceive the
causal effects between actions and changes of fluents; for example, realizing that flipping a switch
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(a)

(b)

Figure 1.8: Water and other clear fluids play important roles in a human’s daily life, but are barely detectable
in images. (a) Water causes only minor changes in appearance; (b) the “dark” entities of water, fluents (here,
a cup and faucet, represented by triangles), and the intention of a human are shown in dashed nodes. The
actions (diamonds) involve agents (pentagons) and cups (objects in circles).

causes a light to turn on. To recognize the change in an object caused by an action, one must be
able to perceive and evaluate the state of the object’s changeable characteristics; thus, perceiving
fluents, such as whether the light switch is set to the up or down position, is essential for recognizing
actions and understanding events as they unfold. Most vision research on action recognition has
paid a great deal of attention to the position, pose, and movement of the human body in the
process of activities such as walking, jumping, and clapping, and to human-object interactions such
as drinking and smoking [103, 104, 105, 106]; but most daily actions, such as opening a door, are
defined by cause and effect (a door’s fluent changes from “closed” to “open,” regardless of how it is
opened), rather than by the human’s position, movement, or spatial-temporal features [107, 108].
Similarly, actions such as putting on clothes or setting up a tent cannot be defined simply by
their appearance features; their complexity demands causal reasoning to be understood. Overall,
the status of a scene can be viewed as a collection of fluents that record the history of actions.
Nevertheless, fluents and causal reasoning have not yet been systematically studied in machine
vision, despite their ubiquitous presence in images and videos.

1.2.3 Intuitive Physics

Psychology studies suggest that approximate Newtonian principles underlie human judgments
about dynamics and stability [109, 110]. Hamrick et al . [91] and Battaglia et al . [90] showed that
the knowledge of Newtonian principles and probabilistic representations is generally applied in
human physical reasoning, and that an intuitive physical model is an important aspect of human-
level complex scene understanding. Other studies have shown that humans are highly sensitive
to whether objects in a scene violate certain understood physical relationships or appear to be
physically unstable [111, 112, 113, 114, 115].

Invisible physical fields govern the layout and placement of objects in a human-made scene.
By human design, objects should be physically stable and safe with respect to gravity and various
other potential disturbances [116, 117, 118], such as an earthquake, a gust of wind, or the actions
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(a) (b) (c) (d)

Figure 1.9: Inferring the potential for objects to fall from human actions and natural disturbances. (a) The
imagined human trajectories; (b) the distribution of primary motion space; (c) the secondary motion field;
(d) the integrated human action field, built by integrating primary motions with secondary motions. The
five objects a-e are typical cases in the disturbance field: The objects b on the edge of a table and c along
the pathway exhibit greater disturbance (in the form of accidental collisions) than other objects such as a in
the center of the table, e below the table, and d in a concave corner of the room. Reproduced from Ref. [117]
with permission of IEEE, © 2014.

of other humans. Therefore, any 3D scene interpretation or parsing (e.g ., object localization and
segmentation) must be physically plausible [116, 117, 118, 119, 56, 120]; see Fig. 1.9. This observa-
tion sets useful constraints to scene understanding and is important for robotics applications [117].
For example, in a search-and-rescue mission at a disaster-relief site, a robot must be able to rea-
son about the stability of various objects, as well as about which objects are physically supporting
which other objects, and then use this information to move cautiously and avoid creating dangerous
new disturbances.

1.2.4 Functionality

Most human-made scenes are designed to serve multiple human functions, such as sitting, eating,
socializing, and sleeping, and to satisfy human needs with respect to those functions, such as illu-
mination, temperature control, and ventilation. These functions and needs are invisible in images,
but shape the scene’s layout [121, 54], its geometric dimensions, the shape of its objects, and the
selection of its materials.

Through functional magnetic resonance imaging (fMRI) and neurophysiology experiments, re-
searchers identified mirror neurons in the pre-motor cortical area that seem to encode actions
through poses and interactions with objects and scenes [122]. Concepts in the human mind are
not only represented by prototypes—that is, exemplars as in current computer vision and machine
learning approaches—but also by functionality [100].

1.2.5 Intentions and Goals

Cognitive studies [123] show that humans have a strong inclination to interpret events as a series
of goals driven by the intentions of agents. Such a teleological stance inspired various models in the
cognitive literature for intent estimation as an inverse planning problem [124, 125].

We argue that intent can be treated as the transient status of agents (humans and animals),
such as being “thirsty,” “hungry,” or “tired.” They are similar to, but more complex than, the
fluents of objects, and come with the following characteristics: (i) They are hierarchically organized
in a sequence of goals and are the main factors driving actions and events in a scene. (ii) They are
completely “dark,” that is, not represented by pixels. (iii) Unlike the instant change of fluents in
response to actions, intentions are often formed across long spatiotemporal ranges. For example, in
Fig. 1.10 [92], when a person is hungry and sees a food truck in the courtyard, the person decides
(intends) to walk to the truck.
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Figure 1.10: People’s trajectories are color-coded to indicate their shared destination. The triangles denote
destinations, and the dots denote start positions; e.g ., people may be heading toward the food truck to buy
food (green), or to the vending machine to quench thirst (blue). Due to low resolution, poor lighting, and
occlusions, objects at the destinations are very difficult to detect based only on their appearance and shape.
Reproduced from Ref. [92] with permission of IEEE, © 2018.

During this process, an attraction relationship is established at a long distance. As will be
illustrated later in this book, each functional object, such as a food truck, trashcan, or vending
machine, emits a field of attraction over the scene, not much different from a gravity field or an
electric field. Thus, a scene has many layers of attraction or repulsion fields (e.g ., foul odor, or
grass to avoid stepping on), which are completely “dark.” The trajectory of a person with a certain
intention moving through these fields follows a least-action principle in Lagrange mechanics that
derives all motion equations by minimizing the potential and kinematic energies integrated over
time.

Reasoning about intentions and goals will be crucial for the following vision and cognition tasks:
(i) early event and trajectory prediction [126]; (ii) discovery of the invisible attractive/repulsive
fields of objects and recognizing their functions by analyzing human trajectories [92]; (iii) under-
standing of scenes by function and activity [45], where the attraction fields are longer range in a
scene than the functionality maps [46, 127] and affordance maps [128, 129, 130] studied in recent lit-
erature; (iv) understanding multifaceted relationships among a group of people and their functional
roles [131, 132, 133]; and (v) understanding and inferring the mental states of agents [134, 135].

1.2.6 Utility and Preference

Given an image or a video in which agents are interacting with a 3D scene, we can mostly assume
that the observed agents make near-optimal choices to minimize the cost of certain tasks; that is,
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we can assume there is no deception or pretense. This is known as the rational choice theory; that
is, a rational person’s behavior and decision-making are driven by maximizing their utility function.
In the field of mechanism design in economics and game theory, this is related to the revelation
principle, in which we assume that each agent truthfully reports its preferences; see Ref. [136] for a
short introductory survey. Building computational models for human utility can be traced back to
the English philosopher Jeremy Bentham, and to his works on ethics known as utilitarianism [137].

By observing a rational person’s behavior and choices, it is possible to reverse-engineer their
reasoning and learning process, and estimate their values. Utility, or values, are also used in the field
of AI in planning schemes such as the Markov decision process (MDP), and are often associated
with the states of a task. However, in the literature of the MDP, “value” is not a reflection of true
human preference and, inconveniently, is tightly dependent on the agent’s actions [138]. We argue
that such utility-driven learning could be more invariant than traditional supervised training for
computer vision and AI.

1.2.7 Summary

Despite their apparent differences at first glance, the five FPICU domains interconnect in ways
that are theoretically important. These interconnections include the following characteristics: (i)
The five FPICU domains usually do not easily project onto explicit visual features; (ii) most of the
existing computer vision and AI algorithms are neither competent in these domains nor (in most
cases) applicable at all; and (iii) human vision is nevertheless highly efficient in these domains, and
human-level reasoning often builds upon prior knowledge and capability with FPICU.

We argue that the incorporation of these five key elements would advance a vision or AI system
in at least three aspects:
1. Generalization. As a higher level representation, the FPICU concept tends to be globally in-

variant across the entire human living space. Therefore, knowledge learned in one scene can be
transferred to novel situations.

2. Small sample learning. FPICU encodes essential prior knowledge for understanding the environ-
ment, events, and behavior of agents. As FPICU is more invariant than appearance or geometric
features, the learning of FPICU, which is more consistent and noise-free across different domains
and data sources, is possible even without “big data.”

3. Bidirectional inference. Inference with FPICU requires the combination of top-down inference
based on abstract knowledge and bottom-up inference based on visual pattern. This means that
systems would both continue to make data-driven inferences from the observation of visible,
pixel-represented scene aspects, as they do today, and make inferences based on FPICU under-
standing. These two processes can feed on each other, boosting overall system performance.

1.3 Cognitive Architecture for Human-Machine Communication
and Teamwork

After the above brief review of key elements in humanlike common sense for computer vision and
AI, a natural question arises: How could a machine master these common sense? In fact, human
learning is a lifelong cognitive process of communicating with the physical and social world. Its
sophistication, effectiveness, and complexity give rise to human intelligence—a phenomenon that
AI is inspired to replicate. Decades of studies in cognitive psychology [139], anthropology, and
communications studies [140] have revealed that human communication and learning is built on
many layers of cognitive infrastructures and protocols.
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Figure 1.11: Illustration of the communicative learning protocol

To account for the complexity and sophistication in human communication and learning, we
will formulate a new learning paradigm, called communicative learning (CL). Fig. 1.11 shows the
key representations between two agents A for Alice and B for Bob, who can be human or machine,
teacher or learner in an equal and symmetric setting, i.e., they can exchange roles by turns.



Figure 2.1: A modern kitchen and an ancient kitchen with similar functions but drastically different geometry
and appearances.

Chapter 2

Affordance and Functionality

Functionality refers to the property of an object or scene, especially man-made ones, which has a
practical use for which it was designed. Psychologist [141] used another term, affordance, which
refers to the property of an object that affords the opportunity for humans to perform some specific
actions. From such view point, we argue that
• objects, especially man-made ones, are defined by their functions and actions that they are in-

volved.
• scenes, especially man-made ones, are defined by the activities and actions that they can provide

space for.
So, functionality is deeper than geometry and appearance and thus is a more invariant concept for
scene understanding.

This represents a different philosophy that views vision tasks from the perspective of agents,
that is, agents (humans, animals and robots) should perceive objects and scenes by reasoning their
plausible functions.

Neuroscience studies also suggest similar ideas, indicating that the human vision system is far
more capable than any existing computer vision systems and goes beyond merely memorizing the
patterns based on pixels. For example, Fang and He showed that recognizing a face inside an image
has a different mechanism compared to seeing an object that can be manipulated as a tool [25]; see
Fig. 1.4. Other studies [26] also support the similar conclusion that the images of tool “potentiate”
actions even when overt actions are not required in a task. Taking together, these results indicate

16
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our biological vision system possesses another mechanism for perceiving object functionality (i.e.,
how an object can be manipulated as a tool) which is independent of the mechanism in charge of
face recognition (and other objects).

2.1 From data-driven scene understanding to task-driven scene
understanding

Recent data-driven methods achieve remarkable performance in image classification and segmenta-
tion in computer vision during the past decade with the recent success of DNNs [38, 39, 40]. Despite
the fact that these approaches achieved a good performance on scene categorization in terms of
the recognition accuracy, they have led the focus of scene categorization research away from an im-
portant determinant of visual information—the categorization task itself [42, 43]. Simultaneously,
these approaches have left it unclear how classification interacts with scene semantics and enables
cognitive reasoning. Psychological studies suggest that human vision organizes representations dur-
ing the inference process even for categorical recognition task. Depending on a viewer’s needs (and
tasks), a kitchen can be categorized as an indoor scene, a place to cook, a place to socialize, or
specifically as my own kitchen (see Fig. 1.5). As shown in [44], scene categorization and the in-
formation gathering process are constrained by these categorization tasks [45, 46], suggesting a
bidirectional interplay between the visual input and the viewer’s needs/tasks [43]. In addition to
the scene categorization, similar phenomenon was also found in face recognition [47].

In an early work, Ikeuchi and Herbert [23] proposed a task-centered representation inspired by
robotic grasping literature. Specifically, without recovering the detailed 3D models, their analysis
suggested that various grasp strategies require the object to afford different functional capabilities,
and thus the representation of the same object can vary according to the tasks; see Fig. 1.6. For
instance, grasping a mug could result in two different grasps—cylindrical grasp of the mug body and
the hook grasp of the mug handle. Such findings also suggest that vision (identifying the parts to
grasp in this case) is largely driven by tasks; different tasks result in diverse vision representations.

Therefore, in order to understand the scenes deeper with functionality, we should not only
classify the visible pixels on image, but also understand the underlying actions and activities,
which implies a shift from data-driven scene understanding to task-oriented scene understanding.
The task-oriented scene understanding aims at understanding the 3D scenes by inferring the hidden
functions and activities and pursuing a functional equivalence condition on the task that are involved
or potentially involved. We believe the task-oriented scene understanding is a more human-like and
more efficient way for understanding the scenes, and will take us to better human-like AI systems.

In this chapter we will discuss the scene functionality and object functionality. First we will show
two methods that integrate functionality in 3D scene parsing and scene synthesis by inferring or
considering the hidden human activities in 3D scenes. Then, we further introduce how we can make
joint inference of scene parsing and human pose estimation by integrating human-object interaction
and physics. To be noticed, human-object interactions are the key components for understanding
the functionalities in 3D scenes since it encodes how the objects or scenes can afford the activities.
Last we discuss a method that can be used to infer object functionality from videos of human-object
interaction and another method that studies a specific function of objects—containment.

2.2 Hand-object Interactions: Grasping and Manipulation

In everyday life, the most common interaction that a person performs with any object is probably
grasping. People grab different objects all the time, from cups to cellphones, from books to chop-
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Figure 2.2: A pipeline [142] for predicting the cross-sections for parallel-jaw grippers

Figure 2.3: Different types of robotic grippers/hands.

sticks. Albeit being the most common interaction, grasping is a surprisingly complex behavior. A
single-hand grasping involves controlling 16 joints of a hand, including 3 joints for each finger and
a wrist joint. Such complexity makes it extremely difficulty for a robot to mimic human-level hand
dexterity. To overcome the problem and empower robots for object manipulation, many simplified
robotic hands and algorithms have been developed.

The most efficient robotic grasping solution might be using a parallel-jaw gripper. Parallel-jaw
grippers are extremely simple and efficient at acquiring objects, and is widely used in industrial
settings. For parallel-jaw grippers, the grasping strategy is simply predicting a cross-section to grip
on [142] as shown in Fig. 2.2. An extension of it is the three-finger gripper as shown in Fig. 2.3

While parallel-jaw grippers are highly efficient, its simple design limits its ability of performing
complex manipulations after a grasping is performed. This is especially significant for tools like
cellphones and remote controls, where addition operation is desired after grasping it. To overcome
this issue, four-finger and five-finger robotic hands are developed to supply more dexterous ma-
nipulation. However, the additional complexity in the state space is reflected in the difficulty of
designing an algorithm for accurate grasping, not to mention further manipulations. Currently, the
most commonly used method for performing grasping with a humanoid hand is by randomly sam-
pling initial conditions, squeeze all finger joints, and then discard the ones that don’t meet certain
grasping criteria. This line of methods is surprisingly robust as it can always produce a grasping
strategy as long as it is possible. However, these methods are extremely inefficient due to their
trial-and-error nature, and they cannot guarantee to produce natural grasping.

A recent study [143] proposed to use infrared camera to capture the heat residual on objects
after human demonstration of grasping, and synthesize robotic grasping by matching contact area
with the collected heat residual. Such method is capable of synthesizing natural and functional
grasping of objects.

It is also worth to notice that grasping is task dependent. Namely, we perform grasping
differently for different tasks, even if we are grasping the same object. For example, we may use a
precision grasp (see Fig. 2.4 to write with a pen, and we may naturally use a power grasp when
we intend to move a pen. Both methods are valid and natural in their specific situation, and it is
actually unnatural if we use the wrong grasping strategy.

To model the task-dependence nature of hand-object interaction, one must first synthesize
diverse and stable grasps using a given hand. In this section, we introduce a method of grasp
synthesis using differentiable force closure estimation.
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Figure 2.4: An illustration of different types of grasps [144]

2.2.1 Force Closure

A force-closure grasp is a grasp with contact points txi P R3, i “ 1, ..., nu such that txiu can resist
arbitrary external wrenches with contact forces fi, where fi lies within the friction cones rooted
from xi. The angles of the friction cones are determined by the surface friction coefficient: The
stronger the friction, the wider the cone. The force-closure metric is, therefore, irrelevant to the
actual hand pose, but only relevant to the contact points and friction cones.

To test whether a set of contact points form a force-closure grasp, the first step is solving an
optimization problem regarding contact forces rooted from the points [145, 146]. Although various
methods have been devised, they all require iterations to jointly solve an auxiliary function, e.g .,
a support function [147], a bilinear matrix inequality [148], or a ray shooting problem [149]. As
a result, solving force-closure grasps under the constraint of hand kinematics and force closure
becomes a nested optimization problem.

Formally, given a set of n contact points txi P R3, i “ 1, ..., nu and their corresponding friction
cones tpci, µqu, where ci is the friction cone axis and µ is the friction coefficient, a grasp is in force
closure if there exists contact forces tfiu at txiu within tpci, µqu such that txiu can resist arbitrary
external wrenches. We follow the notations in Dai et al . [148] to define a set of contact forces to be
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force closure if it satisfies the following constraints:

GG1 ľ εI6ˆ6, (2.1a)

Gf “ 0, (2.1b)

fTi ci ą
1

a

µ2 ` 1
|fi|, (2.1c)

xi P S, (2.1d)

where S is the object surface, and
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The form of txiuˆ ensures the cross product txiuˆfi “ xiˆ fi, where f “ rfT1 f
T
2 ...f

T
n s

T P R3n is
the unknown variable of contact forces. In Eq. (2.1a), ε is a small constant. A ľ B means A ´ B
is positive semi-definite, i.e., it is symmetric, and all its eigenvalues are non-negative. Eq. (2.1a)
states that G is full rank. Eq. (2.1b) states that the contact forces cancel out each other so that the
net wrench is zero. Eq. (2.1c) prevents fi from deviating from the friction cone tpci, µqu. Eq. (2.1d)
constrains contact points to be on the object surface.

2.2.2 Approximating Force Closure

Of note, Eq. (2.1b) is bilinear on xi and fi. Given a set of contact points txiu, verification of force
closure requires finding a solution of tfiu. The time complexity for computing such a solution is
linear w.r.t. the number of contact points [148]. Here, we rewrite Eq. (2.1b) to

Gf “ Gpfn ` ftq “ 0, (2.4a)

G
fn
}fn}2

“ ´
Gft
}fn}2

, (2.4b)

Gc “ ´
Gft
}fn}2

, (2.4c)

where fn and ft are the normal and tangential components of contact force f in the force closure
model, and c “ rcT1 c

T
2 ...c

T
n s
T is the set of friction cone axes. We obtain ci as the surface normal of the

object on xi, which is easily accessible in many shape representations. We use Gc to approximate
Gf , and therefore relax Eq. (2.1) to

GG1 ľ εI6ˆ6, (2.5a)

}Gc}2 ă δ, (2.5b)

xi P S, (2.5c)

where δ is the maximum allowed error introduced from our relaxation. By adopting Eq. (2.5), we
no longer need to solve the unknown variable f . The constraints of xi becomes quadratic. Hence,
the verification of force closure can now be computed extremely fast. The residual in }Gc}2 reflects
the difference between contact forces and friction cone axes.
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To allow gradient-based optimization, we further cast Eq. (2.5) as a soft constraint in the form

FCpx,Oq “ λ0pGG
1 ´ εI6ˆ6q ` }Gc}2 ` w

ÿ

xiPx

dpxi, Oq, (2.6)

where λ0p¨q gives the smallest eigenvalue, and dpx,Oq returns the distance from point x to the
surface of object O. The scalar w controls the weight of the distance term. By minimizing the three
terms, we are looking for txiu that satisfies the three constraints in Eq. (2.5), respectively.

Using surface normal vectors to approximate contact forces implies zero friction and equal
magnitude contact forces. Such an assumption may seem to eliminate a large pool of force-closure
contact-point compositions. In practice, however, this is not the case: A residual in }Gc}2 indicates
that the existence of friction ft and difference in force magnitude fn on contact forces. By allowing
the residual to be smaller than a reasonable threshold δ, we are allowing both the tangential and
the normal components of the contact forces to deviate within reasonable range.

2.2.3 Grasp Synthesis

We formulate the grasp synthesis problem as sampling from a conditional Gibbs distribution:

P pH|Oq “
P pH,Oq

P pOq
9P pH,Oq “

1

Z
exp´EpH,Oq, (2.7)

where Z denotes the intractable normalizing constant, H the hand, O the object, and EpH,Oq the
energy function. We rewrite EpH,Oq as the minimum value of the energy function EgrasppH,x,Oq
w.r.t. contact point choices x:

EpH,Oq “ min
xĂSpHq

EgrasppH,x,Oq

“ min
xĂSpHq

FCpx,Oq ` EpriorpHq ` EpenpH,Oq,
(2.8)

where SpHq is a set of points sampled uniformly from the surface of a hand with pose H. We
denote the selected contact points from hand surface as x Ă SpHq. FCpx,Oq is the soft constraint
from Eq. (2.6). EpriorpHq is the energy prior of the hand pose. Its exact form depends on the hand
definition. The penetration energy is defined as EpenpH,Oq “

ř

vPSpHq σpv,Oq, where σpv,Oq is a
modified distance function between a point v and an object O:

σpv,Oq “

#

0 if v outside O

|d| otherwise
, (2.9)

where d is the distance from v to surface of O.
Due to the complexity of human hand kinematics, our grasp energy suffers from a complex

energy landscape. A näıve gradient-based optimization algorithm is likely to stop at sub-optimal
local minima. We use a modified Metropolis-adjusted Langevin algorithm (MALA) to overcome
this issue; see the algorithm details in Algorithm 1. The random walk aspect of Langevin dynamics
provides the chance of escaping bad local minima. Our algorithm starts with random initialization
of hand pose H and contact points x Ă SpHq. Next, we run our algorithm L iterations to update
H,x and maximize P pH,Oq. In each iteration, our algorithm randomly decides to update either the
hand pose by Langevin dynamics or one of the contact points to a point uniformly sampled from the
hand surface. The updates are accepted or rejected according to the Metropolis-Hastings algorithm,
in which a lower-energy update is more likely to be randomly accepted than a higher-energy one.

Of note, different compositions of contact points in fact correspond to different grasp types as
they contribute to some of the classification basis of the grasp taxonomy, including virtual finger
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Algorithm 1: Modified MALA Algorithm

Input: Energy function Egrasp, object shape O, step size η, Langevin steps L, switch probability ρ
Output: grasp parameters H,x

1 Initialize H,x
2 for step “ 1 : L do
3 if randpq ă ρ then
4 Propose H˚ according to Langevin dynamics

H˚ “ H ´
η2

2

B

BH
EgrasppH,x,Oq ` ηε,

where ε „ Np0, 1q is a Gaussian noise
5 else
6 Propose x˚ by sampling from SpHq
7 end
8 Accept H Ð H˚, xÐ x˚ by Metropolis-Hastings algorithm using energy function Egrasp

9 end

assignment and opposition type. Hence, sampling contact points on Line 6 is crucial for exploring
different types of grasps. In practice, we also empirically find that this step is essential for escaping
bad local minima.

While our modified MALA algorithm can produce realistic results, we still observe physical
inconsistencies in the synthesized examples such as penetrations and gaps between contact points
and object surface. To resolve these issues, we further refine the synthesized results by minimizing
Egrasp using gradient descent on H. We do not update the contact point selection x in this step,
since we hope to focus on optimizing the physical consistency in this step rather than exploring the
grasp landscape for diverse grasp types.

2.2.4 Results

Fig. 2.5 shows a collection of synthesis results with and without the refinement step: Higher values
of our force closure estimation corresponds to non-grasps, whereas force closure estimations close
to zero are as good as the ones with force closure estimations equal to zero. The last column shows
two cases when the synthesis is trapped in bad local minima; these examples exhibit large values in
our force closure estimation. Such errors happened because of the non-convexity of the optimization
problem; one cannot avoid every bad minimum with gradient-based methods. Fortunately, we can
identify these examples by their high force closure scores.

The diversity of the synthesized grasp is qualitatively evaluated by inspecting the energy land-
scape plotted by the ADELM algorithm [150]. The landscape is projected to a disconnectivity graph
in Fig. 2.6. In the disconnectivity graph, each circle at the bottom represents a local minima group.
The size of the circle indicates how many synthesized examples fall into this group. The height of
the horizontal bar between two groups represent the maximum energy (or energy barrier) along the
minimum energy pathways (MEPs) between two groups. The MEPs with lowest barriers connect
smaller groups into larger groups, and this process is repeated until all examples are connected.
The produced disconnectivity graph is an estimation of the true landscape of the energy function.
Energy landscape mapping in Fig. 2.6 shows that the local minima with low energy barriers be-
tween them have similar grasps, and those with high energy barriers between them tend to have
different grasps. We also observe that the energy landscape contains all three categories in the
power/precision dimension as described in Feix et al . [144].
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Figure 2.5: Examples of synthesized grasps. Top: synthesized grasps before refinement. Bottom: the
same set of synthesized grasps after refinement. FC: estimated force closure error. SD: mean distance from
each contact point to the object surface. Left to right: examples with zero FC error, small FC error, and
high FC error qualitatively illustrate how our estimation of force closure correlates to grasp quality.
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Figure 2.6: Energy landscape mapping generated by the ADELM algorithm [150] (best viewed
in color). Top: disconnectivity diagram of the energy landscape of our energy function EpH,Oq. Green
minima denote precision grasps, red power grasps, and yellow intermediate grasps. Bottom: examples from
selected local minima; minima with lower energy barriers in between have similar grasps. We also label the
grasp taxonomy of each example according to [144]. Examples marked as unlisted do not belong to any
manually classified type.
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Figure 2.7: Examples of novel grasp poses. To the best of our knowledge, these newly discovered grasp
poses do not correspond to any grasp types in existing human-designed grasp taxonomy.

Figure 2.8: Synthesized grasps of different hands using our formulation. Top: A MANO hand with
its thumb removed. Bottom: A Robotiq 3-finger gripper. The left-most figure shows the hand used in each
row.

The algorithm can also synthesize rare grasps that are not presented in existing grasping tax-
onomies, as shown in Fig. 2.7. These grasps are rarely collected in any of the modern 3D grasp
datasets (e.g ., [151, 152]), since they do not belong to any type as defined in the grasp taxonomy.
However, these grasps are valid grasps and could well exist in physical interactions. For example,
the left example in Fig. 2.7 is commonly used to twist-open a bottle when some of the fingers are
occupied or injured. The second example would occur if one is already holding something in the
palm while picking up another bottle.

These grasps occur because the human hand is excellent in doing multiple tasks simultaneously,
which have not been recognized in grasp literature as we always assumed otherwise. Such limitation
would hinder a robotic hand’s capacity from developing to its full potential.

2.2.5 Grasp Synthesis for Arbitrary Hand Structure

Although the shown results are all in the form of a humanoid form, this algorithm in fact makes
no assumption on the hand kinematics except for having a differentiable mapping between pose
and shape. As a result, we can synthesize grasps for arbitrary hand so long as there exists such a
mapping. In Fig. 2.8, we show the synthesis results of applying this algorithm to synthesize grasps
of a humanoid hand with its thumb removed and a Robotiq 3-finger gripper. These examples
demonstrate that this method can explore a wide range of grasps for arbitrary hand structure,
which could provide valuable insights for understanding the task affordance of prosthetic or robotic
hands, and hands with injuries or disabilities. This method is also applicable to animations, wherein
grasps of non-standard hands or claws are common.
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(a) (b)

Figure 2.9: Failure case examples. (a) Concave shape results in force closure configuration that is not a
grasp. (b) Sparse penetration detection leads to intersection.

2.2.6 Limitations

We show two representative failure cases in Fig. 2.9, wherein an unstable or unrealistic grasp
receives a low force closure score. Most failure cases of this method are caused by concavities
in object shapes. For concave shapes, the force closure requirement is sometimes satisfied with a
single finger in the concavity, providing contact forces in opposing directions. The issue may be
eliminated with manually defined heuristics, such as enforcing contact points on different fingers or
encouraging contact points to have larger distances between each other. Another common failure
comes from model intersections. The original implementation tests penetration by computing the
signed distance between hand surface vertices and the object shape. When the vertices are sparse,
or the object has a pointy part, it is possible for the object to penetrate the hand without being
detected. This issue can be addressed by using a dense sample of hand surface vertices or adopting
a differentiable mesh intersection algorithm.

2.3 Human-object Interactions

2.3.1 Functional Object Parts

To investigate the functionality and affordances for different parts of objects, efforts have been
devoted to the compositionality and hierarchy of objects. ShapeNet is a large, information-rich
repository of 3D models. It contains models spanning a multitude of semantic categories. Many
objects, especially manmade artifacts such as furniture and appliances, can be used by humans.
See Fig. 2.10 for example.

Functional annotations describe these usage patterns. Such annotations are often highly
correlated with specific regions of an object. In addition, it is often related with the specific type
of human action. ShapeNet aims to store functional annotations at the global shape level and at
the object part level.
1. Functional Parts: Parts are critical for understanding object structure, human activities involving

a 3D shape, and ergonomic product design. We plan to annotate parts according to their function
— in fact the very definition of parts has to be based on both geometric and functional criteria.
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Figure 2.10: Examples of part-based annotation and hierarchy in ShapeNet.

2. Affordances: We are interested in affordance annotations that are function and activity spe-
cific. Examples of such annotations include supporting plane annotations, and graspable region
annotations for various object manipulations.
Physical Annotations: Real objects exist in the physical world and typically have fixed phys-

ical properties such as dimensions and densities. Thus, it is important to store physical attribute
annotations for 3D shapes.
1. Surface Material: We are especially interested in the optical properties and semantic names of

surface materials. They are important for applications such as rendering and structural strength
estimation.

2. Weight: A basic property of objects which is very useful for physical simulations, and reasoning
about stability and static support.

2.3.2 Synthetic Human Activities with Dynamic Environment Dataset

We collect SHADE (Synthetic Human Activities with Dynamic Environment), a self-annotated
dataset that consists of dynamic 3D human skeletons and objects, to learn the prior model for
each HOI. It is collected from a video game Grand Theft Auto V with various daily activities
and HOIs. Currently, there are over 29 million frames of 3D human poses, where 772,229 frames
are annotated. On average, each annotated frame is associated with 2.03 action labels and 0.89
HOIs. The SHADE dataset contains 19 fine-grained HOIs for both indoor and outdoor activities.
By selecting most frequent HOIs and merging similar HOIs, we choose 6 final HOIs: read [phone,
notebook, tablet], sit-at [human-table relation], sit [human-chair relation], make-phone-call, hold,
use-laptop. Fig. 2.11 shows some typical examples and relations in the dataset.

2.3.3 4DHOI

In this section we introduce a new formulation of 4-dimensional human object interaction (4DHOI).
The 4DHOI model describes the 3-dimensional geometrical relationship between human and object
during an interaction over time. The name 4D comes from the combination of regular 3D space
and the additional dimension of time. A 4DHOI unit (shown in Fig. 2.12) is a node in an attributed
spatial-temporal parse graph (X-ST-pg) of a video that bridges the spatial and the temporal.
• Spatial relationship. Each 4DHOI unit describes a set of geometric relationships between an

object and a human part.
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Figure 2.11: Examples of typical HOIs and examples from the SHADE dataset. The heatmap indicates the
probable locations of HOI.
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Figure 2.12: Structure of a 4DHOI unit

• Temporal relationship. Each 4DHOI unit is a basic component of human activities.
Fig. 2.13 shows an example of 4DHOI units in real-life images.
Before jumping into the definition of a 4DHOI unit, we need to first define the attributed spatial-

temporal parse graph that the 4DHOI units live in. Formally, an X-ST-pgG “ xV S
N , V

S
T , E

S , XS , V T
N , V

T
T , E

T y

is the parsing result of an attributed spatial-temporal AOG.
• V O

N is the set of non-terminal nodes in the spatial parse graph of objects.
• V O

T is the set of terminal nodes in the spatial parse graph of objects.
• EO is the set of edges in the spatial parse graph of objects.
• V H

N is the set of non-terminal nodes in the spatial parse graph of human.
• V H

T is the set of terminal nodes in the spatial parse graph of human.
• EH is the set of edges in the spatial parse graph of human.
• V T

N , V
T
T , E

T are the respective nodes and edges in the temporal parse graph.
• XS is a function XS : V S ÝÑ X whose input is a node in S-pg and whose output is its geometrical

attributes. V S “ V O
N YV

O
T YV

H
N YV

H
T is the set of all nodes in the S-pg and X denotes the space

of geometrical attributes.
Based on the definition of X-ST-pg, a 4DHOI unit is defined as U “ xvT ,Ry, where R “ tR :

R “ xf, pO, pHyu is a set of geometrical relationship R’s. Each geometrical relationship R contains
a pointer pO to an object node in S-pg, a pointer pH to a human node in S-pg, and an energy
function f : X2 ÝÑ R to describe the geometrical relationship between the two nodes. The 4DHOI
units replace the temporal terminal nodes V T

T .



CHAPTER 2. AFFORDANCE AND FUNCTIONALITY 28

R3 R2

pg0 pg+

l. hand

head

Glass Human

𝜓𝜙

drink

ST-unit

R1 R2

pg0 pg+

l. hand

head

Glass Human

𝜓𝜙

pick up

ST-unit

R1 R2

pg0 pg+

l. hand

head

Glass Human

𝜓𝜙

put down

ST-unit

drink water

Figure 2.13: Structure of a 4DHOI unit

2.3.4 Learning 4DHOI from Video

In [153], the authors proposed a method of learning 4DHOI from video. In this work, the authors
formulate 4DHOI with a stochastic hierarchical graph similar to And-Or Graph [154]. Let V “

pf1, ..., fτ q be a video sequence in the time interval r1, τ s, where ft “ pIt, htq is the frame at time t.
It is the RGB-D data. ht is the human pose feature extracted from the 3D skeletons estimated by
motion capture technology [155].

The sequence V is interpreted by the hierarchical graph G “ă E,L ą as follows.
i) E P ∆ “ tei|i “ 1, ..., |∆|u is the event category such as fetch water from dispenser. ∆ is the

set of event categories.
ii) L “ pl1, ..., lτ q is a sequence of frame labels. lt “ pat, otq is the interpretation of the frame ft.

at P ΩE “ tωi|i “ 1, ...,KEu is the atomic event label such as fetch water.
ΩE is the atomic event set of E. Each event category ei has its distinct atomic event set Ωei ,

i.e. the relations between an event and its atomic events are hard constraints.
ot “ po

1
t , ..., o

nt
t q are the objects interacting with the human at time t, where nt is the number

of objects. Each object has a class label and a 3D location.
Similar to the graphical formulation in [154], the energy that the video V is interpreted by the

graph G is defined as

EnpG|V q “
τ
ÿ

t“1

Φpft, ltq `
τ
ÿ

t“2

Ψpl1:t´1, ltq. (2.10)

Φp¨q is the spatial energy term of a single frame, encoding the human-object interactions in 3D
space.

Ψp¨q is the temporal energy term encoding the temporal relations between the current frame lt
and all previous frames l1:t´1. This is different from conventional HMM [156]. The variable E is
omitted in the right side of Eq. (2.10)) since each event has its own distinct atomic event set.
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Φpft, ltq in Eq. (2.10) describes the human-object interactions in 3D space. The interactions
include:
• semantic co-occurrence between a specific type of human pose and the object classes; and
• geometric compatibility describing the 3D spatial constraints between the human pose and the

objects.
Thus, Φpft, ltq is further decomposed into three terms which will be defined in the remainder

of the subsection,

Φpft, ltq “ φ1pat, htq ` φ2pat, ot, Itq ` φ3pat, ht, otq, (2.11)

where φ1pat, htq is the pose model, φ2pat, ot, Itq is the contextual object model, and φ3pat, ht, otq is
the 3D geometrical relationship between human and object.

Applications

Object Functionality The functionality of an object, under the definition of 4DHOI, can be
described as the set of 4DHOI units that can connect with the object and produce low energy
expectation with regard to interacting human.

3D Scene Reconstruction Each 4DHOI unit describes a combination of geometrical relation-
ships between nodes in S-pg. These relationships serve as constraints in 3D reconstruction. Given
a noisy 3D reconstruction of a scene and a noisy 3D pose estimation of a person in that scene, we
can use such constraints to jointly optimize for 3D scene and 3D human. An example of utilizing
4DHOI in 3D scene reconstruction is illustrated in the next section.

Contextual Object Localization Objects, especially those that are interacting with human,
are often occluded by the interacting agent and therefore are very difficult, if not impossible, to
detect. With 4DHOI, we can infer the location of an interacting object if we know the type of
the interaction and the 3D pose of the interacting agent. Fig. 2.14 shows an example of imagined
objects given 3D poses and three different interaction types for each pose.

2.4 Functionality Grammar for 3D Scene Synthesis and Analysis

2.4.1 Scene Parsing with Functionality Grammar

In this example [56], we propose a computational framework to jointly parse a single RGB image
and reconstruct a holistic 3D configuration composed by a set of CAD models using a stochastic
grammar model. Specifically, we introduce a Holistic Scene Grammar to represent the 3D scene
structure, which characterizes a joint distribution over the functional and geometric space of indoor
scenes. The proposed Holistic Scene Grammar captures three essential and often latent dimensions
of the indoor scenes: i) latent human context, describing the affordance and the functionality
of a room arrangement, ii) geometric constraints over the scene configurations, and iii) physical
constraints that guarantee physically plausible parsing and reconstruction. We solve this joint
parsing and reconstruction problem in an analysis-by-synthesis fashion, seeking to minimize the
differences between the input image and the rendered images generated by our 3D representation,
over the space of depth, surface normal, and object segmentation map. The optimal configuration,
represented by a parse graph, is inferred using Markov chain Monte Carlo, which efficiently traverses
through the non-differentiable solution space, jointly optimizing object localization, 3D layout, and
hidden human context.
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Figure 2.14: Imagined objects. Row 1: Eating. Row 2: Sitting. Row 3: Sitting-in-front-of.

Analysis-by-Synthesis

We embrace the concept of vision as inverse graphics, and propose a holistic 3D indoor scene
parsing and reconstruction algorithm that simultaneously reconstructs the functional hierarchy and
the 3D geometric structure of an indoor scene from a single RGB image. Fig. 2.15 schematically
illustrates the analysis-by-synthesis inference process. The joint inference algorithm takes proposals
from various vision modules and infers the 3D structure by comparing various projections (i.e.,
depth, normal, and segmentation) rendered from the recovered 3D structure with the ones directly
estimated from an input image.

Holistic Scene Grammar

We represent the hierarchical structure of indoor scenes by a Holistic Scene Grammar (HSG). An
Holistic Scene Grammar consists of a latent hierarchical structure in the functional space F and
terminal object entities in the geometric space G. The intuition is that for human environments, the
object arrangement in the geometric space can be viewed as a projection from the functional space
(i.e., human activities). The functional space as a probabilistic context free grammar (PCFG) cap-
tures the hierarchy of the functional groups, and the geometric space captures the spatial contexts
among objects by defining an Markov random field (MRF) on the terminal nodes. The two spaces
together form a stochastic context-sensitive grammar (SCSG). The HSG starts from a root scene
node and ends with a set of terminal nodes. An indoor scene is represented by a parse graph pg as
illustrated in Fig. 2.16.

Definition: The stochastic context-sensitive grammar HSG is defined as a 5-tuple xS, V,R,E, P y.
S denotes the root node of the indoor scene. V is the vertex set that includes both non-terminal
nodes Vf P F and terminal nodes Vg P G. R denotes the production rule, and E the contextual
relations among the terminal nodes, which are represented by the horizontal links in the pg. P is
the probability model defined on the pg.
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Figure 2.15: Illustration of the proposed holistic 3D indoor scene parsing and reconstruction in an analysis-
by synthesis fashion. A 3D representation is initialized by individual vision modules (e.g ., object detection,
2D layout estimation). A joint inference algorithm compares the differences between the rendered normal,
depth, and segmentation map with the ones estimated directly from the input RGB image, and adjust the
3D structure iteratively.
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Figure 2.16: An indoor scene represented by a parse graph (pg) of the HSG that spans across the functional
space and the geometric space. The functional space characterizes the hierarchical structure and the geometric
space encodes the spatial entities with contextual relations.

Functional Space: The non-terminal nodes Vf “ tV c
f , V

a
f , V

o
f , V

l
f u P F consist of the scene

category nodes V c
f , activity group nodes V a

f , objects nodes V o
f , and layout nodes V l

f .

Geometric Space: The terminal nodes Vg “ tV
o
g , V

l
g u P G are the CAD models of object entities

and room layouts. Each object v P V o
g is represented as a CAD model, and the object appearance

is parameterized by its 3D size, location, and orientation. The room layout v P V l
g is represented

as a cuboid which is further decomposed into five planar surfaces of the room (left wall, right wall,
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middle wall, floor, and ceiling with respect to the camera coordinate).
The following production rules R are defined for HSG:

Production Rule Semantic Meaning Instances

r1 : S Ñ V c
f scene Ñ category 1 | category 2 | . . . scene Ñ office| kitchen

r2 : V c
f Ñ V a

f ¨ V
l
f category Ñ activity groups ¨ layout office Ñ (walking, reading) ¨ layout

r3 : V a
f Ñ V o

f activity group Ñ functional objects sitting Ñ (desk, chair)

where ¨ denotes the deterministic decomposition, | alternative explanations, and pq combination.
Contextual relations E capture relations among objects, including their relative positions, relative
orientations, grouping relations, and supporting relations. The objects could be supported by either
other objects or the room layout; e.g ., a lamp could be supported by a night stand or the floor.

Finally, a scene configuration is represented by a pg, whose terminals are room layouts and
objects with their attributes and relations. As shown in Fig. 2.16, a pg can be decomposed as
pg “ ppgf , pggq, where pgf and pgg denote the functional part and geometric part of the pg,
respectively. E P pgg denotes the contextual relations in the terminal layer.

Probabilistic Formulation

The objective of the holistic scene parsing is to find an optimal pg that represents all the contents
and relations observed in the scene. Given an input RGB image I, the optimal pg could be derived
by an maximum a posteriori probability (MAP) estimator,

pppg|Iq9pppgq ¨ ppI|pgq (2.12)

9pppgf q ¨ pppgg|pgf q ¨ ppI|pggq (2.13)

“
1

Z
exp

 

´Eppgf q ´ Eppgg|pgf q ´ EpI|pggq
(

, (2.14)

where the prior probability pppgq is decomposed into pppgf qpppgg|pgf q, and ppI|pgq “ ppI|pggq since
the image space is independent of the functional space given the geometric space. We model the
joint distribution with a Gibbs distribution; Eppgf q, Eppgg|pgf q and EpI|pggq are the corresponding
energy terms.

Functional Prior Eppgf q characterizes the prior of the functional aspect in a pg, which models
the hierarchical structure and production rules in the functional space. For production rules of
alternative explanations | and combination pq, each rule selects child nodes and the probability of
the selections is modeled with a multinomial distribution. The production rule ¨ is deterministically
expanded with probability 1. Given a set of production rules R, the energy could be written as:

Eppgf q “
ÿ

riPR
´ log ppriq. (2.15)

Note we do not model the production rule ¨ since it is deterministically expanded.

Geometric Prior Eppgg|pgf q characterizes the prior of the geometric aspect in a pg. Besides
modeling the size, position and orientation distribution of each object, we also consider two types
of contextual relations E “ tEs, Eau among the objects: i) relations Es between supported objects
and their supporting objects (e.g., monitor and desk); ii) relations Ea between imagined human and
objects in an activity group (e.g., relation between imagined human and the chair in an activity
group of reading).
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We define different potential functions for each type of contextual relations, constructing an
MRF in the geometric space including four terms:

Eppgg|pgf q “ Escppgg|pgf q ` Esptppgg|pgf q ` Egrpppgg|pgf q ` Ephyppggq. (2.16)

Specifically, • Size Consistency Esc constrains the size of an object. We model the distribution of
object scale using a non-parametric way, i.e., kernel density estimation (KDE),

Escppgg|pgf q “
ÿ

viPV og
´ log p

`

si|V
o
f

˘

, (2.17)

where si denotes the size of object vi. Empirically, we find that KDE fits better than a parametric
estimation (e.g ., multivariate normal), and it is easier to sample from.

• Supporting Constraint Espt characterizes the contextual relations between supported objects
and supporting objects (including floors, walls and ceilings). We model the distribution with their
relative heights and overlapping areas:

Esptppgg|pgf q “
ÿ

pvi,vjqPEs
Kopvi, vjq `Khpvi, vjq ´ λs log p

´

vi, vj | V
l
f , V

o
f

¯

, (2.18)

where Kopvi, vjq “ 1´areapviYvjq{areapviq defines the overlapping ratio in xy-plane, and Khpvi, vjq
defines the relative height between the lower surface of vi and the upper surface of vj . Kop¨q and
Khp¨q is 0 if supporting object is floor and wall, respectively. ppvi, vj |V

l
f , V

o
f q is the prior frequency

of the supporting relation modeled by multinoulli distributions. λs is a balancing constant.
• Human-Centric Grouping Constraint Egrp. For each activity group, we imagine the invisible

and latent human poses to help parse and understand the scene. The intuition is that the indoor
scenes are designed to serve human daily activities, thus the indoor images should be jointly inter-
preted by the observed entities and the unobservable human activities. This is known as the Dark
Matter [157] in computer vision that drives the visible components in the scene. Prior methods on
scene parsing often merely model the object-object relations. In this work, we go beyond passive
observations to model the latent human-object relations, thereby proposing a human-centric group-
ing relationship and a joint inference algorithm over the visible scene and invisible latent human
context. Specifically, for each activity group v P V a

f , we define correspondent imagined human with

a six tuple ă y, µ, t, r, s, µ̃ ą, where y is the activity type, µ P R25ˆ3 is the mean pose of activity
type y, t denotes the translation, r denotes the rotation, s denotes the scale, and µ̃ is the imagined
position to place a person: µ̃ “ µ ¨ r ¨ s` t. The energy among the imagined human and objects is
defined as:

Egrpppgg|pgf q “
ÿ

viPV af
Egrppµ̃i|viq

“
ÿ

viPV af

ÿ

vjPchpviq
Ddpµ̃i, νj ; d̄q `Dhpµ̃i, νj ; h̄q `Dopµ̃i, νj ; ōq,

(2.19)

where chpviq denotes the set of child nodes of vi, νj denotes the 3D position of vj . Ddp¨q, Dhp¨q

and Dop¨q denote geometric distances, heights and orientation differences, respectively, calculated
by the center of the imagined human pose to the object center subtracted by their mean (i.e., d̄, h̄
and ō). Fig. 2.17 shows some examples of the imagined human.

This reflects the human-object interaction in 3D space and it could be formulated as the relative
geometric relation between the hallucinated human and the objects as following:

φpe|Fa, Foq9 exp´tldph, goq ` loph, goq ` lhph, goqu (2.20)
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Figure 2.17: Illustration of imagined human in scene parsing. We learn the distribution of the human-object
relation and utilize it to sample human poses.

where e connects the hallucinated human node g and object node go. The geometric distance
between the center of the object and hallucinated human is defined as ld “ }dpxi, xjq ´ d̄pxi, xjq}

2,
and dpxi, xjq is the mean distance learned from the data. Similarly, lo “ }θpxi, xjq ´ θ̄pxi, xjq}

2

defines the angle and lh “ }hpxi, xjq ´ h̄pxi, xjq}
2 defines the height difference.

• Physical Constraints: Additionally, in order to avoid violating physical laws during parsing,
we define the physical constraints Ephyppggq to penalize physical violations. Exceeding the room
cuboid or overlapping among the objects are defined as violations. This term is formulated as:

Ephyppggq “
ÿ

viPV og
p
ÿ

vjPV og zvi
Oopvi, vjq `

ÿ

vjPV lg
Olpvi, vjqq, (2.21)

where Oop¨q denotes the overlapping area between objects, and Olp¨q denotes the area of objects
exceeding the layout.

Likelihood EpI|pggq characterizes the similarity between the observed image and the rendered
image generated by the parsing results. Since there is still a difference between the two images due to
various lighting conditions, textures, and material properties, we solve the problem in an analysis-
by-synthesis fashion. By combining generative models and discriminative models, this approach
tries to reverse-engineer the hidden factors that generate the observed image.

Specifically, we first use discriminative methods to project the original image I to various feature
spaces. In this work, we directly estimate three intermediate images including the depth map ΦdpIq,
surface normal map ΦnpIq and object segmentation map ΦmpIq, as the feature representation of
the observed image I.

Meanwhile, a pg inferred by our method represents the 3D structure of the observed image.
Thus, we can use the inferred pg to reconstruct image I 1, and recover the corresponding depth
map ΦdpI

1q, surface normal map ΦnpI
1q, and object segmentation map ΦmpI

1q through a forward
graphics rendering.

Finally, we compute the likelihood term by comparing these rendered results from the generative
model with the directly estimated results calculated by the discriminative models. Specifically, the
likelihood is computed by pixel-wise differences between the two sets of maps,

EpI|pggq “ DppΦdpIq,ΦdpI
1qq `DppΦnpIq,ΦnpI

1qq `DppΦmpIq,ΦmpI
1qq, (2.22)

where function Dpp¨q indicates the summation of pixel-wise Euclidean distances between the two
maps.

Inference

Given a single RGB image as the input, the goal in the inference phrase is to find the optimal pg
that best explains the hidden factors that generate the observed image while recovering the 3D
scene structure.
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The inference process includes three major steps.
• Room geometry estimation: estimate the room geometry by predicting the 2D room layout

and the camera parameter, and projecting the estimated 2D layout to 3D. Details are provided in
[56].

• Objects initialization: detect objects and retrieve CAD models correspondingly with the most
similar appearance, then roughly estimate their 3D poses, positions, sizes, and initialize the support
relations. See [56] for details.

• Joint inference: optimize the objects, layout and hidden human context in the 3D scene in
an analysis-by-synthesis fashion by maximizing the posterior probability of the pg. Details are
provided in next section.

Joint Inference

Given an image I, we first estimate the room geometry, object attributes and relations as described
in the above two subsections. The goal of joint inference is to (1) optimize the objects and layout;
(2) group objects, assign activity label and imagine human pose in each activity group; and (3)
optimize the objects, layout and human pose iteratively.

In each step, we use distinct MCMC processes. Specifically, to travel through non-differentiable
solution spaces, we design Markov Chain dynamics tqo1, q

o
2, q

o
3u for objects, tql1, q

l
2u for layout, and

tqh1 , q
h
2 , q

h
3 u for human pose. Specifically,

• Object Dynamics: Dynamics qo1 adjusts the position of a random object, which translates the
object center in one of the three coordinate directions. Instead of translating the object center
and changing the object size directly, Dynamics qo2 translates one of the six faces of the cuboid to
generate a smoother diffusion. Dynamics qo3 proposes rotation of the object with a specified angle.
Each dynamic can diffuse in two directions, e.g ., each object can translate in direction of ‘`x’ and
‘´x’, or rotate in direction of clockwise and counterclockwise. By computing the local gradient of
P ppg|Iq, the dynamics propose to move following the direction of the gradient with a proposal
probability of 0.8, or the inverse direction of the gradient with proposal probability of 0.2.

• Layout Dynamics: Dynamics ql1 translates the faces of the layout, which also optimizes the
predefined camera height while translating the floor. Dynamics ql2 proposes to rotate the layout.

• Human pose Dynamics qh1 , qh2 and qh3 are designed to translate, rotate and scale the human
pose, respectively.

Given a current pg, each dynamic will propose a new pg1 according to a proposal probability
pppg1|pg, Iq. The proposal is accepted according to an acceptance probability αppg Ñ pg1q defined
by the Metropolis-Hasting algorithm [158]:

αppg Ñ pg1q “ minp1,
pppg|pg1, Iqpppg1|Iq

pppg1|pg, Iqpppg|Iq
q. (2.23)

Fig. 2.18 shows the process of step (1).
In step (2), we design an algorithm to group objects and assign activity labels. For each type of

activity, there is a major object category which has the highest occurrence frequency (i.e., chair in
activity ‘reading’). Intuitively, the correspondence between objects and activities should be n-to-n
but not n-to-one, which means each object can belong to several activity groups. In order to find
out all possible activity groups, for each type of activity, we define an activity group around each
major object and incorporate nearby objects (within a distance threshold) with prior larger than
0. For each activity group vi P V

a
f , the pose of the imagined human is estimated by maximizing

the likelihood ppvi|µ̃iq, which is equivalent to minimize the grouping energy Egrppµ̃i|viq defined in
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Initialization Iteration 150Ground truth Iteration 300 Iteration 500 Iteration 900 Iteration 1200
Figure 2.18: The process of joint inference of objects and layout by MCMC with simulated annealing. The
first row contains rendered RGB images (for visualization), the second row contains rendered surface normal
maps. During the joint inference, objects and layout are optimized iteratively.

Figure 2.19: Sampled human poses in various indoor scenes. Objects in multiple activity groups have multiple
poses. We visualize the pose with the highest likelihood.

Eq. (2.19),
y˚i ,m

˚
i , t

˚
i , r

˚
i , s

˚
i “ arg min

yi,mi,ti,ri,si

Egrppµ̃i|viq, (2.24)

Fig. 2.19 shows the results of sampled human poses in various indoor scenes. Fig. 2.20 shows more
qualitative parsing results (top 20%).

2.4.2 Scene Synthesis with Functionality Grammar

In this example [119], we present a human-centric method to sample and synthesize 3D room layouts
and 2D images thereof, to obtain large-scale 2D/3D image data with the perfect per-pixel ground
truth. An attributed spatial And-Or graph (S-AOG) is proposed to represent indoor scenes. The
S-AOG is a probabilistic grammar model, in which the terminal nodes are object entities including
room, furniture, and supported objects. Human contexts as contextual relations are encoded by
Markov Random Fields (MRF) on the terminal nodes. We learn the distributions from an indoor
scene dataset and sample new layouts using Monte Carlo Markov Chain.

Synthesizing indoor scenes is a non-trivial task. It is often difficult to properly model either the
relations between furniture of a functional group, or the relations between the supported objects and
the supporting furniture. Specifically, we argue there are four major difficulties. (i) In a functional
group such as a dining set, the number of pieces may vary. (ii) Even if we only consider pair-wise
relations, there is already a quadratic number of object-object relations. (iii) What makes it worse
is that most object-object relations are not obviously meaningful. For example, it is unnecessary
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Figure 2.20: Qualitative results of our method on SUN RGB-D dataset. The joint inference significantly
improves the performance over individual modules.

to model the relation between a pen and a monitor, even though they are both placed on a desk.
(iv) Due to the previous difficulties, an excessive number of constraints are generated. Many of the
constraints contain loops, making the final layout hard to sample and optimize.

To address these challenges, we propose a human-centric approach to model indoor scene layout.
It integrates human activities and functional grouping/supporting relations. This method not only
captures the human context but also simplifies the scene structure. Specifically, we use a proba-
bilistic grammar model for images and scenes [154] – an attributed spatial And-Or graph (S-AOG),
including vertical hierarchy and horizontal contextual relations. The contextual relations encode
functional grouping relations and supporting relations modeled by object affordances [141]. For each
object, we learn the affordance distribution, i.e., an object-human relation, so that a human can be
sampled based on that object. Besides static object affordance, we also consider dynamic human
activities in a scene, constraining the layout by planning trajectories from one piece of furniture to
another.

Representation

We use an attributed S-AOG [154] to represent an indoor scene. An attributed S-AOG is a proba-
bilistic grammar model with attributes on the terminal nodes. It combines i) a probabilistic context
free grammar (PCFG), and ii) contextual relations defined on an Markov Random Field (MRF),
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Figure 2.21: Scene grammar as an attributed S-AOG. A scene of different types is decomposed into a
room, furniture, and supported objects. Attributes of terminal nodes are internal attributes (sizes), external
attributes (positions and orientations), and a human position that interacts with this entity. Furniture and
object nodes are combined by an address terminal node and a regular terminal node. A furniture node (e.g .,
a chair) is grouped with another furniture node (e.g ., a desk) pointed by its address terminal node. An object
(e.g ., a monitor) is supported by the furniture (e.g ., a desk) it is pointing to. If the value of the address
node is null, the furniture is not grouped with any furniture, or the object is put on the floor. Contextual
relations are defined between the room and furniture, between a supported object and supporting furniture,
among different pieces of furniture, and among functional groups.

i.e., the horizontal links among the nodes. The PCFG represents the hierarchical decomposition
from scenes (top level) to objects (bottom level) by a set of terminal and non-terminal nodes,
whereas contextual relations encode the spatial and functional relations through horizontal links.
The structure of S-AOG is shown in Fig. 2.16.

Formally, the S-AOG is defined as a 5-tuple: G “ xS, V,R, P,Ey, where we use notations S the
root node of the scene grammar, V the vertex set, R the production rules, P the probability model
defined on the attributed S-AOG, and E the contextual relations represented as horizontal links
between nodes in the same layer. Vertex Set V can be decomposed into a finite set of non-terminal
and terminal nodes: V “ VNT Y VT .

• VNT “ V AndYV OrYV Set. The non-terminal nodes consists of three subsets. i) A set of And-
nodes V And, in which each node represents a decomposition of a larger entity (e.g ., a bedroom)
into smaller components (e.g ., walls, furniture and supported objects). ii) A set of Or-nodes V Or,
in which each node branches to alternative decompositions (e.g ., an indoor scene can be a bedroom
or a living room), enabling the algorithm to reconfigure a scene. iii) A set of Set nodes V Set, in
which each node represents a nested And-Or relation: a set of Or-nodes serving as child branches
are grouped by an And-node, and each child branch may include different numbers of objects.

• VT “ V r
T YV

a
T . The terminal nodes consists of two subsets of nodes: regular nodes and address

nodes. i) A regular terminal node v P V r
T represents a spatial entity in a scene (e.g ., an office

chair in a bedroom) with attributes. In this work, the attributes include internal attributes Aint
of object sizes pw, l, hq, external attributes Aext of object position px, y, zq and orientation (x ´ y
plane) θ, and sampled human positions Ah. ii) To avoid excessively dense graphs, an address
terminal node v P V a

T is introduced to encode interactions that only occur in a certain context
but are absent in all others [159]. It is a pointer to regular terminal nodes, taking values in the set
V r
T Y tnilu, representing supporting or grouping relations as shown in Fig. 2.21.

Contextual Relations E among nodes are represented by the horizontal links in S-AOG
forming MRFs on the terminal nodes. To encode the contextual relations, we define different types
of potential functions for different cliques. The contextual relations E “ Ef Y Eo Y Eg Y Er are
divided into four subsets: i) relations among furniture Ef ; ii) relations between supported objects
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Figure 2.22: (a) A simplified example of a parse graph of a bedroom. The terminal nodes of the parse
graph form an MRF in the terminal layer. Cliques are formed by the contextual relations projected to the
terminal layer. Examples of the four types of cliques are shown in (b)-(e), representing four different types
of contextual relations.

and their supporting objects Eo (e.g ., a monitor on a desk); iii) relations between objects of a
functional pair Eg (e.g ., a chair and a desk); and iv) relations between furniture and the room
Er. Accordingly, the cliques formed in the terminal layer could also be divided into four subsets:
C “ Cf Y Co Y Cg Y Cr. Instead of directly capturing the object-object relations, we compute the
potentials using affordances as a bridge to characterize the object-human-object relations.

A hierarchical parse tree pt is an instantiation of the S-AOG by selecting a child node for the
Or-nodes as well as determining the state of each child node for the Set-nodes. A parse graph pg
consists of a parse tree pt and a number of contextual relations E on the parse tree: pg “ ppt, Eptq.
Fig. 2.22 illustrates a simple example of a parse graph and four types of cliques formed in the
terminal layer.

Probabilistic Formulation

A scene configuration is represented by a parse graph pg, including objects in the scene and as-
sociated attributes. The prior probability of pg generated by an S-AOG parameterized by Θ is
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formulated as a Gibbs distribution:

pppg|Θq “
1

Z
expt´Eppg|Θqu (2.25)

“
1

Z
expt´Eppt|Θq ´ Epept|Θqu, (2.26)

where Eppg|Θq is the energy function of a parse graph, Eppt|Θq is the energy function of a parse
tree, and Epept|Θq is the energy term of the contextual relations. Here, the energy function of a
parse tree is defined as combinations of probability distributions with closed-form expressions and
non-parametric distributions, and the energy of the contextual relations E is defined as potential
functions regarding to the attributes of the terminal nodes.

Eppt|Θq can be further decomposed into the energy functions of different types of non-terminal
nodes, and the energy functions of internal attributes of both regular and address terminal nodes:

Eppt|Θq “
ÿ

vPV Or

EOrΘ pvq `
ÿ

vPV Set

ESetΘ pvq

loooooooooooooooooomoooooooooooooooooon

non-terminal nodes

`
ÿ

vPV rT

EAinΘ pvq

loooooomoooooon

terminal nodes

, (2.27)

where the choice of the child node of an Or-node v P V Or and the child branch of a Set-node v P V Set

follow different multinomial distributions. Since the And-nodes are deterministically expanded, we
do not have an energy term for the And-nodes here. The internal attributes Ain (size) of terminal
nodes follows a non-parametric probability distribution learned by kernel density estimation.

Epept|Θq combines the potentials of the four types of cliques formed in the terminal layer,
integrating human attributes and external attributes of regular terminal nodes:

ppEpt|Θq “
1

Z
expt´Epept|Θqu (2.28)

“
ź

cPCf

φf pcq
ź

cPCo

φopcq
ź

cPCg

φgpcq
ź

cPCr

φrpcq. (2.29)

Human-Centric Potential Functions:
• Potential function φf pcq is defined on relations between furniture (Fig. 2.22 (b)). The clique
c “ tfiu P Cf includes all the terminal nodes representing furniture:

φf pcq “
1

Z
expt´λf ¨ x

ÿ

fi‰fj

lcolpfi, fjq, lentpcqyu, (2.30)

where λf is a weight vector, ă ¨, ¨ ą denotes a vector, and the cost function lcolpfi, fjq is the
overlapping volume of the two pieces of furniture, serving as the penalty of collision. The cost
function lentpcq “ ´HpΓq “ Σippγiq log ppγiq yields better utility of the room space by sampling
human trajectories, where Γ is the set of planned trajectories in the room, and HpΓq is the
entropy. The trajectory probability map is first obtained by planning a trajectory γi from the
center of every piece of furniture to another one using bi-directional rapidly-exploring random
tree (RRT) [160], which forms a heatmap. The entropy is computed from the heatmap as shown
in Fig. 2.23.

• Potential function φopcq is defined on relations between a supported object and the supporting
furniture (Fig. 2.22 (c)). A clique c “ tf, a, ou P Co includes a supported object terminal node o,
the address node a connected to the object, and the furniture terminal node f pointed by a:

φopcq “
1

Z
expt´λo ¨ xlhumpf, oq, laddpaqyu, (2.31)
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(a) Planned trajectories (b) Probability map

Figure 2.23: Given a scene configuration, we use bi-directional RRT to plan from every piece of furniture to
another, generating a human activity probability map.

where the cost function lhumpf, oq defines the human usability cost—a favorable human position
should enable an agent to access or use both the furniture and the object. To compute the usability
cost, human positions hoi are first sampled based on position, orientation, and the affordance map
of the supported object. Given a piece of furniture, the probability of the human positions is then
computed by:

lhumpf, oq “ max
i
pphoi |fq. (2.32)

The cost function laddpaq is the negative log probability of an address node v P V a
T , treated as a

certain regular terminal node, following a multinomial distribution.
• Potential function φgpcq is defined on functional grouping relations between furniture (Fig. 2.22

(d)). A clique c “ tfi, a, fju P Cg consists of terminal nodes of a core functional furniture fi,
pointed by the address node a of an associated furniture fj . The grouping relation potential is
defined similarly to the supporting relation potential

φgpcq “
1

Z
expt´λc ¨ xlhumpfi, fjq, laddpaqyu. (2.33)

Other Potential Functions:
• Potential function φrpcq is defined on relations between the room and furniture (Fig. 2.22 (e)).

A clique c “ tf, ru P Cr includes a terminal node f and r representing a piece of furniture and a
room, respectively. The potential is defined as

φrpcq “
1

Z
expt´λr ¨ xldispf, rq, loripf, rqyu, (2.34)

where the distance cost function is defined as ldispf, rq “ ´ log ppd|Θq, in which d „ lnN pµ, σ2q

is the distance between the furniture and the nearest wall modeled by a log normal distribution.

The orientation cost function is defined as loripf, rq “ ´ log ppθ|Θq, where θ „ ppµ, κq “ eκ cospx´µq

2πI0pκq
is the relative orientation between the model and the nearest wall modeled by a von Mises
distribution.

Learning S-AOG

We use the SUNCG dataset [161] as training data. It contains over 45K different scenes with
manually created realistic room and furniture layouts. We collect the statistics of room types, room
sizes, furniture occurrences, furniture sizes, relative distances, orientations between furniture and
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walls, furniture affordance, grouping occurrences, and supporting relations. The parameters Θ of
the probability model P can be learned in a supervised way by maximum likelihood estimation
(MLE).

Weights of Loss Functions: Recall that the probability distribution of cliques formed in the
terminal layer is

ppEpt |Θq “
1

Z
expt´Epept |Θqu “

1

Z
expt´xλ, lpEptqyu, (2.35)

where λ is the weight vector and lpEptq is the loss vector given by four different types of potential
functions.

To learn the weight vector, the standard MLE maximizes the average log-likelihood:

Lpept |Θq “ ´
1

N

N
ÿ

n“1

xλ, lpEptn qy ´ logZ. (2.36)

This is usually maximized by following the gradient:

BLpept |Θq
Bλ

“ ´
1

N

N
ÿ

n“1

lpEptn q ´
B logZ

Bλ
(2.37)

“ ´
1

N

N
ÿ

n“1

lpEptn q ´
B log

ř

pt expt´xλ, lpEptqyu

Bλ
(2.38)

“ ´
1

N

N
ÿ

n“1

lpEptn q `
ÿ

pt

1

Z
expt´xλ, lpEptqyulpEptq (2.39)

“ ´
1

N

N
ÿ

n“1

lpEptn q `
1

rN

rN
ÿ

rn“1

lpEptrn q, (2.40)

where tEptrn u
rn“1,¨¨¨ , rN

is the set of synthesized examples from the current model.
It is usually computationally infeasible to sample a Markov chain that burns into an equilibrium

distribution at every iteration of gradient ascent. Hence, instead of waiting for the Markov chain to
converge, we adopt the contrastive divergence (CD) learning that follows the gradient of difference
of two divergences [162]

CD
rN
“ KLpp0||p8q ´KLpp

rn||p8q, (2.41)

where KLpp0||p8q is the Kullback-Leibler divergence between the data distribution p0 and the
model distribution p8, and p

rn is the distribution obtained by a Markov chain started at the data
distribution and run for a small number rn of steps. In this work, we set rn “ 1.

Contrastive divergence learning has been applied effectively to addressing various problems;
one of the most notable work is in the context of Restricted Boltzmann Machines [163]. Both
theoretical and empirical evidences shows its efficiency while keeping bias typically very small [164].
The gradient of the contrastive divergence is given by

BCD
rN

Bλ
“

1

N

N
ÿ

n“1

lpEptn q ´
1

rN

rN
ÿ

rn“1

lpEptrn q ´
Bp

rn

Bλ

BKLpp
rn||p8q

Bp
rn

. (2.42)

Extensive simulations [162] showed that the third term can be safely ignored since it is small and
seldom opposes the resultant of the other two terms.
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Figure 2.24: Examples of the learned affordance maps. Given the object positioned in the center facing
upwards, i.e., coordinate of p0, 0q facing direction p0, 1q, the maps show the distributions of human positions.
The affordance maps accurately capture the subtle differences among desks, coffee tables, and dining tables.
Some objects are orientation sensitive, e.g ., books, laptops, and night stands, while some are orientation
invariant, e.g ., fruit bowls and vases.

Finally, the weight vector is learned by gradient descent computed by generating a small number
rN of examples from the Markov chain

λt`1 “ λt ´ ηt
BCD

rN

Bλ
“ λt ` ηt

¨

˝

1

rN

rN
ÿ

rn“1

lpEptrn q ´
1

N

N
ÿ

n“1

lpEptn q

˛

‚. (2.43)

Branching Probabilities: The MLE of the branch probabilities ρi of Or-nodes, Set-nodes and
address terminal nodes is simply the frequency of each alternative choice [154]:

ρi “
#pv Ñ uiq

npvq
ř

j“1
#pv Ñ ujq

(2.44)

Grouping Relations: The grouping relations are hand-defined (i.e., nightstands are associated
with beds, chairs are associated with desks and tables). The probability of occurrence is learned as
a multinomial distribution, and the supporting relations are automatically extracted from SUNCG.

Room Size and Object Sizes: The distribution of the room size and object size among all
the furniture and supported objects is learned as a non-parametric distribution. We first extract
the size information from the 3D models inside SUNCG dataset, and then fit a non-parametric
distribution using kernel density estimation. The distances and relative orientations of the furniture
and objects to the nearest wall are computed and fitted into a log normal and a mixture of von
Mises distributions, respectively.

Affordances: We learn the affordance maps of all the furniture and supported objects by com-
puting the heatmap of possible human positions. These position include annotated humans, and
we assume that the center of chairs, sofas, and beds are positions that humans often visit. By accu-
mulating the relative positions, we get reasonable affordance maps as non-parametric distributions
as shown in Fig. 2.24.
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Synthesizing Scene Configurations

Synthesizing scene configurations is accomplished by sampling a parse graph pg from the prior
probability pppg|Θq defined by the S-AOG. The structure of a parse tree pt (i.e., the selection of
Or-nodes and child branches of Set-nodes) and the internal attributes (sizes) of objects can be easily
sampled from the closed-form distributions or non-parametric distributions. However, the external
attributes (positions and orientations) of objects are constrained by multiple potential functions,
hence they are too complicated to be directly sampled from. Here, we utilize a Markov chain Monte
Carlo (MCMC) sampler to draw a typical state in the distribution. The process of each sampling
can be divided into two major steps:
• Directly sample the structure of pt and internal attributes Ain: (i) sample the child node for the

Or-nodes; (ii) determine the state of each child branch of the Set-nodes; and (iii) for each regular
terminal node, sample the sizes and human positions from learned distributions.

• Use an MCMC scheme to sample the values of address nodes V a and external attributes Aex by
making proposal moves. A sample will be chosen after the Markov chain converges.
We design two simple types of Markov chain dynamics which are used at random with proba-

bilities qi, i “ 1, 2 to make proposal moves:
• Dynamics q1: translation of objects. This dynamic chooses a regular terminal node, and samples

a new position based on the current position x: xÑ x` δx, where δx follows a bivariate normal
distribution.

• Dynamics q2: rotation of objects. This dynamic chooses a regular terminal node, and samples a
new orientation based on the current orientation of the object: θ Ñ θ ` δθ, where δθ follows a
normal distribution.
Adopting the Metropolis-Hastings algorithm, the proposed new parse graph pg1 is accepted

according to the following acceptance probability:

αppg1|pg,Θq “ minp1,
pppg1|Θqpppg|pg1q

pppg|Θqpppg1|pgq
q (2.45)

“ minp1, exppEppg|Θq ´ Eppg1|Θqqq, (2.46)

where the proposal probability rate is canceled since the proposal moves are symmetric in proba-
bility. A simulated annealing scheme is adopted to obtain samples with high probability.

Some qualitative results are shown in Fig. 2.25.

2.4.3 Joint Inference of Scene and Human

In this section we introduce how to jointly tackle two tasks: (i) holistic scene parsing and reconstruction—
3D estimations of object bounding boxes, camera pose, and room layout, and (ii) 3D human pose
estimation, which is a challenging 3D scene understanding problem from a single RGB image. The
intuition behind is to leverage the coupled nature of the two tasks by exploiting two critical and
essential connections between these two tasks: (i) HOI to model the fine-grained relations between
human agents and objects in the scene, and (ii) physical commonsense to model the physical plau-
sibility. The optimal configuration of the 3D scene, represented by a parse graph, is inferred using
MCMC, which efficiently traverses through the non-differentiable joint solution space.

Representation

We represent the configuration of an indoor scene by a parse graph pg “ ppt, Eq as shown in
Fig. 2.26. It combines a parse tree pt and contextual relations E among the leaf nodes. Here
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Figure 2.25: Examples of scenes in ten different categories. Top: top-view. Middle: a side-view. Bottom:
affordance heatmap.

pt “ pV,Rq and we denote V “ Vr Y VmY Vt the vertex set and R the decomposing rules. The tree
has three levels. The first level is the root node Vr that represents the scene, and the second level Vm
has three nodes (objects, human, and room layout). The third level (terminal nodes Vt) contains
child nodes of the second level nodes, representing the detected instances of the parent node in
this scene. E Ă Vt ˆ Vt is the set of contextual relations among the terminal nodes, represented by
horizontal links.

Terminal Nodes Vt in pg can be further decomposed as Vt “ Vlayout Y Vobject Y Vhuman:
• The room layout v P Vlayout is represented by a 3D bounding box XL P R3ˆ8 in the world

coordinate. The 3D bounding box is parametrized by the node’s attributes, including its 3D
size SL P R3, center CL P R3, and orientation RotpθLq P R3ˆ3. See the supplementary for the
parametrization of the 3D bounding box.

• Each 3D object v P Vobject is represented by a 3D bounding box with its semantic label. We keep
the same parameterization of the 3D bounding box as the one for room layout.

• Each human v P Vhuman is represented by 17 3D joints XH P R3ˆ17 with their action labels. These
3D joints are parametrized by the pose scale SH P R, pose center (i.e., hip) CH P R3, local joint
position RelH P R3ˆ17, and pose orientation RotpθHq P R3ˆ3. Each person is also attributed by
a concurrent action label a, which is a multi-hot vector representing the current actions of this
person: one can “sit” and “drink,” or “walk” and “make phone call” at the same time.
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Figure 2.26: Jointly recovering a parse graph that represents the scene, including human poses, objects,
camera pose, and room layout, all in 3D. Reasoning HOI helps reconstruct the detailed spatial relations
between humans and objects. Physical commonsense (e.g ., physical property, plausibility, and stability)
further refines relations and improves predictions.

Contextual Relations E contains three types of relations in the scene E “ tEs, Ec, Ehoiu.
Specifically:
• Es and Ec denote support relation and physical collision, respectively. These two relations pe-

nalize the physical violations among objects, between objects and layout, and between human
and layout, resulting in a physically plausible and stable prediction.

• Ehoi models HOI and gives us more constraints to reconstruct 3D from 2D. For instance, if a
person is detected as sitting on the chair, we can constrain the relative 3D positions between this
person and chair using a pre-learned spatial relation of “sitting.”

Probabilistic Formulation

The parse graph pg is a comprehensive interpretation of the observed image I. The goal of the
holistic`` scene understanding is to infer the optimal parse graph pg˚ given I by a MAP estimation:

pg˚ “ arg max
pg

pppg|Iq “ arg max
pg

pppgq ¨ ppI|pgq

“ arg max
pg

1

Z
expt´Ephyppgq ´ Ehoippgq ´ EpI|pgqu,

(2.47)

We model the joint distribution by a Gibbs distribution, where the prior probability of parse graph
can be decomposed into physical prior and HOI prior.

Physical Prior Ephyppgq represents physical commonsense in a 3D scene. We consider two
types of physical relations among the terminal nodes: support relation Es and collision relation Ec.
Therefore, the energy of physical prior is defined as Ephyppgq “ λsEsppgq ` λcEcppgq, where λs and
λc are balancing factors. Specifically:
• Support Relation Esppgq defines the energy between the supported object/human and the sup-
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porting object/layout:

Esppgq “
ÿ

pvi,vjqPEs

Eopvi, vjq ` Eheightpvi, vjq, (2.48)

where Eopvi, vjq “ 1´areapviXvjq{areapviq is the overlapping ratio in the xy-plane, and Eheightpvi, vjq
is the absolute height difference between the lower surface of the supported object vi and the upper
surface of the supporting object vj . We define Eopvi, vjq “ Eheightpvi, vjq “ 0 if the supporting object
is floor or wall.
• Physical Collision Ecppgq denotes the physical violations. We penalize the intersection among
human, objects, and room layout except the objects in HOI and objects that could be a container.
The potential function is defined as:

Ecppgq “
ÿ

Cpv, Vlayoutq
vPpVobjectYVhumanq

`
ÿ

Cpvi, vjq
viPVobject
vjPVhuman
pvi,vjqREhoi

`
ÿ

Cpvi, vjq
vi,vjPVobject

vi,vjRVcontainer

, (2.49)

where Cpq denotes the volume of intersection between entities. Vcontainer denotes the objects that
can be a container, such as a cabinet, desk, and drawer.

Human-object Interaction Prior Ehoippgq is defined on the interactions between human and
objects:

Ehoippgq “
ÿ

pvi,vjqPEhoi

Kpvi, vj , avj q, (2.50)

where vi P Vobject, vj P Vhuman, and K is an HOI function that evaluates the interaction between an
object and a human given the action label a:

Kpvi, vj , avj q “ ´ log lpvi, vj |avj q, (2.51)

where lpvi, vj |avj q is the likelihood of the relative position between node vi and vj given an action
label a, and λa the balancing factor. We formulate the action detection as a multi-label classifi-
cation. The likelihood lp¨q models the distance between key joints and the center of the object;
e.g ., for “sitting”, it models the relative spatial relation between the hip and the center of a chair.
The likelihood can be learned from 3D HOI datasets with a multivariate Gaussian distribution
p∆x,∆y,∆zq „ N3pµ,Σq, where ∆x,∆y, and ∆z are the relative distances in the directions of
three axes.

Likelihood EpI|pgq characterizes the consistency between the observed 2D image and the
inferred 3D result. The projected 2D object bounding boxes and human poses can be computed
by projecting the inferred 3D objects and human poses onto a 2D image plane. The likelihood is
obtained by comparing the directly detected 2D bounding boxes and human poses with projected
ones from inferred 3D results:

EpI|pgq “
ÿ

λo
vPVobject

¨Dopbpvq, B
1pvqq `

ÿ

λh
vPVhuman

¨DhpPopvq, Po
1pvqq, (2.52)

where Bpq and B1pq are the bounding boxes of detected and projected 2D objects, Popq and Po1pq the
poses of detected and projected 2D humans, Dop¨q the IOU between the detected 2D bounding box
and the convex hull of the projected 3D bounding box, and Dhp¨q the average pixel-wise Euclidean
distance between two 2D poses.
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Joint Inference

Given a single RGB image as the input, the goal of joint inference is to find the optimal parse
graph that maximizes the posterior probability pppg|Iq. The joint parsing is a four-step process:
(i) 3D scene initialization of the camera pose, room layout, and 3D object bounding boxes, (ii)
3D human pose initialization that estimates rough 3D human poses in a 3D scene, (iii) concurrent
action detection, and (iv) joint inference to optimize the objects, layout, and human poses in 3D
scenes by maximizing the posterior probability.

3D Scene Initialization

Following [120], we initialize the 3D objects, room layout, and camera pose cooperatively, where
the room layout and objects are parametrized by 3D bounding boxes. For each object vi P Vobject,
we find its supporting object/layout by minimizing the supporting energy:

v˚j “ arg min
vj

Eopvi, vjq ` Eheightpvi, vjq ´ λs log psptpvi, vjq, (2.53)

where vj P pVobject, Vlayoutq and psptpvi, vjq are the prior probabilities of the supporting relation
modeled by multinoulli distributions, and λs a balancing constant.

3D Human Pose Initialization

We take 2D poses as the input and predict 3D poses in a local 3D coordinate following [165], where
the 2D poses are detected and estimated by [166]. The local 3D coordinate is centered at the human
hip joint, and the z-axis is aligned with the up direction of the world coordinate. To transform this
local 3D pose into the world coordinate, we find the 3D world coordinate v3D P R3 of one visible
2D joint v2D P R2 (e.g ., head) by solving a linear equation with the camera intrinsic parameter K
and estimated camera pose R. Per the pinhole camera projection model, we have

α

„

v2D

1



“ K ¨R ¨ v3D, (2.54)

where α is a scaling factor in the homogeneous coordinate. To make the function solvable, we
assume a pre-defined height h0 for the joint position v3D in the world coordinate. Lastly, the 3D
pose initialization is obtained by aligning the local 3D pose and the corresponding joint position
with v3D.

Concurrent Action Detection

We formulate the concurrent action detection as a multi-label classification problem to ease the
ambiguity in describing the action. We define a portion of the action labels (e.g ., “eating”, “making
phone call”) as the HOI labels, and the remaining action labels (e.g ., “standing”, “bending”) as
general human poses without HOI. The mixture of HOI actions and non-HOI actions covers most
of the daily human actions in indoor scenes. We manually map each of the HOI action labels to a
3D HOI relation learned from the SHADE dataset, and use the HOI actions as cues to improve the
accuracy of 3D reconstruction by integrating it as prior knowledge in our model. The concurrent
action detector takes 2D skeletons as the input and predicts multiple action labels with a three-layer
MLP.
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Algorithm 2: Joint Inference Algorithm

1 Given: Image I, initialized parse graph pginit
2 Phase 1: for Different temperatures do
3 Inference with physical commonsense Ephy but without HOI Ehoi: randomly select from

room layout, objects, and human poses to optimize pg
4 end
5 Phase 2: Match each agent with their interacting objects
6 Phase 3: for Different temperatures do
7 Inference with total energy E , including physical commonsense and HOI: randomly

select from layout, objects, and human poses to optimize pg
8 end
9 Phase 4: Top-down sampling by HOIs

Inference

Given an initialized parse graph, we use MCMC with simulated annealing to jointly optimize the
room layout, 3D objects, and 3D human poses through the non-differentiable energy space; see
Algorithm 2 as a summary. To improve the efficiency of the optimization process, we adopt a
scheduling strategy that divides the optimization process into following four phases with different
focuses: (i) Optimize objects, room layout, and human poses without HOIs. (ii) Assign HOI labels
to each human in the scene, and search the interacting objects of each human. (iii) Optimize objects,
room layout, and human poses jointly with HOIs. (iv) Generate possible miss-detected objects by
top-down sampling.

Dynamics. In Phase (i) and (iii), we use distinct MCMC processes. To traverse non-differentiable
energy spaces, we design Markov chain dynamics qo1, q

o
2, q

o
3 for objects, ql1, q

l
2 for room layout, and

qh1 , q
h
2 , q

h
3 for human poses.

‚ Object Dynamics: Dynamics qo1 adjusts the position of an object, which translates the object
center in one of the three Cartesian coordinate axes or along the depth direction. The depth
direction starts from the camera position and points to the object center. Translation along depth
is effective with proper camera pose initialization. Dynamics qo2 proposes rotation of the object with
a specified angle. Dynamics qo3 changes the scale of the object by expanding or shrinking corner
positions of the cuboid with respect to object center. Each dynamic can diffuse in two directions:
each object can translate in the direction of ‘`x’ and ‘´x,’ or rotate in the direction of clockwise
and counterclockwise. To better traverse in energy space, the dynamics may propose to move along
the gradient descent direction with a probability of 0.95 or the gradient ascent direction with a
probability of 0.05.
‚ Human Dynamics: Dynamics qh1 proposes to translate 3D human joints along x, y, z, or depth

direction. Dynamics qh2 is designed to rotate the human pose with a certain angle. Dynamics qh3
adjusts the scale of human poses by a scaling factor on the 3D joints with respect to the pose
center.
‚ Layout Dynamics: Dynamics ql1 translates the wall towards or away from the layout center.

Dynamics ql2 adjusts the floor height, equivalent to change the camera height.
In each sampling iteration, the algorithm proposes a new pg1 from current pg under the proposal

probability of qppg Ñ pg1|Iq by applying one of the above dynamics. The generated proposal is
accepted with respect to an acceptance rate αp¨q as in the Metropolis-Hastings algorithm [158]:

αppg Ñ pg1q “ minp1,
qppg1 Ñ pgq ¨ pppg1|Iq

qppg Ñ pg1q ¨ pppg|Iq
q, (2.55)
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Figure 2.27: Illustration of the top-down sampling process. The object detection module misses the detection
of the bottle held by the person, but our model can still recover the bottle by reasoning HOI.

(a) Input (c) Step 30 (d) Step 60 (e) Step 90 (f) Step 120(b) Initialization (g) Final output

Figure 2.28: The optimization process of the scene configuration by simulated annealing MCMC. Each step
is the number of accepted proposal.

A simulated annealing scheme is adopted to obtain pg with high probability.
Top-down sampling. By top-down sampling objects from HOIs, the proposed method can

recover the interacting 3D objects that are too small or novel to be detected by the state-of-the-art
2D object detector. In Phase (iv), we propose to sample an interacting object from the person if the
confidence of HOI is higher than a threshold. Specifically, we minimize the HOI energy in Eq. (2.50)
to determine the category and location of the object; see examples in Fig. 2.27.

Implementation Details. In Phase (ii), we search the interacting objects for each agent
involved in HOI by minimizing the energy in Eq. (2.50). In Phase (iii), after matching each agent
with their interacting objects, we can jointly optimize objects, room layout, and human poses with
the constraint imposed by HOI. Fig. 2.28 shows examples of the simulated annealing optimization
process.

Some qualitative results are shown in Fig. 2.29.
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Figure 2.29: Qualitative results of the proposed method on three datasets. The proposed model improves
the initialization with accurate spatial relations and physical plausibility and demonstrates an outstanding
generalization across various datasets.



Chapter 3

Physical Commonsense Reasoning

3.1 Commonsense of Newtonian Physics

Perceiving causality, and using this perception to interact with an environment, requires a com-
monsense understanding of how the world operates at a physical level. Physical understanding does
not necessarily require us to precisely or explicitly invoke Newton’s laws of mechanics; instead, we
rely on intuition, built up through interactions with the surrounding environment. Humans excel at
understanding their physical environment and interacting with objects undergoing dynamic state
changes, making approximate predictions from observed events. The knowledge underlying such ac-
tivities is termed intuitive physics [167]. The field of intuitive physics has been explored for several
decades in cognitive science and was recently reinvigorated by new techniques linked to AI.

Surprisingly, humans develop physical intuition at an early age [100], well before most other
types of high-level reasoning, suggesting the importance of intuitive physics in comprehending and
interacting with the physical world. The fact that physical understanding is rooted in visual pro-
cessing makes visual task completion an important goal for future machine vision and AI systems.
We begin this section with a short review of intuitive physics in human cognition, followed by a
review of recent developments in computer vision and AI that use physics-based simulation and
physical constraints for image and scene understanding.

3.1.1 Intuitive Physics in Human Cognition

Early research in intuitive physics provides several examples of situations in which humans demon-
strate common misconceptions about how objects in the environment behave. For example, several
studies found that humans exhibit striking deviations from Newtonian physical principles when
asked to explicitly reason about the expected continuation of a dynamic event based on a static
image representing the situation at a single point in time [168, 167, 169]. However, humans’ intuitive
understanding of physics was shown later to be much more accurate, rich, and sophisticated than
previously expected once dynamics and proper context were provided [170, 171, 172, 173, 174].

These later findings are fundamentally different from prior work that systematically investigated
the development of infants’ physical knowledge [175, 176] in the 1950s. The reason for such a
difference in findings is that the earlier research included not only tasks of merely reasoning about
physical knowledge, but also other tasks [177, 178]. To address such difficulties, researchers have
developed alternative experimental approaches [179, 112, 180, 181] to study the development of
infants’ physical knowledge. The most widely used approach is the violation-of-expectation method,
in which infants see two test events: an expected event, consistent with the expectation shown, and
an unexpected event, violating the expectation. A series of these kinds of studies have provided

52
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strong evidence that humans—even young infants—possess expectations about a variety of physical
events [182, 183].

In a single glance, humans can perceive whether a stack of dishes will topple, whether a branch
will support a child’s weight, whether a tool can be lifted, and whether an object can be caught
or dodged. In these complex and dynamic events, the ability to perceive, predict, and therefore
appropriately interact with objects in the physical world relies on rapid physical inference about
the environment. Hence, intuitive physics is a core component of human commonsense knowledge
and enables a wide range of object and scene understanding.

In an early work, Achinstein [184] argued that the brain builds mental models to support infer-
ence through mental simulations, analogous to how engineers use simulations for the prediction and
manipulation of complex physical systems (e.g ., analyzing the stability and failure modes of a bridge
design before construction). This argument is supported by a recent brain imaging study [185] sug-
gesting that systematic parietal and frontal regions are engaged when humans perform physical
inferences even when simply viewing physically rich scenes. These findings suggest that these brain
regions use a generalized mental engine for intuitive physical inference—that is, the brain’s “physics
engine.” These brain regions are much more active when making physical inferences relative to when
making inferences about nonphysical but otherwise highly similar scenes and tasks. Importantly,
these regions are not exclusively engaged in physical inference, but are also overlapped with the
brain regions involved in action planning and tool use. This indicates a very intimate relationship
between the cognitive and neural mechanisms for understanding intuitive physics, and the mecha-
nisms for preparing appropriate actions. This, in turn, is a critical component linking perception
to action.

To construct humanlike commonsense knowledge, a computational model for intuitive physics
that can support the performance of any task that involves physics, not just one narrow task,
must be explicitly represented in an agent’s environmental understanding. This requirement stands
against the recent “end-to-end” paradigm in AI, in which neural networks directly map an input
image to an output action for a specific task, leaving an implicit internal task representation “baked”
into the network’s weights.

Recent breakthroughs in cognitive science provide solid evidence supporting the existence of
an intuitive physics model in human scene understanding. This evidence suggests that humans
perform physical inferences by running probabilistic simulations in a mental physics engine akin
to the 3D physics engines used in video games [186]. Human intuitive physics can be modeled as
an approximated physical engine with a Bayesian probabilistic model [90], possessing the following
distinguishing properties: (i) Physical judgment is achieved by running a coarse and rough forward
physical simulation; and (ii) the simulation is stochastic, which is different from the deterministic
and precise physics engine developed in computer graphics. For example, in the tower stability
task presented in Ref. [90], there is uncertainty about the exact physical attributes of the blocks;
they fall into a probabilistic distribution. For every simulation, the model first samples the blocks’
attributes, then generates predicted states by recursively applying elementary physical rules over
short-time intervals. This process creates a distribution of simulated results. The stability of a tower
is then represented in the results as the probability of the tower not falling. Due to its stochastic
nature, this model will judge a tower as stable only when it can tolerate small jitters or other
disturbances to its components. This single model fits data from five distinct psychophysical tasks,
captures several illusions and biases, and explains core aspects of mental models and commonsense
reasoning that are instrumental to how humans understand their everyday world.

More recent studies have demonstrated that intuitive physical cognition is not limited to the
understanding of rigid bodies, but also expands to the perception and simulation of the physical
properties of liquids [187, 188] and sand [189]. In these studies, the experiments demonstrate that
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(a) Input (b) Ground-truth
(c) Without
physics

(d) Without
physics (e) With physics (f) With physics

Figure 3.1: Scene parsing and reconstruction by integrating physics and human-object interactions. (a) Input
image; (b) ground truth; (c and d) without incorporating physics, the objects might appear to float in the
air, resulting in an incorrect parsing; (e and f) after incorporating physics, the parsed 3D scene appears
physically stable. The system has been able to perceive the “dark” physical stability in which objects must
rest on one another to be stable. Reproduced from Ref. [57] with permission of IEEE, © 2019.

humans do not rely on simple qualitative heuristics to reason about fluid or granular dynamics;
instead, they rely on perceived physical variables to make quantitative judgments. Such results
provide converging evidence supporting the idea of mental simulation in physical reasoning. For a
more in-depth review of intuitive physics in psychology, see Ref. [190].

3.1.2 Physics-based Reasoning in Computer Vision

Classic computer vision studies focus on reasoning about appearance and geometry—the highly
visible, pixel-represented aspects of images. Statistical modeling [191] aims to capture the “patterns
generated by the world in any modality, with all their naturally occurring complexity and ambiguity,
with the goal of reconstructing the processes, objects and events that produced them [192].” Marr
conjectured that the perception of a 2D image is an explicit multiphase information process [1],
involving (i) an early vision system for perceiving [3, 4] and textons [5, 6] to form a primal sketch [7,
8]; (ii) a mid-level vision system to form 2.1D [9, 10, 11] and 2.5D [12] sketches; and (iii) a high-level
vision system in charge of full 3D scene formation [13, 14, 15]. In particular, Marr highlighted the
importance of different levels of organization and the internal representation [193].

Alternatively, perceptual organization [194, 195] and Gestalt laws [196, 20, 21, 197, 198, 199, 200,
201] aim to resolve the 3D reconstruction problem from a single RGB image without considering
depth. Instead, they use priors—groupings and structural cues [202, 203] that are likely to be
invariant over wide ranges of viewpoints [204]—resulting in feature-based approaches [16, 107].

However, both appearance [205] and geometric [49] approaches have well-known difficulties
resolving ambiguities. In addressing this challenge, modern computer vision systems have started to
account for “dark” aspects of images by incorporating physics; as a result, they have demonstrated
dramatic improvements over prior works. In certain cases, ambiguities have been shown to be
extremely difficult to resolve through current state-of-the-art data-driven classification methods,
indicating the significance of “dark” physical cues and signals in our ability to correctly perceive
and operate within our daily environments; see examples in Fig. 3.1 [57], where systems perceive
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(a) (b)

Figure 3.2: An example explicitly exploiting safety and stability in a 3D scene-understanding task. Good per-
formance in this task means that the system can understand the “dark” aspects of the image, which include
how likely each object is to fall, and where the likely cause of falling will come from. (a) Input: reconstructed
3D scene. Output: parsed and segmented 3D scene comprised of stable objects. The numbers are “unsafety”
scores for each object with respect to the disturbance field (represented by red arrows). (b) Scene-parsing
graphs corresponding to three bottom-up processes: voxel-based representation (top), geometric pre-process,
including segmentation and volumetric completion (middle), and stability optimization (bottom). Repro-
duced from Ref. [118] with permission of Springer Science+Business Media New York, © 2015.

which objects must rest on each other in order to be stable in a typical office space.
Through modeling and adopting physics into computer vision algorithms, the following two

problems have been broadly studied:
1. Stability and safety in scene understanding. As demonstrated in Ref. [118], this line of work

is mainly based on a simple but crucial observation in human-made environments: by human
design, objects in static scenes should be stable in the gravity field and be safe with respect to
various physical disturbances. Such an assumption poses key constraints for physically plausible
interpretation in scene understanding.

2. Physical relationships in 3D scenes. Humans excel in reasoning about the physical relationships
in a 3D scene, such as which objects support, attach, or hang from one another. As shown in
Ref. [56], those relationships represent a deeper understanding of 3D scenes beyond observable
pixels that could benefit a wide range of applications in robotics, virtual reality (VR), and
augmented reality (AR).
The idea of incorporating physics to address vision problems can be traced back to Helmholtz

and his argument for the “unconscious inference” of probable causes of sensory input as part of the
formation of visual impressions [206]. The very first such formal solution in computer vision dates
back to Roberts’ solutions for the parsing and reconstruction of a 3D block world in 1963 [207].
This work inspired later researchers to realize the importance of both the violation of physical laws
for scene understanding [208] and stability in generic robot manipulation tasks [209, 210].



CHAPTER 3. PHYSICAL COMMONSENSE REASONING 56

(a) Snapshots of datasets (b) Galileo model

Figure 3.3: Inferring the dynamics of the scenes. (a) Snapshots of the dataset; (b) overview of the Galileo
model that estimates the physical properties of objects from visual inputs by incorporating the feedback of
a physics engine in the loop. Reproduced from Ref. [220] with permission of Neural Information Processing
Systems Foundation, Inc., © 2015

Integrating physics into scene parsing and reconstruction was revisited in the 2010s, bring-
ing it into modern computer vision systems and methods. From a single RGB image, Gupta et
al . proposed a qualitative physical representation for indoor [51, 121] and outdoor [211] scenes,
where an algorithm infers the volumetric shapes of objects and relationships (such as occlusion and
support) in describing 3D structure and mechanical configurations. In the next few years, other
work [212, 213, 214, 215, 216, 129, 52, 217, 218, 54] also integrated the inference of physical relation-
ships for various scene understanding tasks. In the past two years, Liu et al . [55] inferred physical
relationships in joint semantic segmentation and 3D reconstruction of outdoor scenes. Huang et
al . [56] modeled support relationships as edges in a human-centric scene graphical model, inferred
the relationships by minimizing supporting energies among objects and the room layout, and en-
forced physical stability and plausibility by penalizing the intersections among reconstructed 3D
objects and room layout [120, 57].

The aforementioned recent work mostly adopts simple physics cues; that is, very limited (if any)
physics-based simulation is applied. The first recent work that utilized an actual physics simulator
in modern computer vision methods was proposed by Zheng et al . in 2013 [116, 117, 118]. As shown
in Fig. 3.2 [118], the proposed method first groups potentially unstable objects with stable ones by
optimizing for stability in the scene prior. Then, it assigns an “unsafety” prediction score to each
potentially unstable object by inferring hidden potential triggers of instability (the disturbance
field). The result is a physically plausible scene interpretation (voxel segmentation). This line of
work has been further explored by Du et al . [219] by integrating an end-to-end trainable network
and synthetic data.

Going beyond stability and support relationships, Wu et al . [220] integrated physics engines
with deep learning to predict the future dynamic evolution of static scenes. Specifically, a generative
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Figure 3.4: Thirteen physical concepts involved in tool use and their compositional relationships. By parsing
a human demonstration, the physical concepts of material, volume, concept area, and displacement are
estimated from 3D meshes of tool attributes (blue), trajectories of tool use (green), or both together (red).
Higher level physical concepts can be further derived recursively. Reproduced from Ref. [222] with permission
of the authors, © 2015.

model named Galileo was proposed for physical scene understanding using real-world videos and
images. As shown in Fig. 3.3, the core of the generative model is a 3D physics engine, operating
on an object-based representation of physical properties including mass, position, 3D shape, and
friction. The model can infer these latent properties using relatively brief runs of markov chain
monte carlo (MCMC), which drive simulations in the physics engine to fit key features of visual
observations. Wu et al . [221] further explored directly mapping visual inputs to physical properties,
inverting a part of the generative process using deep learning. Object-centered physical properties
such as mass, density, and the coefficient of restitution from unlabeled videos could be directly
derived across various scenarios. With a new dataset named Physics 101 containing 17 408 video
clips and 101 objects of various materials and appearances (i.e., shapes, colors, and sizes), the
proposed unsupervised representation learning model, which explicitly encodes basic physical laws
into the structure, can learn the physical properties of objects from videos.

Integrating physics and predicting future dynamics opens up quite a few interesting doors in
computer vision. For example, given a human motion or task demonstration presented as a RGB-D
image sequence, et al . [222] built a system that calculated various physical concepts from just a
single example of tool use (Fig. 3.4), enabling it to reason about the essential physical concepts of
the task (e.g ., the force required to crack nuts). As the fidelity and complexity of the simulation
increased, Zhu et al . [223] were able to infer the forces impacting a seated human body, using a
finite element method (FEM) to generate a mesh estimating the force on various body parts.

Physics-based reasoning can not only be applied to scene understanding tasks, as above, but
have also been applied to pose and hand recognition and analysis tasks. For example, Brubaker
et al . [224, 225, 226] estimated the force of contacts and the torques of internal joints of human
actions using a mass-spring system. Pham et al . [227] further attempted to infer the forces of
hand movements during human-object manipulation. In computer graphics, soft-body simulations
based on video observation have been used to jointly track human hands and calculate the force of
contacts [228, 229]. Altogether, the laws of physics and how they relate to and among objects in
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a scene are critical “dark” matter for an intelligent agent to perceive and understand; some of the
most promising computer vision methods outlined above have understood and incorporated this
insight.

3.2 Case Study: Commonsense of Particle and Fluid Stuff

3.2.1 Introduction

Consider KerPlunk, a children’s game in which marbles are suspended in the air by a lattice of straws
within a cylindrical tube. The goal of the game is for each player to take turns removing straws while
minimizing the number of marbles that fall through the lattice. The task requires players to reason
about the interaction between rigid bodies and obstacles in 3D space. But what if the marbles were
replaced by balls of liquid or sand? Could humans predict how those substances would move? Would
those predictions agree with a generative model based on ground-truth, Newtonian physics? Recent
computational evidence has demonstrated that human predictions do agree with Newtonian physics,
given noisy perception and prior beliefs about spatially represented variables: i.e., the noisy Newton
hypothesis [187, 90, 230, 231, 188, 232, 233, 171]. The hypothesis suggests that humans rationally
infer the values of physical variables and utilize normative conservation principles (approximately)
to make predictions about future scene states. Computationally, this is achieved by sampling the
initial locations, motions from noisy sensory input, and sampling physical attributes in a physical
scene, propagating these variables forward in time according to approximated physical principles,
and aggregating queries on the final scene states to form predicted response distributions.

[187] extended the noisy Newton framework from block tower judgments [90] to liquid dynamics
using an intuitive fluid engine (IFE). In their IFE, ground-truth physics was approximated using
smoothed particle hydrodynamics (SPH [234], a particle-based computational method for simu-
lating non-solid dynamics. Their model predictions matched human judgments about future fluid
states and outperformed alternative models that did not employ probabilistic simulation or ac-
count for physical uncertainty. Furthermore, the authors found that their participants’ predictions
were sensitive to latent fluid attributes (stickiness and viscosity), suggesting that humans have rich
knowledge about the intrinsic properties of liquid.

The present study argues for the same general class of model as Bates et al .’s (2015) IFE
and extends their work by examining (1) whether human predictions about future states of multi-
ple substances (i.e., rigid balls, liquid, and sand) differ, and (2) whether those differences can be
consistently modeled using approximate, probabilistic simulation based on a hybrid particle/grid
simulator adapted from previous work ([188]). Although granular materials (e.g ., sand) are en-
countered in everyday life, they are far less common than liquid; can humans accurately predict
how sand will interact with obstacles and support surfaces? We present two experiments explor-
ing the human capacity to predict the dynamics of substances varying in familiarity and physical
properties, examining how human judgments and model predictions vary for different substances.
Experiment 1 examines human predictions about the resting composition of sand after pouring
from a funnel. In Experiment 2, participants make predictions about the flow of liquid, sand, and
rigid balls past obstacles using a design similar to Bates et al .’s [187] study.

3.2.2 Computational Models

MPM Physical Simulator

The Material Point Method (MPM) [235] is commonly used in computer graphics to simulate
the behavior of solids and fluids. The MPM has produced physically accurate and visually realistic
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simulations of the dynamics of liquid [236] and sand [237], in addition to general continuum materials
such as stiff elastic objects [238].

The Appendix presents a mathematical overview of our MPM simulator, which provides a uni-
fied, particle-based simulation framework that handles rigid balls, liquid, and sand with essentially
the same numerical algorithm, albeit with appropriately differing material parameters. The MPM
method is physically accurate, numerically stable, and computationally efficient, enabling us to
synthesize a large set of stimuli in a short amount of time by simply varying material parameters
and the locations of the initial objects and colliding geometries. Running all the simulations in the
same framework for the purposes of the present study also enables fair comparisons among the
three types of substances, since we avoid potential inconsistencies in the numerical accuracies of
multiple simulators specialized to particular materials.

Intuitive Substance Engine

Although the MPM simulator provides accurate and stable kinematics and dynamics for liquid,
sand, and rigid balls using a unified framework, this high-precision, deterministic process does
not account for the variability of human judgments in various intuitive physics tasks. Inspired
by previous implementations of the noisy Newton framework (e.g ., [187, 90]), we combined our
MPM simulator with noisy inputs, yielding an Intuitive Substance Engine (ISE) that accounts for
uncertainty in human perception and reasoning in physical situations involving the three substances
examined in this study. Details on how noisy perceptual inputs are defined and sampled are provided
in the Model Results section of each experiment.

It is important to note that our ISE (employing MPM simulation) is roughly equivalent to
Bates et al .’s (2015) IFE (employing SPH simulation) in that both models apply the noisy Newton
framework to substance dynamics. Indeed, SPH is a viable method for simulating the dynamics of
both granular materials and liquids, although MPM provides a more efficient and accurate means
of doing so. We do not envision that the predictions of the two methods would differ substantially
from one another when applied to a given set of stimuli.

Data-Driven Models

Two data-driven models based on statistical learning methods were constructed as competing
models—the generalized linear model (GLM) [239] and Extreme Gradient Boosting (XGBoost) [240].
GLM is a classic machine learning method, commonly expressed by Y “ XB`U, where X is the
feature input matrix, B is the parameter matrix (learned using a training dataset), and U is the
error between the ground truth matrix Y and prediction XB.

XGBoost is a recently-published machine learning method which has been utilized by multiple
research teams to achieve outstanding performance in several Kaggle competitions. Essentially, it is
a type of tree ensemble model: i.e., a set of classification and regression trees (CART). Formally, ŷi “
řK
k“1 fkpxiq, whereK is the number of trees, fk is a function in the functional space F comprising the

set of all possible CARTS. The objective function is defined as Rpθq “
řn
i“1 lpyi, ŷiq `

řK
k“1 Ωpfkq,

where θ includes the model parameters to be learned during training, l is the loss function, which
measures the cost between ground truth yi and prediction ŷi, and

řK
k“1 Ωpfkq is a regularization

term that prevents the model from over-fitting the training data.

3.2.3 Experiment 1

The first experiment was designed to determine whether humans are able to predict the resting
geometry of sand after it is poured from a funnel onto a surface, and whether dynamic visualizations
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Figure 3.5: Intermediate frames from the demonstration video in Experiment 1 from the (A) zoomed-out
and (B) zoomed-in perspective. (C) Sand pile choices in Experiment 1’s judgment task.

of the pouring behavior facilitate mental simulation of sand-surface interactions.

Participants

A total of 108 undergraduate students (81 females), of mean age = 20.2 years, were recruited from
the University of California, Los Angeles (UCLA), Department of Psychology subject pool and
were compensated with course credit.

Materials and Procedure

Participants first viewed a demonstration video of sand falling from a funnel suspended 10 cm above
a level surface. The pouring event was viewed three times from a zoomed-out perspective (Fig. 3.5A)
and then a zoomed-in perspective (Fig. 3.5B). The duration of the video was 29 sec. After viewing
the demonstration video, participants were presented with a sand-filled funnel suspended 1/2, 1, 2,
and 4 cm above the surface in a randomized order.

Forty-three participants were assigned to the Static Condition and viewed a static image
(zoomed-out) in which the funnel was positioned at a particular height. Sixty-five were assigned
to the Dynamic Condition and viewed a video (zoomed in and out; looped three times; 35 sec
duration) of sand pouring from a funnel that was positioned at different heights above the surface.
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In the Dynamic Condition, the region of the surface where the sand fell was occluded by a gray
rectangle.

After viewing each situation, participants were asked to indicate which of four sand piles would
result from the sand pouring from the funnel at the indicated height (Fig. 3.5C). For each trial, the
stimulus images (for the Static Condition) and final video frames (Dynamic Condition) remained on
the screen until a response was made. The pile choices were shown from the zoomed-in perspective
and represented the ground-truth resting geometries resulting from each situation: i.e., Piles 1, 2,
3, and 4 correspond with the pile resulting from funnels suspended 1/2, 1, 2, and 4 cm above the
surface, respectively. The experiment consisted of 4 trials. The stimulus videos can be viewed at
https://vimeo.com/216585992.

Human Results

At each funnel height, the proportion of participants choosing each sand pile did not differ between
the Dynamic and Static Conditions: χ2(3) = 2.21, 2.34, 2.41, and 1.13 for funnel heights of 1/2, 1,
2, and 4 cm, respectively. These results suggest that dynamic visualizations of sand pouring from
the funnel in each situation did not alter participants’ judgments about the sand’s resting geometry.
However, the participants’ pile choices did vary across different heights (χ2(9) = 176.54), indicating
that funnel height influenced their predictions on the resting geometry of falling sand.

As shown in Fig. 3.6, participants’ pile choices shifted toward higher-numbered, flatter piles
as funnel height increased. These results indicate that participants’ predictions were sensitive to
funnel height, but inconsistent with ground-truth resting states. In the next section, predictions from
the three computational models (ISE, GLM, and XGBoost) are compared to human performance
to determine whether the noisy Newton framework can account for participants’ deviations from
ground-truth judgments.

Model Results

ISE Predictions: The input variables for our ISE in Experiment 1 were funnel height (i.e.,
initial sand height) with perceptual uncertainty and sand friction angle with mental simulation
uncertainty. Given the ground-truth values of initial funnel height and friction angle pHiT , θiT q, N “

10, 000 noisy samples tpHi, θiq, i “ 1, ..., Nu were generated and passed to our MPM simulator,
which returned the final height of the sand pile for each sample. Instead of choosing from 4 piles
(i.e., the task presented to the participants), the MPM simulator compares the estimated height
of the final sand pile, formally DpHi, θiq “ Hp P R ą 0, with the heights of the 4 pile options
given to human participants. The pile option with the minimum height difference was chosen as the
predicted judgment for each sample. Finally, by aggregating predictions across the 10, 000 samples,
our ISE outputs a predicted response distribution for each trial.

To model physical uncertainty in participants’ mental simulations, our ISE sampled funnel
heights and friction angles from noisy distributions. Gaussian noise (0 mean, σ2

H variance) was
added to the ground-truth funnel height in each situation. Gaussian noise was also added to the
ground-truth friction angle θiT , but in logarithmic space (see [233]): θi “ f´1pfpθiT q ` εq, where
θiT is the ground truth value of the initial sand height, fpθiT q “ logpω ¨ θiT ` kq, and ε represents
Gaussian noise with 0 mean and σ2

ε variance. The results reported herein used the following model
parameters: σH “ 0.12HiT , σε “ 0.6, ω “ 0.8 and k “ 1.5.

Data-Driven Predictions: To predict human judgments, both GLM and XGBoost were tested
on the ith pile (i “ 1, 2, 3, 4) and trained on the remaining three piles. During training, 10, 000



CHAPTER 3. PHYSICAL COMMONSENSE REASONING 62

Human ISE XGBoost GLM
0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Human ISE XGBoost GLM
0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Figure 3.6: Model prediction results compared to human judgments. (Upper) Static Condition. (Lower)
Dynamic Condition. Each bar, 1, 2, 3, and 4, corresponds to testing trials with funnel height 1/2, 1, 2, and
4 cm, respectively.

samples were drawn for each remaining pile (30, 000 samples) and passed to our MPM simula-
tor. Samples were generated using the sampling method described in the previous section. After
training on the 30, 000 samples, both data-driven models were tested on another 10, 000 samples
generated from noisy input based on the configuration of pile i. The final distribution was formed
by aggregating the predictions across the 10, 000 samples.

Model Comparisons: Fig. 3.6 depicts the predictions of the ISE, XGBoost, and GLM models
compared to human judgments. All four models achieved high correlations with human performance
(Static: rp12q “ 0.91, 0.84, and 0.27; Dynamic: rp12q “ 0.88, 0.88, and 0.30 for ISE, XGBoost, and
GLM, respectively). Human performance was much less correlated with ground-truth predictions
(Static: rp12q “ 0.17; Dynamic: rp12q “ 0.19). The ISE model predictions were more correlated
with the human data than the competing data-driven model predictions in the Static condition but
were only slightly more correlated than XGBoost predictions in the Dynamic condition. Hence, this
paper uses The root-mean-square deviation (RMSD) between human responses and model results
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Table 3.1: Root-mean-square deviation (RMSD) values for the ground-truth (GT), ISE, GLM, and XGBoost
models for Experiments 1 and 2. Lower values of RMSD indicate better model fits.

GT ISE XGBoost GLM

Experiment 1 (Static) 0.458 0.101 0.267 0.171

Experiment 1 (Dynamic) 0.445 0.104 0.237 0.148

Experiment 2 (Liquid) 0.145 0.081 1.382 0.077

Experiment 2 (Sand) 0.170 0.080 1.422 0.120

Experiment 2 (Balls) 0.186 0.102 2.067 0.191

to compare the model fits. We found that RMSD between human responses and ISE predictions
for the 4 judgment trials was less than that between ground-truth predictions in both Static and
Dynamic Conditions (see Table 3.1). We also examined modeling performance using the Bayesian
information criterion (BIC) to account for the different number of free parameters in each model.
We found that the ISE provides a better fit to the human data than the ground-truth and data-
driven models in both conditions. For ground-truth, ISE, XGBoost, and GLM models, Static BIC
“ ´25.0, ´62.3, ´31.2, ´45.4, and Dynamic BIC “ ´25.9,´61.3, ´35.0, ´50.0, respectively. The
model with the lowest BIC value is preferred.

Although XGBoost captures most of the trends in the human judgments, it appears to over-
fit the data in some cases. In the Static Condition, XGBoost’s predicted response proportion for
Pile 1 in the Trial 1 (1/2 cm funnel height) is greater than the proportion in Trial 2 (1 cm funnel
height), which is consistent with human judgments. In the Dynamic Condition, however, XGBoost’s
predicted response proportion for Pile 1 is greater in Trial 1 than in Trial 2, which is inconsistent
with trends in human performance. Alternatively, GLM showed very poor performance, predicting
an increasing probability of Pile 1 choices for larger funnel heights. This trend is in the opposite
direction of that observed in the human data, most likely due to the small number of training trials
used to make each prediction.

3.2.4 Experiment 2

Our results from the first experiment indicate that humans are able to predict the resting geometry
of sand piles, even though they may not have very rich experience interacting with sand in daily-life.
The second experiment was conducted to determine 1) whether humans can reason about complex
interactions between sand and rigid obstacles and 2) whether their predictions about the resting
state of sand in novel situations differ from predictions about other substances, such as liquid and
rigid balls.

Participants

A total of 90 undergraduate students (66 females), mean age 20.9, were recruited from the UCLA
Department of Psychology subject pool, and were compensated with course credit.
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Figure 3.7: Initial (top) and final (bottom) state of liquid (left), sand (middle), and a set of rigid balls (right)
for a testing trial in Experiment 2 with 5 obstacles. The percentages indicate the amount of each substance
that fell into the left and right basins. Only the initial state of each substance was shown in the testing trials.

Materials and Procedure

The procedure in Experiment 2 was similar to the design in Bates et al .’s (2015) experiment: i.e.,
participants viewed a volume of a substance suspended in the air above obstacles and were asked
to predict the proportion that would fall into two basins separated by a vertical divider below
(Fig. 3.7). The present experiment differed from previous work in that participants reasoned about
the resting state of one of three different substances: liquid, sand, or sets of rigid balls. Also, whereas
the previous study used polygonal obstacles, those in the present study were circles varying in size.
Depth information was also not present in the rendered situations. The stimulus videos can be
viewed at https://vimeo.com/216585992.

Situations were generated by sampling between 2 and 5 obstacle locations from a uniform dis-
tribution bounded by the width and height of the chamber. The diameter, d, of each obstacle was
sampled from a uniform distribution bounded by r0.15, 0.85s relative to the randomly-generated
center points. The center points were generated by uniformly sampling the entire space. If the gen-
erated obstacles were placed outside the boundary, the configuration was rejected and re-sampled.
Our MPM simulator was used to determine the ground-truth proportion of each substance in the
left and right basins for each of the generated situations. For each substance, forty testing trials (10
trials with 2, 3, 4, and 5 obstacles) were chosen from the generated set such that the ground-truth
proportion of substance in the left basin was approximately uniform across trials. The testing trials
were the same for each substance.

Participants were randomly assigned to either the liquid, sand, or rigid balls condition. Thirty
participants were assigned to each condition in a between-subjects experimental design. Prior to
the testing trials, participants completed five practice trials with two obstacles in each situation
in a randomized order. After answering 1) which basin the majority of the substance would fall
into and 2) the expected proportion that would fall into the indicated basin, participants viewed
a video (13 second duration) of the situation unfolding and were told the resulting proportion in
the ground-truth simulation. After completing the practice trials, participants completed 40 testing
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Figure 3.8: Model prediction results compared to human predictions. From left to right: Ground-truth (GT),
ISE, GLM, and XGBoost.

trials in a randomized order by answering the same two questions in each trial. No feedback was
given following the completion of each testing trial.

Human Results

Participants’ predicted proportions in the testing trials were strongly correlated with ground-truth
predictions in the liquid, sand, and rigid balls conditions (rp38q=0.86, 0.82, and 0.88; RMSD =
0.145, 0.170, 0.186, respectively). The deviation for each trial was calculated by subtracting the
ground-truth proportion from each participant’s proportion response. The deviation differed sig-
nificantly between the three substance conditions (F p2q “ 3.64, p “ 0.03), indicating that the
difference between human predictions and the ground-truth status varied according to the sub-
stance type. To determine whether participants’ response proportions differed between substances,
a random factor ANOVA was conducted for a chosen set of trials. The chosen set excluded those
trials where the majority of each substance fell into the same basin (left or right) according to
the ground-truth simulation. We found that the response proportions showed significant differences
depending on substance type (F p2q “ 8.43, p ă 0.01). The next section examines whether an
ISE and two data-driven models can capture differences in human performance between the three
substances.

Model Results

ISE Predictions: In Experiment 2, the observable input variables for our ISE for each substance
were 1) the initial, horizontal position of the substance, and 2) the positions of the circular obstacles
in each situation. The latent substance attributes accepted by the engine were viscosity, friction
angle, and restitution coefficient for liquid, sand, and the rigid balls, respectively. Gaussian noise
was added to the substance’s (ground-truth) horizontal position (0 mean, 0.35 variance) and the
obstacles’ (ground-truth) positions in 2D space (0 mean, 0.4 variance). Logarithmic Gaussian noise
was added to each substance’s ground-truth attribute value via the logarithmic transformation
specified in Experiment 1. The results reported here utilized the following model parameters for
all three substances: σε “ 0.5, ω “ 0.8, k “ 1.2. Two thousand samples (40 situations ˆ 50 noisy
samples) were used for each substance.

Data-Driven Predictions: Similar to Experiment 1, both GLM and XGBoost were tested. The
training data were randomly generated situations with basin proportions calculated using resting
state output from our MPM simulator. Input features were the collection of both the observable
input variables and latent substance attributes used in the ISE prediction. In total, 6000 samples
were used for training.
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Model Comparisons: Fig. 3.8 depicts the comparison between human and model basin pre-
dictions from the ground-truth (GT), ISE, GLM, and XGBoost models, and Table 1 depicts the
root-mean-square deviation (RMSD) of each model’s predictions from human ones. The human
data were highly consistent with ISE predictions (rp38q “ 0.93, 0.93, 0.93; RMSD = 0.081, 0.080,
0.102 for liquid, sand, and rigid balls, respectively). The ISE model predictions deviated from the
human data to a lesser degree than the GT model predictions (rp38q “ 0.87, 0.85, 0.88; RMSD
= 0.145, 0.170, 0.186 for liquid, sand, and rigid balls, respectively), indicating a superior account
of human predictions across a range of substances. In comparison, GLM and XGBoost predictions
were less consistent with human predictions (GLM: rp38q “ 0.77, 0.78, 0.65, RMSD = 0.077, 0.120,
0.191; XGBoost: rp38q “ 0.67, 0.74, 0.71, RMSD = 1.382, 1.422, 2.067 for liquid, sand and rigid
balls, respectively). As in the previous experiment, we compared each model’s BIC measure in each
condition to account for the number of free parameters in each model. We found that the BIC val-
ues for the ground-truth, GLM, and XGBoost models (GT: BIC = ´154.5, ´141.8, ´134.6; GLM:
BIC = ´194.0, ´158.6, ´121.4; XGBoost: BIC = 36.9, 39.2, 69.2 for liquid, sand, and rigid balls,
respectively) were consistently greater than the values for the ISE model (BIC = ´190.0, ´191.0,
´171.6 for liquid, sand, and rigid balls, respectively), further reinforcing the superior performance
of our simulation-based model.

It is worth noting that our ISE achieved consistent performance across all three substances,
whereas GLM and XGBoost were less capable of predicting human judgments about rigid balls and
liquid. In addition, our ISE used only one third of the training samples that XGBoost and GLM
needed, demonstrating that a generative physical model with noisy perceptual inputs is capable of
learning with a smaller number of samples than data-driven methods.

3.2.5 Discussion

Results from Experiments 1 and 2 provide converging evidence that humans can predict outcomes of
novel physical situations by propagating approximate spatial representations forward in time using
mental simulation. This stands in contrast to early research in rigid-body collisions suggesting
that human physical predictions do not obey ground-truth physics, instead relying on heuristics
(e.g ., [241, 242]). ISE predictions entailing the noisy Newton framework outperformed both ground-
truth and data-driven models in both experiments, further confirming the role of perceptual noise
and physical dynamics in human intuitive physical predictions.

Previous work has demonstrated that humans spontaneously employ mental simulation strate-
gies when reasoning about novel physical situations [243, 244, 245]. Recent fMRI results suggest
that intuitive physical inferences are made using an internal physics engine encoded in the brain’s
“multiple demand” network [185]. Although our ISE employed herein accounted for perceptual
uncertainty in each situation, the simulations themselves closely approximated normative physical
principles. Adding “stochastic noise” to physical dynamics, however, has been shown to increase
model performance when predicting human responses in simple physical situations [246]. While
dynamic uncertainty can easily be built into rigid-body collisions, employing this strategy in the
present physical simulations would preclude stable numerical evaluation. Thus, future computa-
tional work should explore methods for adding dynamic uncertainty into complex physical simula-
tions while preserving their accuracy and stability.

Results from the present study demonstrate that human predictions about substance dynamics
can be accurately predicted by a unified simulation method with uncertainty implemented into
underlying physical variables. It is unlikely, however, that the human brain numerically evaluates
partial differential equations to discern whether physical quantities (e.g ., mass and momentum) are
conserved, nor is it likely that the brain stores the locations of vast numbers of particles to form
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physical predictions and judgments. Instead, our results provide evidence that humans approximate
the dynamics of substances in a manner consistent with ground-truth physics but succumb to biases
invoked by perceptual noise when inferring future environmental states. It remains unclear, however,
whether the dynamics of rigid objects, liquids, and granular materials are approximated using
separable mechanisms or a single cognitive architecture with different assumptions and constraints.
The success of our unified simulation model across different substance-types supports the latter
perspective.

Acknowledgments Support for the present study was provided by a NSF Graduate Research
Fellowship, NSF grant BCS-1353391, DARPA XAI grant N66001-17-2-4029, DARPA SIMPLEX
grant N66001-15-C-4035, ONR MURI grant N00014-16-1-2007, and DoD CASIT grant W81XWH-
15-1-0147.

3.2.6 Appendix: Details of Our MPM Simulator

The governing partial differential equations utilize the principles of conservation of mass and momentum:

Dρ

Dt
` ρ∇ ¨ v “ 0,

Dv

Dt
“ ∇ ¨ σ ` ρg, (3.1)

where σ is the stress imparted on a particle, g is the gravitational acceleration, and D
Dt is the material

derivative with respect to time. The equations are discretized spatially and temporally with a collection of
Lagrangian particles (or material points) and a background Eulerian grid. The material type of the simulated
substances is naturally specified from the constitutive model, which defines how a material exerts internal
stress (or forces) as a result of deformation.

Rigid balls are simulated as highly stiff elastic objects with the neo-Hookean hyperelasticity model,
described through the elastic energy density function

ΨpFq “
µ

2
ptrpFTFq ´ dq ´ µ logpJq `

λ

2
log2

pJq, (3.2)

where d is the dimension (2 or 3), F is the deformation gradient (i.e., the gradient of the deformation from
undeformed space to deformed space), J is the determinant of F, and µ and λ are Lamé parameters that
describe the material’s stiffness.

Liquid is modeled as a nearly incompressible fluid, with its state governed by the Tait equation [247]:

p “ k

„ˆ

ρ0
ρ

˙γ

´ 1



, (3.3)

where p is the pressure, ρ and ρ0 are the current and original densities of the particles, γ “ 7 for water,
and k is the bulk modulus (i.e., how incompressible the fluid is). Through this Equation-of-State (EOS), the
stress inside a non-viscous fluid is given by σ “ ´pI, where I is the identity matrix. We further adopt the
Affine Particle-In-Cell method (APIC) [236] to greatly reduce numerical error and artificial damping. This
enables us to simulate fluids with better accuracy compared to alternative computer graphics methods.

The motion of dry sand is largely determined by the frictional contact between grains. In the theory of
elastoplasticity, the modeling of large deformation (e.g ., frictional contact) can be based on a constitutive
law that follows the Mohr-Coulomb friction theory. Following [237], we simulate dry sand based on the
Saint Venant Kirchhoff (StVK) elasticity model combined with a Drucker-Prager non-associated flow rule.
Plasticity models the material response as a constraint projection problem, where the feasible region (or
yield surface) of the final material stress is restricted to be inside

trpσqcF `

∥∥∥∥σ ´ trpσq

d

∥∥∥∥
F

ď 0, (3.4)

where d is the dimension and cF is the coefficient of internal friction between sand grains. The stress (and

thus deformation gradient) of each sand particle is projected onto the yield surface so as to satisfy the second

law of thermodynamics.
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3.2.7 Introduction

Imagine that you are preparing to pour pancake batter onto a griddle. To pour the correct amount,
you must decide where to hold the container, at what angle, and for how long. We encounter similar
situations frequently in our daily lives when interacting with viscous fluids ranging from water to
honey, and with different volumes, contained in receptacles of various shapes and sizes.

In the majority of these situations, we are able to reason about fluid-related physical processes
so as to implicitly predict how far a filled container can be tilted before the fluid inside begins
to spill over its rim. However, people perform significantly worse when asked to make explicit
reasoning judgments in similar situations [248, 249]. In the well-known Piagetian water level task
(WLT; [250]), participants receive instructions to draw the water level at indicated locations on the
inside of tilted containers. Surprisingly, about 40% of adults predict water levels that deviate from
the horizontal by 5 degrees or more (e.g ., [248]). [249] modified the WLT to include two containers,
one wider than the other. The investigators asked participants to judge which container would need
to be tilted farther before the water inside begins to pour out. Only 34% of the participants correctly
reported that the thinner container would need to be tilted farther than the wider one. However,
when instructed to complete the task by closing their eyes and imagining the same situation, nearly
all (95% of) the participants rotated a thinner, imaginary container (or a real, empty one) farther.
These findings suggest that people are able to reason successfully about relative pour angles by
mentally simulating the tilting event. An apparent contrast in human performance between an
explicit reasoning task and a simulated-doing task has also been found in people’s inferences about
the trajectories of falling objects [251, 171]. Thus, empirical findings in the literature of physical
reasoning suggest that people employ both explicit knowledge about physical rules and and mental
simulation when making inferences [244].

The noisy Newton framework for physical reasoning hypothesizes that inferences about dynam-
ical systems can be generated by combining noisy perceptual inputs with the principles of classical
(i.e., Newtonian) mechanics, given prior beliefs about represented variables [187, 90, 230, 232, 233,
246]. In this framework, the locations, motions and physical attributes of objects are sampled from
noisy distributions and propagated forward in time using an intuitive physics engine. The resulting
predictions are queried and averaged across simulations to determine the probability of the associ-
ated human judgment. [187] extended the framework from physical scene understanding (e.g ., [90])
to fluid dynamics using an intuitive fluid engine (IFE), where future fluid states are approximated
by probabilistic simulation via a Smoothed Particle Hydrodynamics (SPH) method [234]. The
particle-based IFE model matched human judgments about final fluid states and provided a better
quantitative fit than alternative models that did not employ simulation or account for physical
uncertainty.

The present study aims to determine whether a particle-based IFE model coupled with noisy
input variables can account for human judgments about the relative pour angle of two containers
filled with fluids differing in their volume and viscosity. The experiment reported here was inspired
by previous empirical findings in water-pouring tasks; e.g ., participants tilt containers filled with
imagined molasses farther than those with an equal volume of water, suggesting that people are able
to take physical attributes such as viscosity into account when making fluid-related judgments [249].
[187] also found that their participants’ judgments were sensitive to latent attributes of the fluid
(e.g ., stickiness and viscosity).

To quantify the extent that humans employ their perceived viscosity of fluids in subsequent
reasoning tasks, we utilized a recent development in graphical fluid simulation [252, 236] to sim-
ulate the dynamic behavior of fluids in vivid animations. Previous work has shown that realistic
animations can facilitate representation of dynamic physical situations [253]. Furthermore, recent



CHAPTER 3. PHYSICAL COMMONSENSE REASONING 69

research on human visual recognition indicates that latent attributes of fluids (e.g ., viscosity) are
primarily perceived from visual motion cues [254], so displaying realistic fluid movement is needed
to provide the input of key physical properties that enable mental fluid simulations. The present
study, which uses a modification of [249]’s [249] water-pouring problem coupled with advanced
techniques in computer graphics, aims to test the hypothesis that animated demonstrations of flow
behavior facilitate inference of latent fluid attributes, which inform mental simulations and enhance
performance in subsequent reasoning tasks.

3.2.8 Experiment

Participants A total of 152 participants were recruited from the Department of Psychology
subject pool at the University of California, Los Angeles, and were compensated with course credit.

Materials and Procedure Prior to the reasoning task, participants viewed animated demon-
strations of the movement of a moderately viscous fluid in two situations. The fluid used in the
demonstrations was colored orange and was not observed in the judgment task. In the first demon-
stration, the fluid pours over two torus-shaped obstructions in a video looped three times and lasting
for 11.5 seconds. The flow demonstration videos were presented to provide visual motion cues to
inform participants’ perceived viscosity. Following the flow demonstration, participants viewed a
video of a cylindrical container filled with the same orange fluid tilting at a constant angular rate
(ω “ 22 deg ¨s´1; see Fig. 3.9) from the upright orientation of the container and moving towards
the horizontal. The video was looped three times for a duration of 14.7 seconds.

Following the demonstration videos, two new fluids were introduced, one with low viscosity
(LV ; similar to water) and one with high viscosity (HV ; similar to molasses). The LV and HV
fluids were colored either red or green (counterbalanced across subjects). As shown in the top panel
of Fig. 3.9, participants viewed a flow video of both the HV and LV fluids (looped three times)
for a duration of 11.5 seconds before each judgment trial. The two flow videos were presented side
by side for comparison, and the relative position of each fluid was counterbalanced across subjects.
The LV and HV fluids were selected to readily distinguish the two fluids based on their perceived
viscosities, which were inferred from visual motion cues in the flow videos [254].

In the subsequent reasoning task, participants viewed a static image of two containers side by
side filled with the LV and HV fluids (see bottom panel of Fig. 3.9). Participants were instructed
to assume that each container was tilted simultaneously in the same way as observed earlier for
the orange fluid in the tilting demonstration. They were informed that both containers were tilted
at the same rate, and were provided with the quantity of fluid in each container. Participants
were then asked to report “which container will need to be tilted with a larger angle before the
fluid inside begins to pour out” and received no feedback following completion of each trial. The
experiment manipulated the volume of the LV and HV fluids (VLV and VHV , respectively) in each
container across the values 20%, 40%, 60%, and 80%, representing the proportion of the container
filled. Hence, the experiment consisted of 16 trials presented in a randomized order, including all
possible volume pairs between the LV and HV fluids. The experiment lasted approximately 10
minutes.

Human Results

Fig. 3.10 depicts human performance for all 16 fluid volume combinations. To assess the rela-
tionship between HV fluid volume and human judgments, we performed a logistic regression
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Figure 3.9: Illustration of flow demonstration video and judgment trial. (Top) Sample frames from the HV
(red) and LV (green) flow video. (Bottom) Tilt judgment trial, where VHV “ 40% and VLV “ 60%.

analysis and compared estimated coefficients for each participant across LV fluid volume con-
ditions. We found that coefficients for each participant varied significantly between VLV conditions
(F p3, 149q “ 113.89, p ă .001). In the highest LV fluid volume condition (VLV “ 80%), VHV had
a minor impact on participants’ responses (β̄80 “ .04, σβ80 “ .25) relative to the lowest LV fluid
volume condition (VHV “ 20%; β̄20 “ .57, σβ20 “ .43). These results demonstrate that participants’
responses were increasingly sensitive to HV fluid volume for the greater VLV conditions.

Next, we examined whether humans rely on heuristic-based reasoning to make their judgments.
One potential heuristic is that given two containers filled with different volumes of each fluid,
the container with lesser fluid volume requires a greater rotation before beginning to pour. While
participants consistently adhered to this rule for trials where VHV ă VLV , their judgments for each
of the VLV ă VHV trials did not accord to the same heuristic. For example, in trials where VHV =
40%, 60%, and 80% and VLV = 20%, 40%, and 60%, respectively, the lesser-volume heuristic predicts
LV fluid responses. However, HV response proportions for those trials were significantly greater
thane zero (tp151q “ 9.92, 8.86, 8.10, p ă .001). A second potential heuristic is to always choose the
HV fluid as requiring a greater rotation since it moves slower than the LV fluid. The above three
cases also disagreed with this heuristic since the rule would predict unity response proportions. In
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Figure 3.10: Human HV response proportions for all experimental conditions. The volume of the HV fluid
(VHV ) is plotted on the horizontal axis, and separate lines indicate the four possible volumes for the LV
fluid (VLV ).

summary, response proportions in the specified trials reveals that participants attended to latent
fluid attributes (e.g ., viscosity) and volume difference when making their tilt angle judgments (see
Fig. 3.11).

3.2.9 Models

Fluid Simulation with Physical Dynamics

The simulation of incompressible flows through numerical evaluation of physical equations has
become one of the most significant topics in computer graphics and mechanical engineering. The
velocity field of simulated fluids is determined according to the constraints specified in the Navier-
Stokes equations:

Bv

Bt
` v ¨∇v ` 1

ρ
∇p “ g ` µ∇ ¨∇v, (3.5)

∇ ¨ v “ 0, (3.6)

where v is the velocity, ρ is the density, p is the pressure, g is the gravitational acceleration (approx-
imately 9.8 m s´2), and µ is the viscosity. Eq. (3.5) is called the momentum equation—it is simply
Newton’s second law (i.e., F “ ma) applied to fluid dynamics. Eq. (3.6) is the incompressibility
constraint on fluid velocity, where the null divergence of the velocity field corresponds to constant
density within volumetric regions. Most liquids need to satisfy this constraint in order to maintain
constant volume while moving.
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To numerically solve these partial differential equations, we adopt the Fluid Implicit Parti-
cle/Affine Particle in Cell (FLIP/APIC) method [255, 236, 256], which has become standard in
physics-based simulation calculations due to its accuracy, stability and efficiency. Unlike Smoothed
Particle Hydrodynamics (SPH), which purely relies on particles to discretize the computational
domain, FLIP/APIC uses both particles and a background Eulerian grid. The Navier-Stokes equa-
tions are solved on the grid, allowing for accurate derivative calculations, well-defined free surface
and solid boundary conditions, and accurate first-order approximation of physical reality. The
FLIP/APIC method also circumvents common artifacts of SPH; e.g ., underestimated density near
free surfaces and weakly compressible artifacts. In fact, the requirement for incompressibility is
crucial in the fluid-pouring problem studied in this paper. We choose not to use SPH because it
does not guarantee a divergence-free velocity field unless additional computational components are
included. FLIP/APIC, however, maintains the benefits of particle-based methods due to its hybrid
particle/grid nature. The presence of particles in the current model serves to facilitate visualization
and the tracking of material properties. Besides modeling fluid, the state-of-the-art physics-based
simulation methods have provided realistic cues for modeling complex tool and tool-uses [222],
generic containers [257] and soft human body [223].

Realistic visualization of simulated fluids is particularly important for the flow demonstration
animations displayed before each trial in our viscous fluid-pouring task. To provide vivid impressions
of the motion of the LV and HV fluids, we adopt OpenVDB [258] and utilize the latest particle
fluid surfacing methods developed in the field of computer graphics to reconstruct a smooth level
set surface from the simulated fluid particles based on their locations.

The favorable efficiency and precision of the FLIP/APIC method allows for effortless generation
of ground truth responses for our task, given that fluid viscosity and volume are known. The particle
locations and vessel tilt angles are explicitly recorded at each time step as simulation outputs. Since
the FLIP/APIC method does not involve any stochastic processes, the output of each simulation
is deterministic. In each simulation, 40, 000 particles (with around 8 particles per grid cell) were
used to ensure both stability and convergence.

Intuitive Fluid Engine

Fluid simulation with physical dynamics provides deterministic fluid movements if the ground-truth
values of viscosity and volume are known. Hence, the decisions directly derived from the FLIP/APIC
fluid simulator are binary judgments (Fig. 3.11), which implies that the physical simulation with
high precision cannot explain humans’ probabilistic judgment in the fluid-pouring task. Inspired by
the approach of [187] and the noisy Newton model (e.g ., [233]), we combine the physical simulator
of FLIP/APIC with noisy input variables (i.e., viscosity and volume) to form the Intuitive Fluid
Engine (IFE) model, thereby accounting for physical uncertainty and the influence of viscosity and
volume on our reasoning task.

The input variables for our IFE are the ground-truth values of volume and viscosity pVT , µT q for
the two fluids in each experimental trial. The sampling process of the IFE then samples N “ 10, 000
noisy viscosity and volume pair values tpVi, µiq, i “ 1, 2, ¨ ¨ ¨ , Nu for each fluid. Each sample pVi, µiq
of the 10000 generated noisy input variables is later passed to the FLIP/APIC simulator to produce
a binary decision BipVi, µiq P tL,Ru. The decision is that either the left L or the right R container
needs to be tilted with a larger angle before the fluid inside begins to pour out. By aggregating
the prediction from all 10, 000 samples and dividing the sum by the number of samples, the IFE
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Figure 3.11: Simulation results from the FLIP/APIC model (RMSD “ 0.6747). Separate lines indicate
model predictions, given ground-truth volume/viscosity values for each fluid. Symbols indicate human re-
sponse proportions. The deterministic simulation method returns binary predictions and does not provide
probabilistic response proportion estimates.

outputs the distribution P pVT , µT q for the given ground-truth values of viscosity and volume:

P pVT , µT q “

$

’

’

’

&

’

’

’

%

P pVT , µT qL “

ř

iHpBipVi, µiq, Lq

N

P pVT , µT qR “

ř

iHpBipVi, µiq, Rq

N
,

(3.7)

where HpΨ,Θq “ 1 when Ψ “ Θ, and it is 0 otherwise.
To model physical uncertainty, the sampling process of the IFE model is implemented by adding

perceptual noises to the ground-truth values of the physical input variables (i.e., viscosity and
volume). Noisy volume is generated by adding an offset to its ground-truth value from a Gaussian
distribution with mean 0 and variance σµ, whereas the noisy viscosity is generated by adding a
fixed amount of Gaussian noise on a logarithmic scale [233]: Vi “ f´1pfpVT q ` εq, where VT is the
ground-truth value, fpVT q “ logpω ¨ VT ` kq, f

´1 is the inverse of f , and ε „ Gaussianp0, σV q. The
results reported herein chooses σµ “ 0.1, σV “ 0.1, k “ 1.5, ω “ 1.

Each simulation required approximately 10 minutes to run on a modern single-core CPU. In
order to run a large number of simulations during the sampling process, we discretized the viscosity
and volume spaces into finite sets. Specifically, the viscosities are discretized into 8 different cases
(0.1, 1, 10, 100, 200, 500, 1000, 2000) and the volumes into 21 different cases (0% to 100% with a
step-size 5%). We pre-computed the simulation results for each discretized case, and stored the
results in a database. During the sampling process, the sampled inputs are numerically rounded to
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Figure 3.12: Comparison of results between our three prediction models: (Left) IFE, (Middle) Regression,
and (Right) SVM with perceptual noise. Horizontal axes denote HV fluid volume; vertical axes denote the
predicted proportion of HV fluid responses associated with a greater rotation angle. The IFE simulation
model outperforms competing data-driven models.

the pre-computed discretized cases, where the results can be immediately retried from the database
without re-computing.

Non-Simulation Models

To examine whether fluid simulation is necessary to account for how humans reason about fluid
behavior, we compare the simulation model with two statistical learning methods—the generalized
linear model (GLM) [239] and the support vector machine (SVM) [259]. These models are purely
data-driven and do not involve any explicit knowledge of physical laws or physical simulation. The
selected features for these models include (i) the volumes of fluids in both containers, and (ii) the
viscosity ratio between the LV and HV fluids.

To predict human judgment for the i‹th trial Ji‹ , both non-simulation models were tested with
the i‹th trial, and trained with the remaining 15 trials tJi, i “ 1, 2, ¨ ¨ ¨ , 16, i ‰ i‹u. The trained
GLM model is directly applied to the test case to predict which container will need to be tilted
to a larger angle before the fluid inside begins to pour out. Since the SVM is a discriminative
classification method which can only predict discretized labels (i.e., `1 indicating selection of the
left container and ´1 indicating selection of the right container), we introduced perceptual noise
(the same method for the IFE) to each test trial to model physical uncertainty. For each test trial,
a set with 10, 000 samples was generated. The trained SVM model is then applied to predict the
labels (`1 or ´1) in each sample, which are then aggregated to form the probability distribution
for each test trial.

Model Results

We first compared how well different computational models account for human performance for the
16 trials. Fig. 3.12 depicts results from the IFE, GLM, and SVM models with perceptual noise.
Human judgments and model predictions were highly correlated (rp14q “ 0.9954, 0.9488, and 0.9251,
respectively). RMSD (root-mean-squared deviation) between human judgments and the models’
predictions are 0.0824, 0.1269, and 0.1418, respectively. Compared to the purely data-driven models
(i.e., the GLM and SVM models), the simulation-based IFE model encodes material properties (e.g .,
viscosity) and perceptual features (e.g ., volume) and provides better approximations to human
judgments in the viscous fluid-pouring task. These results again support the role of simulation as
a potential mental model that supports human inference in physical reasoning tasks.
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Next, we examined whether the IFE model captures human performance on the three trials
where the heuristic rule outlined earlier provides incorrect predictions; i.e., those trials where VHV
= 40%, 60%, and 80% and VLV = 20%, 40%, and 60%, respectively. Here, the ground-truth model
predicts that the HV fluid will require a greater angle of rotation before beginning to pour, while
the heuristic rule discussed earlier suggests the opposite. HV response proportions for these trials
were .39, .34, and .30, respectively, and the IFE model returned consistent predictions of .43,
.37, and .23. Alternatively, the GLM model predicted response proportions of .49, .47, and .49,
and the SVM model predicted response proportions of .49, .49, and .51. Thus, our IFE model
captured human performance on the specified trials while competing data-driven methods returned
predictions biased toward the ground-truth model and away from the lesser-volume heuristic.

3.2.10 Discussion

Our results from the viscous fluid-pouring task agree with the findings of [187] in that our prob-
abilistic, simulation-based IFE model outperformed two non-simulation models (SVM and GLM).
Our behavioral experiment also indicates that people naturally attend to latent attributes (e.g .,
viscosity) when reasoning about fluid states following observation of realistic flow demonstration
animations. By extending our probabilistic IFE method to a reasoning task, we demonstrated that
the noisy Newton framework can account for human performance in a fluid-related judgment task
that traditionally precludes mental simulation strategies.

While simulation has been demonstrated as the default strategy in other mechanical reason-
ing tasks [244, 243], the participants in [249] experiments failed to spontaneously represent and
simulate physical properties relevant to the water-pouring problem when making their judgments.
It is important to note, however, that the present task differs from the traditional water-pouring
task in several ways: (i) fluid viscosity and volume (rather than container diameter) varied across
trials, (ii) a cup-tilting demonstration was displayed to visualize the rate of simulated rotation, and
(iii) motion cues from flow demonstrations informed the perception of latent fluid attributes (e.g .,
viscosity). Comparison of our study to previous water-pouring studies suggests that the dissocia-
tion between explicit physical prediction and implicit judgment reported in the intuitive physics
literature could be resolved in some situations by modifying task characteristics and instructions in
ways that motivate simulated representation. While our viscous water-pouring problem indicates
a set of simulation-inducing task characteristics, further research should aim to determine specific
experimental factors that trigger simulation strategies. Specifically, can the conditions employed
in the present task extend to classical rigid-body and fluid mechanics problems to resolve the dis-
crepancy between people’s explicit predictions and tacit judgments, and if so, what additional task
characteristics serve to facilitate mental simulation?

Classical research in artificial intelligence has traditionally dismissed robust mental simulation
as a strategy for physical reasoning due to its inherent complexity, often proposing simplified qual-
itative models instead [260]. While the computational fluid simulations employed in the present
study require extensive numerical evaluation to make predictions about future fluid states, humans
appear to do so with precision and accuracy in comparatively small amounts of time. Furthermore,
their performance in our reasoning task suggests representation of physical quantities that extends
beyond qualitative process theory. While human results are generally consistent with physics-based
simulation models coupled with noisy input variables, there remain discrepancies between model
predictions and human judgments. Hence, future research should aim to address whether humans
simulate fluid movements using mental models that accord to physical laws or emulate fluid dynam-
ics by drawing on their everyday interactions with liquids across diverse physical situations [261].
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3.3 Case Study: Physical Stability as Grouping Principle

This work presents a new perspective for 3D scene understanding by reasoning object stability and
safety using intuitive mechanics. Our approach utilizes a simple observation that, by human design,
objects in static scenes should be stable in the gravity field and be safe with respect to various
physical disturbances such as human activities. This assumption is applicable to all scene categories
and poses useful constraints for the plausible interpretations (parses) in scene understanding. Given
a 3D point cloud captured for a static scene by depth cameras, our method consists of three steps:
i) recovering solid 3D volumetric primitives from voxels; ii) reasoning stability by grouping the
unstable primitives to physically stable objects by optimizing the stability and the scene prior; and
iii) reasoning safety by evaluating the physical risks for objects under physical disturbances, such
as human activity, wind or earthquakes.

Zhao and Zhu adopt a novel intuitive physics model and represent the energy landscape of
each primitive and object in the scene by a disconnectivity graph (DG). Zhao and Zhu construct
a contact graph with nodes being 3D volumetric primitives and edges representing the supporting
relations. Then Zhao and Zhu adopt a Swendson-Wang Cuts Algorithm to group/partition the
contact graph into groups. Each group is a stable object. In order to detect unsafe objects in a
static scene, our method infers hidden and situated causes (disturbances) of the scene, and then
introduces intuitive physical mechanics to predict possible effects (e.g ., falls) as consequences of
the disturbances.

In experiments, Zhao and Zhu demonstrate that the algorithm achieves substantially better
performance for i) object segmentation, ii) 3D volumetric recovery, and iii) scene understanding in
comparison to state-of-the-art methods. Zhao and Zhu also compare the safety prediction from the
intuitive mechanics model with human ratings.

3.3.1 Introduction

Intuitive Physics

Interacting with the world requires a commonsense understanding of how it operates at a physi-
cal level, which does not necessarily require us to precisely or explicitly invoke Newton’s laws of
mechanics; instead, we rely on intuition, built up through active interactions with the surround-
ing environment. Humans excel at understanding their physical environment and interacting with
objects undergoing dynamic state changes, making approximate predictions from observed events.
The knowledge underlying such activities is termed intuitive physics [167]. The field of intuitive
physics has been explored for several decades in cognitive science and recently reinvigorated by new
techniques linked to AI.

Early research in intuitive physics provides several examples of situations where humans demon-
strate common misconceptions about how objects in the environment behave. For example, several
studies found that humans exhibit striking deviations from Newtonian physical principles when
asked to explicitly reason about the expected continuation of a dynamic event based on a static
image representing the situation at a single time point [168, 167, 169]. However, humans’ intuitive
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understanding of physics is much more accurate, rich, and sophisticated than previously expected
if dynamics and proper context were provided [170, 171, 172, 173, 174].

Surprisingly, humans develop physical intuitions at an early age [100, 262], well before most
other types of high-level reasoning. At the age of two months, human infants expect inanimate
objects to follow principles of solidity, cohension, continuity, and persistence, while at round six
month old, infants will have developed different expectations for diffirent bodies, e.g ., rigid body and
liquids [263, 264]. While a widely accepted computational account of these observations is lacking,
Lake et al . [262] suggests the recent approach of physics software engine, or Intuitive Physics Engine
(IPE), could be a promising approach towards this problem [90]. In their hypothesis, people also
construct a scene using internal properties of objects, such as mass, gravity, stiffness, and friction,
and simulate its dynamics after external perturbations.

To verify the hypothesis, Battaglia et al . built a probabilistic model of IPE based on a block
world and ask people to judge whether a shown block tower configuration is stable enough. Though
the proposed model makes probabilistic simulations and predictions, the results are strongly corre-
lated with those made by human subjects regarding both stability prediction and stability rating,
regardless of whether the guesses reflect Newtonian physics or not.

The intuitive physics engine approach is approximate and probabilistic, sometimes oversimpli-
fied and incomplete. However, it also exhibits important features, such as flexibility and generality,
compared to current pattern recognition approach, e.g ., deep learning. The model could be gener-
alized to a wide range of daily lives without huge amounts of training data, in contrast to a deep
learning model [265] which fails when a few more layers of blocks are added.

However, human perception might not always cohere with the physics law. A typical example is
the refraction of water that easily tricks people into a mis-measurement of its depth. Another factor
that affects one’s perception is his physiological state. In Witt and Proffitt’s experiments [266], it’s
noticed that people tend to overestimate the incline of mountains by using merely visual clues,
especially when they are in poor physical conditions. Height measurement is also deeply affected
depending on whether one is afraid of height [267]. Unfortunately, a computational model that
explains why human makes these wrong perceptions is lacking as well.

Motivation and Objectives

Traditional approaches, e.g ., [268, 269], for scene understanding have been mostly focused on seg-
mentation and object recognition from 2D/3D images. Such representations lack important physical
information, such as the stability of the objects, potential physical safety, and supporting relations
which are critical for scene understanding, situation awareness and especially robot vision. The
following scenarios illustrate the importance of this information.
• Stability and safety understanding. Our approach utilizes a simple observation that, by human

design, objects in static scenes should be stable in the gravity field and be safe respect to various
physical disturbances such as human activities. This assumption poses useful constraints for the
plausible interpretations (parses) in scene understanding.

• Human assistant robots. Objects have the potential to fall onto or hit people at workplaces, as
the warning sign shows in Fig. 3.13 (a). To prevent objects from falling freely from one level to
another, safety surveillance ensures that objects be stored in safe places, especially for children,
elders and people with disabilities. As the example shows in Fig. 3.13 (b), Zhao and Zhu can
predict a possible action of the child—he is reaching for something - and then infer possible
consequences of his action—he might be struck by the falling teapot.

• Disaster rescue robots. Fig. 3.13 (c) shows a demonstration of a HDR-IAI Multi-Arm robot
rescuing people during a mock disaster in the DARPA robot challenge [270]. Before planning
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(a) (b)

(c)
Figure 3.13: A safety-aware robot can be used to detect potentially physically unstable objects in a variety
of situations: (a) falling objects at a constructions site, (b) the human assistant for baby proofing, and
(c) the disaster rescue (from the recent DARPA Robotics Challenge), where the Multi-Arm robot needs to
understand the physical relationships between obstacles.

how to rescue people, the robot needs to understand the physical information, such as which
wood block is unsafe or unstable, and the support relations between them.
In this work, Zhao and Zhu present an approach for reasoning physical stability and safety of 3D

volumetric objects reconstructed from either a depth image captured by a range camera, or a large
scale point cloud scene reconstructed by the SLAM technique [271]. Zhao and Zhu utilize a simple
observation that, by human design, objects in static scenes should be “stable” but might not be
“safe” with respect to gravity and various physical disturbances caused by wind, a mild earthquake
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Figure 3.14: Overview of our method. (a) Input: 3D scene reconstructed by SLAM technique and Output:
parsed 3D scene as stable objects with supporting relations. The number are unsafety scores for each object
under the disturbance field (in red arrows), (b) scene parsing graphs corresponding to 3 bottom-up processes:
voxel based representation (bottom), geometric preprocess including segmentation and volumetric completion
(middle), and stability optimization (top). (c) result at each step. (d) physical simulation result of each step.

or human activities. For example, a parse graph is said to be valid if the objects, according to its
interpretation, do not fall under gravity. If an object is not stable on its own, it must be grouped
with neighbors or fixed to its supporting base. In addition, while objects are stable physically, they
might be potentially unsafe if the places where they stay are prone to collisions with human bodies
during common activities. These assumptions are applicable to all scene categories and thus pose
powerful constraints for the plausible interpretations (parses) in scene understanding.

Overview

As Fig. 3.14 shows, given the input point cloud, our method consists of two main steps: stability
reasoning and safety reasoning.
• Stability reasoning : hierarchically pursuing a physically stable scene understanding in two sub-

steps:
– Geometric preprocessing : recovering solid 3D volumetric primitives from a defective point

cloud. Firstly Zhao and Zhu segment and fit the input 21
2D depth map or point cloud to small

simple (e.g ., planar) surfaces; secondly, Zhao and Zhu merge convexly connected segments
into shape primitives; and thirdly, Zhao and Zhu construct 3D volumetric shape primitives
by filling the missing (occluded) voxels, so that each shape primitive has physical properties:
volume, mass and supporting areas to allow the computation of the potential energies in the
scene.

– Reasoning maximum stability : grouping the primitives to physically stable objects by optimiz-
ing the stability and the scene prior. Zhao and Zhu build a contact graph for the neighborhood
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relations of the primitives. For example, as shown in Fig. 3.14 (c) in the second row, the lamp
on the desk originally was divided into 3 primitives and would fall under gravity (see result
simulated using a physical simulation engine in Fig. 3.14 (d)), but becomes stable when they
are group into one object—the lamp. So is the computer screen grouped with its base.

• Safety reasoning—Given a static scene consisting of stable objects, our method first infers hidden
and situated causes (disturbance field, red arrows in Fig. 3.14 (a)) of the scene, and then intro-
duces intuitive physical mechanics to predict the unsafety scores (e.g ., falls) as the consequences
of the causes. As shown in Fig. 3.14 (a) Output), since the cup is unsafe (falls off the table) under
the act of the disturbance field, it gets a high unsafety score and a red label.
Our method adopts a novel intuitive physics model based on an energy landscape representation

using disconnectivity graph (DG). Based on the energy landscape, it defines the physical stability
function explicitly by studying the minimum energy (physical work) needed to change the pose
and position of an object from one equilibrium to another, and thus release potential energy. For
optimizing the scene stabilities, Zhao and Zhu propose to construct a contact graph and adopt
the cluster sampling method, Swendsen-Wang Cut, introduced in image segmentation [272]. The
algorithm groups/partitions the contact graph into groups, each being a stable object.

In order to detect unsafe objects in a static scene, our method first infers the “cause”—
disturbance field, such as human activities or natural effects. To model the field of human dis-
turbance, Zhao and Zhu collect the motion capture data of human actions, and apply it to the 3D
scene (walkable areas) to estimate the statistical distribution of human disturbance. In order to
generate a meaningful human action field, Zhao and Zhu first predict primary motions on the 2D
ground plane which recodes the visiting frequency and walking direction for each walkable position,
and add detailed secondary body part motions in 3D space. In addition, Zhao and Zhu explore two
natural disturbances: wind and earthquakes. Zhao and Zhu then reason the “effects” (e.g ., falling)
of each possible disturbance by our intuitive physics model. In this case, Zhao and Zhu calculate
the minimum kinetic energy to move an entity from one stable point to a local maximum, i.e.,
knocking it off equilibrium, and then Zhao and Zhu further evaluate the risk by calculating the
energy released in reaching a deeper minimum. That is, the greater the energy it releases, the higher
the risk is.

In experiments, Zhao and Zhu demonstrate that the algorithms achieve a substantially better
performance for i) object segmentation, ii) 3D volumetric recovery of the scene, and iii) scene
understanding in comparison to state-of-the-art methods in both public datasets [215]. Zhao and
Zhu evaluate the accuracy of potentially unsafe object detection by ranking the falling risk w.r.t.
human judgments.

Related Work

Our work is related to 6 research streams in the vision and robotics literature.
• Geometric segmentation and grouping. Our approach for geometric pre-processing is related to

a set of segmentation methods, e.g ., [273, 274, 275]. Most of the existing methods are focused
on classifying point clouds for object category recognition, not for 3D volumetric completion.
For work in 3D geometric reasoning, [274] extracts 3D geometric primitives (planes or cylinders)
from a 3D mesh. In comparison, our method is more faithful to the original geometric shape
of object in the point cloud data. There has also been interesting work in constructing 3D
scene layouts from 2D images for indoor scenes, such as [276, 213, 51, 277]. [278] also performed
volumetric reasoning with the Manhattan-world assumption on the problem of multi-view stereo.
In comparison, our volumetric reasoning is based on complex point cloud data and provides more
accurate 3D physical properties, e.g ., masses, gravity potentials, contact area, etc.
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• Physical reasoning. The vision communities have studied the physical properties based on a
single image for the “block world” in the past three decades [208, 211, 121, 276, 213, 51]). e.g .,
Biederman et al . [208] studied human sensitivity of objects that violate certain physical relations.
Our goal of inferring physical relations is most closely related to [211] who infer volumetric
shapes, occlusion, and support relations in outdoor scenes inspired by physical reasoning from a
2D image, and Silberman et al . [215, 130, 217] who infers the support relations between objects
from a single depth image using supervised learning with many prior features. In contrast, our
work is the first that defines explicitly the mathematical model for object stability. Without a
supervised learning process, our method is able to infer the 3D objects with maximum stability.

• Intuitive physics model. The intuitive physics model is an important perspective for human-
level complex scene understanding. However, to our best knowledge, there is little work that
mathematically defines intuitive physics models for real scene understanding. [129] adopts an
intuitive physics model in [167], however this model lacks deep consideration on complex physical
relations. In our recent work [116, 117], Zhao and Zhu propose a novel intuitive physics model
based on gravity potential energy transfer. In this work, Zhao and Zhu extend this intuitive
physics model by combining specific physical disturbance fields. While Physics engines in graphics
can accurately simulate the motion of objects under the influence of gravity, it is computationally
too expensive for the purpose of measuring object stability.

• Safe Motion Planning. As motion planning is a classic problem in robotics, [279] tackled the
problem of safe motion planning in the presence of moving obstacles. They consider the moving
obstacles as a real-time constraint inherent to the dynamic environment. Zhao and Zhu first
argue that a robot needs to be aware of potential dangers even in a static environment due to
possible incoming disturbances.

• Human in the loop. This stream of research emphasizes a human-centric representation, differing
from the classic feature-classifier paradigm of object recognition. Some recent work utilized the
notion of “affordance.” [128] recognized chairs by hallucinating a “sitting” actor interacting with
the scene. [121] predicted the “workspace” of a human given an estimated 3D scene geometry.
[280] and [281] demonstrated that observing people performing different actions can significantly
improve estimates of scene geometry and scene semantics. [130] and [282] proposed scene labeling
algorithms by considering humans as the hidden context.

• Cognitive studies. Recent psychology studies suggested that approximate Newtonian principles
underlie human judgments about dynamics and stability [109, 91]. Hamrick et al . [91] showed
that knowledge of Newtonian principles and probabilistic representations are generally applied for
human physical reasoning. These intuitive models are studied for understanding human behaviors,
not for vision robotics.

Contributions

This work makes the following contributions.
• It defines the physical stability function explicitly by studying minimum forces and thus physical

work needed to change the pose and position of an primitive (or object) from one equilibrium to
another, and thus to release potential energy.

• It introduces a novel disconnectivity graph (DG) from physics [283] to represent the energy
landscapes of objects.

• It solves the complex optimization problem by applying the cluster sampling method Swendsen-
Wang cut used in image segmentation [272] to physical reasoning.

• It collects a new dataset for large scenes using depth sensors for scene understanding and the
data and annotations will be released to the public.
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Figure 3.15: (a) Splitting. Two 1-degree IAMs f1, f2 and f3 (in red, green and blue lines respectively) are
fitted to the 3-Layer point cloud. Points in green and blue are the extra layer points generated from original
points in black. (b) Merging. the segments fitted by f2 and f3 are merged together, because they are convexly
connected. The convexity can be detected by drawing a line (in circular points) between any two connected
segments and checking if their function values are negative. (c) Volumetric completion. Four types of voxels
are estimated in volumetric space: invisible voxels (light green), empty voxels (white), surface voxels (red
and blue dots), and the voxels filled in the invisible space (colored square in light red or blue).

Over the well-defined intuitive physics model in our previous work [116], Zhao and Zhu extend
it to a safety model by introducing various disturbance fields.

The rest of this work is organized as: Section 2 presents our geometric preprocessing method
that first forms solid object primitives from raw point clouds; then the method for reasoning the
maximal stability for a static scene is described in Section 3; and reasoning the safety for each
object in the scene is presented in Section 4 followed by experimental results and discussions in
Sections 5 and 6 respectively.

3.3.2 Preprocessing: Computing Solid Volumes from Point Clouds

In order to infer the physical properties (e.g ., mass, gravity potential energy, supporting area) of
objects from point clouds, Zhao and Zhu first compute a 3D volumetric representation for each
object part. Zhao and Zhu proceed in two steps: 1) point cloud segmentation, and 2) volumetric
completion.

Segmentation with Implicit Algebraic Models

Zhao and Zhu adopt a segmentation method using implicit algebraic models (IAMs) [284] which
fits IAMs to point clouds with simple geometry.

fippq « 0, (3.8)

where p “ tx, y, zu is a 3D point and fi is defined by an n-degree polynomial:

fippq “
ÿ

0ďi,j,k;i`j`kďn

aijkx
iyjzk, (3.9)

where aijk are the unknown coefficients of the polynomial. The main advantage of IAM is that it is
convenient for accessing the “inside” (fi ă 0) or “outside” (fi ą 0) of a surface fitted by an IAM.

Our method is in 2 steps as Fig. 3.15 (a) and (b) illustrated: 1) splitting step: over-segmenting
the point cloud into simple regions approximated by IAMs, and then 2) merging step: merging
them together with respect to their convexly connected relations.
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Figure 3.16: (a) Over-segmentation result obtained by splitting with IAMs. (b) Result after merging the
convexly connected faces. (see the difference on “mouse” object). (c) Result after volumetric completion.
(see the difference on “cup” object and hole on the back wall).

Splitting Step The objective in this step can be considered to be finding the maximal 3D regions,
each of them well fitted by an IAM. The IAM fitting for each region is formulated in least squares
optimization using the 3-Layer method proposed by [284].

As shown in Fig. 3.15 (a), it first generates two extra point layers along the surface normals.
Then, the IAM can be fitted to the point set constrained by 3 layers with linear least squared
fitting.

Zhao and Zhu adopt a region growing scheme [275] in our segmentation. Thus our method can
be described as: starting from several given seeds, the regions grow until there is no point that can
be merged into the region fitted by an IAM. Zhao and Zhu adopt the IAM of 1 or 2 degree, i.e.,
planes or second order algebraic surfaces and use the IAM fitting algorithm proposed by Zheng et
al . [285] to select the models in a degree-increasing manner.

Merging Step The above segmentation method over-segments the objects into pieces. This is still
a poor representation for objects, since only the segments viewed as faces of objects are obtained.
According to a common observation that an object should be composed of several convex hulls
(primitives) whose faces are convexly connected, Zhao and Zhu propose a merging step that merges
the convexly connected segments together to approach the representation of object primitives.

To detect the convex connection, as shown in Fig. 3.15 (b), Zhao and Zhu first sample the points
on a line which connects two adjacent regions (the circle lines in Fig. 3.15 (b)) as: tpl|pl P Lu, where
L denotes a line segment whose ends are on the two connected regions respectively. To detect the
convexly connected relationship, Zhao and Zhu take a condition as the judgment:

#tp|pl P L^ fipplq ă 0^ fjpplq ă 0u

#tp|pl P Lu
ą δ2, (3.10)

where the ratio threshold δ2 is set as 0.6. As illustrated in Fig. 3.15 (b), since the circular points
drawn between f2 and f3 are negative, the segments should be merged. Fig. 3.16 (a) and (b) shows
the difference before and after merging the convexly connected regions.

Volumetric Space Completion

The primitives output from the above method are still insufficient to reason the physical properties,
e.g ., in Fig. 3.16 (b), the wall and table have hollow surfaces with holes and the cup has missing
volume. To overcome this, Zhao and Zhu first generate a voxel-based representation for the point
cloud such that each voxel can be viewed as a small mass unit with its own volume, gravity and
contact region (contact faces of the cube). Secondly, Zhao and Zhu fill out the hidden voxels for
each incomplete volumetric primitive obtained by the segmentation result above.
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Figure 3.17: An example of potential energy map determined by pose and position changes: (a) the box
on desk changes pose from state x0 to x1. Mass center trajectory is shown as black arrow. (b) the energy
map of changing box poses in arbitrary directions. State x0 is at local minimum on the map. (c) the box on
desk changes position from state x0 to x2; (d) the energy map of changing box position. Due to friction is
considered, State x0 is at local minimum on the map.

Voxel Generation and Gravity Direction Our voxel based representation is generated by
constructing the octree of the point cloud as proposed by Sagawa et al . [286], after which the
point cloud is regularized into the coordinate system under the Manhattan world assumption [278],
supposing many visible surfaces orient along one of three orthogonal directions. To detect gravity
direction, 1) Zhao and Zhu first calculate the distributions of the principal orientations of the 3D
scene by clustering the surface normals into K (K ą 3) clusters; 2) Then Zhao and Zhu extract
three biggest clusters and take their corresponding normals as three main orientations; 3) After the
orthogonalization of these three orientations, Zhao and Zhu choose the one with smallest angle to
the Y-axis of camera plane as the gravity direction.

Invisible Space Estimation As light travels in straight lines, the space behind the point clouds
and beyond the view angles is not visible from the camera’s perspective. However this invisible
space is very helpful for completing the missing voxels from occlusions. Inspired by Furukawa’s
method in [278], the Manhattan space is carved by the point cloud into three parts, as shown
in Fig. 3.15 (c): Object surface S (colored-dots voxels), Invisible space U (light green voxels) and
Visible space E (white voxels).

Voxels Filling After obtaining labels by the above point cloud segmentation, first each voxel on
surface S inherits the labels from the points that it enclosed. Then the completion of the missing
parts for the volumetric primitives can be considered as guessing the label for each voxel which
are invisible but should be belong to the object. As Fig. 3.15 (b) illustrates, the algorithm can be
described as:
Loop: for each invisible voxel vi P U, i “ 1, 2, . . .
• Starting from vi to search the voxels, along 6 directions, until reach a voxel vj , j “ 1 . . . , 6 that
vj P S. or vj belongs to boundary of the whole space.

• Checking the labels of vjs, if there are more than two same labels exist, then assign this label to
current voxel.
Fig. 3.16 (c) shows an example of volumetrically completing the primitives from (b). With the

voxel representation, the primitives’ mass, center of gravity (CoG) can be efficiently calculated.
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3.3.3 Modeling Physical Stability and Safety

Energy Landscapes

Since any object (or primitive) has potential energy determined by its mass and height to the
ground, Zhao and Zhu can generate its potential energy landscape according to the environment
where it stays.

The object is said to be in equilibrium when its current state is a local minimum (stable) or non-
local minimum (unstable) of this potential function (See Fig. 3.17 for illustration). This equilibrium
can be broken after the object has absorbed external energy, and then the object moves to a new
equilibrium and releases energy. Note that if too much uncontrolled energy is released, the object
is perceived to be “unsafe,” which Zhao and Zhu will discuss later. Without loss of generality, Zhao
and Zhu divide the change into two cases.
• Case I: pose change. In Fig. 3.17 (a), the box on a desk is in a stable equilibrium and its pose is

changed with external work to raise its center of mass. Zhao and Zhu define the energy change
needed for the state change x0 Ñ x1 by

Erpx Ñ xq “ pRc´ tq ¨mg, (3.11)

where ¨ denotes inner product, R is rotation matrix; c is the center of mass, g “ p0, 0, 1qT is the
gravity direction, t1 is the lowest contact point on the support region (its corners). Suppose the
support region is flat, only the rotations of roll and pitch change the object CoM. Thus Zhao and
Zhu can visualize the energy landscape in a spherical coordinate system pφ, θq: S2 Ñ R with two
pose angles tφ P r´π πs, θ P r´π{2, π{2su. In Fig. 3.17 (b), the blue color means lower energy
and red means high energy. Such energy can be computed for any rigid objects by bounding the
object with a convex hull. Zhao and Zhu refer to the early work of Kriegman [287] for further
details.

• Case II: position change. Zhao and Zhu consider the position change when object is viewed as
a mass point and can move to different position in its environment. For example, as shown in
Fig. 3.17 (c), the box on desk at stable equilibrium state x0, one can push it to the edge of the
desk. Then it falls to the ground and releases energy to reach a deeper minimum state x2. The
total energy change need to consider the gravity potentials and the frictions which is overcome
by a work absorbed.

Etpx Ñ xq “ ´pc´ tq ¨mg `Wf , (3.12)

where t P R3 is the translation parameter (shortest path to the final position x2), and Wf is
the absorbed energy for overcoming the frictions: Wf “ fc ¨mg

a

pt1 ´ c1q
2 ` pt2 ´ c2q

2 given the
friction coefficient fc. Note for common indoor scenes, Zhao and Zhu choose fc as 0.3 as common
material such as wood. Therefore the energy landscape can be viewed as a map from 3D space
R3 Ñ R.

Disconnectivity Graph Representation

The energy map is continuously defined over the object position and pose. For our purpose, Zhao
and Zhu are only interested in how deep its energy basin is at the current state (according to the
current interpretation of the scene). As the interpretation changes during optimization process, the
energy landscape for each object will be updated. Therefore, Zhao and Zhu represent the energy
landscape by a so-called disconnectivity graph (DG) which has been used in studying spin-glass
models in physics [283]. As Fig. 3.18 illustrates that, in the DG, the vertical lines represent the depth
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Figure 3.18: (a) Energy landscapes and its corresponding disconnectivity graph (b).

of the energy basins and the horizontal lines connect adjacent basins. The DG can be constructed by
an algorithm scanning energy levels from low to high and checking the connectivity of components
at each level [283].

From the disconnectivity graph, Zhao and Zhu can conveniently calculate two quantities: Energy
absorption and Energy release during the state changes.
Definition 1 The energy absorption ∆Epx Ñ rxq is the energy absorbed from the perturbations,
which moves the object from the current state x0 to an unstable equilibrium rx (say a local maximum
or an energy barrier).

For the box on the desk in Fig. 3.17, its energy absorption is the work needed to push it in
one direction to an unstable state x1. For the state x2, its energy barrier is the work needed (to
overcome friction) to push it to the edge. In both cases, the energy depends on the direction and
path of movement.
Definition 2 Energy release ∆Eprx Ñ x1q is the potential energy released when an object moves from
its unstable equilibrium rx to a minimum x10 which is lower but connected by the energy barrier.

For example, when the box falls off from the edge of the table to the ground, energy is released.
The higher the table, the larger the released energy.

Definition of Stability

With DG, Zhao and Zhu define object stability in 3D space.
Definition 3 The instability Spa,x0,W q of an object a at state x0 in the presence of a disturbance
work W is the maximum energy that it can release when it moves out of the energy barrier by the
external work W .

Spa,x0,W q

“ max
x10

4Eprx Ñ x1qδprmin
rx

4Epx Ñ rxqs ďW q, (3.13)

where δpq is an indicator function and δpzq “ 1 if condition z is satisfied, otherwise δpzq “ 0.
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4Epx Ñ rxq is the energy absorbed, if it is overcome by W , then δpq “ 1, and thus the energy
4Eprx Ñ x1q is released. Zhao and Zhu find the easiest direction rx to minimize the energy barrier
and the worst direction x10 to maximize the energy release. Intuitively, if Spa,x0,W q ą 0, then the
object is said to be unstable at level W disturbance.

Definition of Safety

Zhao and Zhu measure the safety by supposing a specific disturbance field as potentially existing in
the scene, such human activities, winds or earthquakes. This specific disturbance field should have
nonuniform and directional energy distribution.

Definition 4 The risk Rpa,x0q of an entity a at position x0 in the presence of a disturbance field
ppW,xq is the expected risk with respect to the disturbance distribution.

Rpa,x0q “

ż

ppW,x0qSpa,x0,W qdW, (3.14)

For example, it is more unsafe if there exist a disturbance that makes the box in Fig. 3.17 fall
off from the desk than just fall down on the desk.

With the definition of the instability and risk, Zhao and Zhu first present the algorithm for static
scene understanding by reasoning the stability, and then Zhao and Zhu introduce the inference of
the disturbance field in Section 3.3.5 and the calculation of potential energy and initial kinetic
energy given a disturbance in Section 3.3.5

3.3.4 Reasoning Stability

Stability Optimization

Given a list of 3D volumetric primitives obtained by our geometric reasoning step, Zhao and Zhu
first construct the contact graph, and then the task of physical reasoning can be posed as a well-
known graph labeling or partition problem, through which the unstable primitives can be grouped
together and assigned the same label to achieve global stability of the whole scene at a certain
disturbance level W .

Contact Graph and Group Labeling

The contact graph is an adjacency graph G “ă V,E ą, where V “ tv1, v2, ..., vku is a set of nodes
representing the 3D primitives, and E is a set of edges denoting the contact relation between the
primitives. An example is shown in Fig. 3.19 (a) top where each node corresponds to a primitive
in Fig. 3.19 (a) bottom. If a set of nodes tvju share a same label, that means these primitives are
fixed to a single rigid object, denoted by Oi, and their instability is re-calculated according to Oi.

The optimal labeling L˚ can be determined by minimizing a global energy function, for a
disturbance level W

EpL|G;W q “
ÿ

OiPL

pSpOi,xpOiq,W q ´ FpOiqq, (3.15)

where xpOiq is the current state of grouped object Oi. The new term F represents a penalty function
expressing the scene prior and can be decomposed into three terms.

FpOiq “ λfpOiq ` λfpOiq ` λfpOiq, (3.16)

where f1 is the total number of voxels in object Oi; f2 is the geometric complexity of Oi, which can
be simply computed as the summation of the difference of normals for any two connected voxels on
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Figure 3.19: Example of illustrating the Swendsen-Wang cut sampling process. (a) Initial state with cor-
responding contact graph. (b) shows the grouping proposals accepted by SWC at different iterations. (c)
convergence under increasingly (from left to right) larger disturbance W and consequently the table is fixed to
the ground. (d) shows two curves of Energy released v.s. number of iteration in SWC sampling corresponding
to (b) and (c).

its surface; and f3 is the freedom of object movement on its support area. f3 can be calculated as the
ratio between the support plane and the contact area #S

#CA of each pair of primitives tvj , vk P Oiu,
where one of them is supported by the other. After they are regularized to the scale of objects, the
parameters λ1, λ2 and λ3 are set as 0.1, 0.1, and 0.7 in our experiment. Note, the third penalty
is designed from the observation that, e.g ., a cup should have freedom of movement supported
by a desk, and therefore the penalty arises if the cup is assigned the same label as the desk, as
shown in Fig. 3.14. Therefore under the stable conditions, objects should have maximal freedom of
movement.

Inference of Maximum Stability

As the labels of primitives are coupled with each other, Zhao and Zhu adopt the graph partition
algorithm Swendsen-Wang Cut (SWC) [272] for efficient MCMC inference. To obtain the globally
optimal L˚ by the SWC, the next 3 main steps work iteratively until convergence.
• Edge turn-on probability. Each edge e P E is associated with a Bernoulli random variable µe P
ton, offu indicating whether the edge is turned on or off, and a weight reflecting the possibility of
doing so. In this work, for each edge e “ă vi, vj ą, Zhao and Zhu define its turn-on probability
as:

qe “ ppµe “ on|vi, vjq “ exp p´pF pvi, vjq{T q, (3.17)

where T is temperature factor and F p¨, ¨q denotes the feature between two connected primitives.
Here Zhao and Zhu adopt a feature using the ratio between contact area (plane) and object
planes as: F “ #CA

maxp#Ai,#Ajq
, where CA is the contact area, Ai and Aj are the areas of vi and vj

on the same plane of CA.
• Graph Clustering. Given the current label map, it removes all edges between nodes of different

categories. Then all the remaining edges are turned on independently with probability qe. Thus,
Zhao and Zhu have a set of connected components (CCPs) Π’s, in which all nodes have the same
category label.

• Graph Flipping. It randomly selects a CCP Πi from the set formed in step (ii) with a uniform
probability, and then flips the labels of all nodes in Πi to a category c P t1, 2, ..., Cu. The flip is
accepted with probability [272]:

αpLÑ L1q “

min p1,

ś

ePCpV,VL1åVq
p1´ qeq

ś

ePCpV,VL´Vqp1´ qeq
¨
ppL1|G;W q

ppL|G;W q
q, (3.18)
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(a) (b)

Figure 3.20: (a) The input point cloud; (b) Hallucinated human action field and detected potential falling
objects with red tags.

where p “ 1
z exp p´Eq. Fig. 3.19 illustrates the process of labeling a number of primitives of a

table into a single object. SWC starts with an initial graph in (a), and some of the sampling
proposals are accepted by the probability (Section 3.3.4) shown in (b) and (c), resulting in the
energy v.s. iterations in (d). It is worth noticing that i) in case of Fig. 3.19 (b), the little chair is
not grouped to floor, since the penalty term A3 penalizes the legs grouping with the floor; and
ii) with increased disturbance W , the chair is fixed to the floor.

3.3.5 Reasoning Safety

While the objects are stable in the gravity field of a static scene after reasoning the stability,
they might be unsafe under a potential specific physical disturbance, such as human activities. For
example, all the objects shown in Fig. 3.20 (a) can be parsed correctly to be stable in the scene, but
if the physical disturbance generated from human common activities is applied, the objects show
different safety levels.

Our method infers the disturbance field caused by an earthquake or wind, as well as the human
action disturbance field. Given the scene geometry and walkable area, Zhao and Zhu detect the
potential falling objects by calculating its expected falling risk given a disturbance field in Fig. 3.20
(b).

Safety Under Different Disturbances

Natural Disturbance Field Aside from the gravity applying a constant downward force to all
the voxels, other natural disturbances such as earthquakes and winds are also present in a natural
scene.
• Earthquake transmits energy by forces of interactions between contacting surfaces, typically by

the frictions in our scenes. Here, Zhao and Zhu estimate the disturbance field by generating
random horizontal forces to the voxels along the contacting surfaces. Zhao and Zhu use a certain
constant to simulate the strength of the earthquake and the work W it generates.

• Wind applies fluid forces to exposed voxels in the space. A precise simulation needs to simulate
the fluid flow in the space. Here, Zhao and Zhu simplify it as a uniformly distributed field over
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(a) (b)
Figure 3.21: Primary motion field: (a) The hallucinated human trajectories (white lines); (b) The distribution
of the primary motion space. The red represents high probability to be visited.

the space.

Human Action Disturbance Field In order to generate a meaningful disturbance field of
human actions, Zhao and Zhu decompose the human actions into the primary motions i.e., the
center of mass movements in Fig. 3.21 and the secondary motions i.e., the body parts’ movements
in Fig. 3.22 Zhao and Zhu first predict a human primary motion field on the 2D ground plan, and
add detailed secondary motions in 3D space on top. The disturbance field is characterized by the
moving frequency and moving velocity for each quantized voxel.

The primary motion field captures the movement of human body as a particle. Zhao and Zhu
estimate the distribution of primary human motion space by synthesizing human motion trajectories
following two simple observations:
• A rational agent mostly walks along a shortest path with minimal effort.
• An agent has a basic need to travel between any two walkable positions in the scene.

Therefore, Zhao and Zhu randomly pick 500 pairs of positions in the walkable space, Zhao and
Zhu calculate the shortest path connecting these two positions as shown in Fig. 3.21 (a), and Zhao
and Zhu calculate the walking frequency as well as walking directions based on the synthesized
trajectories. Fig. 3.21 (b) demonstrates a distribution of walkable space; the red color means the
position has high probability to be visited, and the length of the small arrows shows the probability
of moving directions.

In Fig. 3.21 (b), Zhao and Zhu can see that convex corners, e.g ., table corners, are more likely
to be visited, and objects in these busy area may have higher risk than the ones in concave corners.
A hallway connecting two walkable area is also frequently visited, and objects in the hallway are
less safe too. Note the distribution of moving directions is also very distinctive. It helps to locate
human body movement in the right direction for generating the human disturbance field.

The secondary motion field is the movement that is not part of the main action, for example,
arms swinging while walking. The secondary motion is important to capture the random distur-
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(a) (b)
Figure 3.22: Secondary motion field: (a) Secondary motion trajectories from motion capture data; (b) Dis-
tribution of the secondary motion field. Long vectors represent large velocity of body movement.

bance; for example, people may push objects off the edge of the table by hand or kick objects on
the ground by foot. Zhao and Zhu also the Kinect camera to collect human motion capture data
Fig. 3.22 (a), and then calculate the distribution of moving velocities as shown in Fig. 3.22 (b).

The primary motion field further convolves with secondary motion field, thus generating a
dense disturbance field that captures the distribution of motion velocity for each voxel in the space.
The disturbance field is then represented by a probability distribution over the entire space for
the velocities along different directions and frequencies that they occur. For example, a box in the
middle of a large table will not be reachable by a walking person and thus the distribution of velocity
above the table center, or any unreachable points, is zero. Five typical cases in the integrated field
is demonstrated in Fig. 3.23

Calculating the Physical Energy

Given the disturbance field, in this section Zhao and Zhu present a feasible way for calculating
input work (energy) that might lead to an object falling. However, building sophisticated physical
engineering models is not feasible, as it becomes intractable if Zhao and Zhu consider complex
object shapes and material properties, e.g ., to detect a box falling off from a table, a huge amount
of actions need to be simulated until meeting the case of the human body acting on the box.

The relation between intuitive physical models and human psychology was discussed by a recent
cognitive study [91].

In this work, for simplicity, Zhao and Zhu make following assumptions: 1) All the objects in the
scene are rigid; 2) All the objects are made from same material, such as wood (friction coefficient:
0.3, uniform density: 700kg{m3); and 3) A scene is a dissipative mechanical system such that
total mechanical energy along any trajectory is always decreasing due to friction, while kinetic and
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Figure 3.23: The integrated human action field by convolving primary motions with secondary motions. The
objects a-e are five typical cases in the disturbance field: the object b on edge of table and the object c along
the passway exhibit more disturbances (accidental collisions) than other objects such as a in the center of
the table, e below the table and d in a concave corner of space.

potential energy may be traded off at different states due to elastic collision.
Given the human motion distribution with velocity of each body part, Zhao and Zhu intuitively

calculate the kinetic energy of human motion, as the input work. Here, Zhao and Zhu simplify the
parts of body as mass points and at each location in 3D space its kinetic energy can be calculated
given the mass of parts. For example, supposing the mass of right hand with upper arm is about
700g, Zhao and Zhu can simply calculate out the kinetic energy distribution by multiplying half of
the velocity squares.

3.3.6 Experimental Result

Zhao and Zhu quantitatively evaluate our method in four criteria: i) single depth image segmenta-
tion, ii) volumetric completion evaluation, iii) physical inference accuracy evaluation, and iv) safety
ratings for objects in scene.

All these evaluations are based on three datasets:
• the NYU depth dataset V2 [215] including 1449 RGBD images with manually labeled ground

truth.
• synthesized depth map and volumetric images simulated from CAD scene data.
• 13 reconstructed 3D scene data captured by Kinect Fusion [271] gathered from office and resi-

dential rooms with ground truth labeled by a dense mesh coloring.

Evaluating Single Depth Image Segmentation

Two evaluation criteria: “Cut Discrepancy” and “Hamming Distance” mentioned in [288] are
adopted. The former measures errors of segment boundaries to ground truth, and the latter mea-
sures the consistency of segment interiors to ground truth. As shown in Fig. 3.24, our segmentation
by physical reasoning has a lower error rate than the other two: region growing segmentation [275],
and our geometric reasoning.

Fig. 3.25 shows some examples of comparing another point cloud segmentation result [275]
and our result. However, it is worth noticing that, beyond the segmentation task, our method can
provide richer information such as volumetric information, physical relations, stability, etc.
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Figure 3.24: Segmentation accuracy comparison of three methods: Region growing method [275], result of
our geometric reasoning and physical reasoning by one “Cut Discrepancy” and three “Hamming Distance.”

Evaluating Volumetric Completion

For evaluating the accuracy of volumetric completion, Zhao and Zhu densely sample point clouds
from a set of CAD data including 3 indoor scenes. Zhao and Zhu simulate the volumetric data (as
ground truth) and depth images from a certain view (as test images). Zhao and Zhu calculate the
precision and recall which evaluates voxel overlapping between ground truth and the volumetric
completion of testing data. Table 3.2 shows the result that our method has much better accuracy
than traditional Octree methods such as [286].

Octree Invisible space Vol. com.

Precision 98.5% 47.7% 94.1%

Recall 7.8% 95.1% 87.4%

Table 3.2: Precision and recall of Volumetric completion. Comparison of three method: 1) voxel-based repre-
sentation generated by Octree algorithm [286], 2) voxels in surface and invisible space, and 3) our volumetric
completion.

Evaluating Physical Inference Accuracy

Because the physical relations are defined in terms of our contact graph, Zhao and Zhu map the
ground-truth labels to the nodes of contact graphs obtained by geometric reasoning. Than Zhao
and Zhu evaluate our physical reasoning against two baselines: discriminative methods using 3D
feature priors similar to the method in [215], and greedy inference methods such as the marching
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(a) (b) (c) 
Figure 3.25: Segmentation result for single depth images. (a) RBG images for reference. (b) segmentation
result by region growing [275]. (c) stable volumetric objects by physical reasoning.

relations Discriminative Greedy SWC

fixed joint 20.5% 66% 81.8%

support 42.2% 60.3% 78.1%

Table 3.3: Results of inferring the fixed joints and support relations between primitives. Accuracy is measured
by nodes of the contact graph whose label is correctly inferred divided by the total number of labeled nodes.

pursuit algorithm for physical inference. The result shown in Table 3.3 is evaluated by the average
over 13 scene data captured by Kinect Fusion.

Fig. 3.26 (a)–(d) and (e)–(j) show two examples from the results. Here Zhao and Zhu discuss
some irregular cases illustrated by close-ups of the figures.
• Case I: Fig. 3.26 (c) the ball is fixed onto the handle of sofa. The reason can be considered as:

stability of the “ball” is very low measured by (Section 3.3.3). The unstable state is calculated
out as that it trends to release much potential energy (draw from the sofa) by absorbing little
possible energy (e.g ., the disturbance by human activity).

• Case II: Fig. 3.26 (d) the “air pump” unstably stands on floor but is an independent object,
because although its stability is very low, the penalty penalized it to be fixed onto the floor. The
lamp is not affixed for the same reason, as shown in Fig. 3.26 (h).

• Case III: Fig. 3.26 (g) the “empty Kinect box” with its base is fixed together with the shelf,
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Figure 3.26: Example result. (a) and (e): data input. (b) and (f): volumetric representation of stable objects.
(c): the ball is fixed onto the handle of sofa. (d): the “pump” is unstable (see text). (i): a irregular case of
(g). (j): hidden voxels under chair compared to (h).

because of the mis-segmentation of the base, i.e., the lower part of base is mis-merged to the top
of the shelf.

• Case IV: Fig. 3.26 (i) voxels under the “chair” are completed with respect to stability.
The reasons are: 1) our algorithm reasons the hidden part occluded in invisible space. 2) the
inference of the hidden part is not accurate geometrically, but it helps to form a stable object
physically. In contrast, the original point cloud shown in Fig. 3.26 (j) misses more data.

Evaluating Safety Ratings

First Zhao and Zhu provide a selected qualitative result shown in Fig. 3.27. Zhao and Zhu compare
the potential falling objects under three different disturbance fields: 1) The human action field in
Fig. 3.27 (b,e); 2) The wind field (a uniform directional field) in Fig. 3.27 (c,f) and 3) earthquake
(random forces on contacting object surface) in Fig. 3.27 (d,g). As Zhao and Zhu can see the cups
with red tags are detected as potential falling objects, which is very close to human judgments:
(i) objects around the table corner are not safe w.r.t. human walking action; (ii) objects along the
edge of wind direction are not safe w.r.t. wind disturbance; and (iii) object along all the edges are
not safe w.r.t. earthquake disturbance.

Next Zhao and Zhu report selected results in different 3D scenes, as shown in Fig. 3.28 top row:
vending machine room and bottom row: copy machine room. Zhao and Zhu can see that, according
to human motions, the cans on vending machine room at risky of being kicked off, while the can
near the window is considered stable, since people can rarely reach there. In the copy room, the
objects put on the edges of table are at more risk than others.

Discussion

For evaluating safety ratings, Zhao and Zhu rank object unsafeness in a scene in comparison with
human subjects. Fig. 3.29 (a) shows a 3D scene (constructed in CAD design), from which Zhao
and Zhu pick 8 objects and ask 14 participants to rank the unsafeness of these objects considering
gravity, common life activity and the risk of falling. Zhao and Zhu compare the human ranking
with our unsafeness function Rpa,xq in Fig. 3.29 (b). Zhao and Zhu found that 1) humans got
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Figure 3.27: The potential falling objects (with red tags) under the human action field (b,e), the wind field
(c,f) and the earthquake field (d,g) respectively. The results match with human perception: (i) objects around
table corner are not safe w.r.t. human walking action; (ii) object along the edge of wind direction are not
safe w.r.t. wind disturbance; and (iii) object along all the edges are not safe w.r.t. earthquake disturbance.

big variations while considering the safeness, due to deeper consideration of information such as
material; 2) however, the model got similar ranking scores with the average of human rankings.
As shown in Fig. 3.29 (b), the average of human vs. model scores for each object lies near to the
diagonal line.

3.3.7 Conclusion

Zhao and Zhu present a novel approach for scene understanding by reasoning their instability
and risk using intuitive mechanics with the novel representations of the disconnectivity graph and
disturbance fields. Our work is based on a seemingly simple but powerful observation that objects,
by human design, are created to be stable and have maximum utility (such as freedom of movement).
Zhao and Zhu demonstrated its feasibility in experiments and show that this provides a new method
for object grouping when it is hard to pre-define all possible object shapes and appearance in an
object category.

This work also presents a novel approach for detecting potential unsafe objects. Zhao and
Zhu demonstrated that, by applying various disturbance fields, our model achieves a human level
recognition rate of potential falling objects on a dataset of challenging and realistic indoor scenes.
Differing from the traditional object classification paradigm, our approach goes beyond the estima-
tion of 3D scene geometry. The approach is implemented by making use of “causal physics.” It first
infers hidden and situated “causes” (disturbance) of the scene, and introduces intuitive mechanics
to predict possible “effects” (falls) as consequences of the causes. Our approach revisits classic
physics-based representation, and uses the state-of-the-art algorithms. Further studies along this
way, including friction, material properties, causal reasoning, can be very interesting dimensions of
vision research.
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Figure 3.28: (a) Input 3D scene point clouds; (b) Segmented volumetric objects in different colors and inferred
disturbance fields of human activity; (c) objects with risk scores. (d) Zoom-in details of detected potential
risky objects.

In future research, Zhao and Zhu plan to explore several directions: i) Connecting our work to
human psychology models like the one in [91], and to compare our results with human experiments;
ii) Studying material properties in typical indoor scenes, and thus to reason about the materials
jointly with stability, especially if Zhao and Zhu can see object movements in video; iii) Combing
the physical cues with other appearance and geometric informations for scene parsing; and iv)
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Figure 3.29: Scoring object unsafeness in a scene (a) with 8 objects. Zhao and Zhu show the correlation
graph (b) with human score against our measurement Rpa,xq which is normalized from 1 to 10. Color/shape
points show human vs. model scores corresponding to different persons. Circle points with numbers inside
show the average of human vs. model scores for each object corresponding to (a).

Studying other specific action distributions to reason about whether a room is safe to children and
infants.



Chapter 4

Causality in Daily Activities

4.1 Introduction

4.1.1 Why is Causality important?

The core of knowledge is rooted in causation - Aristotle believed “we do not have knowledge of
a thing until we have grasped its why, that is to say, its cause” [289] and Mackie stated “causal-
ity is the cement of the universe” [290]. Causal learning is the basis through which humans have
learned to master and control our observable universe. Such knowledge allows humans to ask coun-
terfactual questions like what would happen if I adjust the angle at which I strike the billiard ball?
Controlled experiments allow scientists to uncover knowledge about the causal mechanisms un-
derpinning processes such as physical laws or drug efficacy. All of these processes require degrees
of exploration, hypothesis generation, reasoning, and testing to uncover causal mechanisms. But
how to systematically uncover causal knowledge in ways familiar to humans remains elusive for
machines.

In artificial intelligence, here are many existing systems that can effectively learn representations
to interact with their environment. A question that naturally arises is: why bother with a formal
causal representation? For starters, many existing causal systems have derivable guarantees on the
existence of a causal relationship [291]. This means the presence of a causal relationship can be
verified given a relatively few and general assumptions. More importantly, causal representations
provide a task-invariant representation of the world. This means causal knowledge is not specific
to a singular task and can naturally be used for multiple tasks. Thus far, most machine learning
representations learn representations specific to the training data and task at hand and exhibit
very poor performance when transferred to similar but different circumstances. In contrast, models
that learn causal relationships as form of model-building offer a representation that is constant
assuming constant environment dynamics (such as the dynamics we experience on the surface of
Earth). Thus causal knowledge is transferable to new tasks in domains governed by the same causal
mechanisms.

The key research question in the field of causal learning is how various intelligent systems, rang-
ing from rats to humans and machines, can learn cause-effect relations in novel situations. Decades
ago, a number of researchers (e.g ., [292, 293]) suggested that causal knowledge can be acquired
by a basic learning mechanism, associative learning, that non-human animals commonly employ in
classical conditioning paradigms to learn the relationship between stimuli and responses. A major
theoretical account of associative learning is the Rescorla-Wagner model, guided by prediction error
in updated associative weights on cue-effect links [294].

However, subsequent research has produced extensive evidence that human causal learning

99
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depends on more sophisticated processes than associative learning of cue-effect links [295]. Human
learning and reasoning involves the acquisition of abstract causal structure [296] and strength values
for cause-effect relations [297]. Causal graphical models [291] have been integrated with Bayesian
statistical inference [298, 299, 300] to provide a general representational framework for human
causal learning [295].

Nevertheless, most models of human causal learning assume that the hypothesis space of causal
variables and causal structures is given and that inference focuses on selecting the best causal
structure to explain the observed contingency information relating causal cues to effects. It is
unclear how an agent could actively explore a completely novel situation in an online fashion and
narrow down the set of potential causal structures to enable efficient inference.

In the context of robotics, causal relationships endow knowledge a task-invariant model of
the world. Task-invariant representations are useful for two reasons: (1) they naturally enable
transferable knowledge between tasks and (2) aid in efficient exploration to acquire new knowledge.
For instance, suppose a naive baby is attempting to open a bottle. Initially, they may observe a
parent opening the bottle and wonder how they can achieve the same effect (opening the bottle). If
given the bottle, the baby may initial smash, drop, or roll the bottle to see if any of these actions
cause the bottle to open. Through this exploration process, the baby is generating and testing
causal hypotheses that govern the bottle’s operation. Eventually, the baby discovers that twisting
the cap opens the top of the bottle, to their parents dismay as the baby has a newfound skill capable
of creating an enormous amount of messes.

But the baby continues to explore, hypothesize and test other relationships and is capable of
generalizing their knowledge about twisting the cap of the first bottle to bottles of various shapes
and sizes. However, one day the baby observes a parent opening a medicine bottle that requires
pushing in addition to twisting. The baby mischievously acquires the medicine and attempts to
open it using its well-founded, generalizable understanding of bottles—twisting the lid and pulling.
To the baby’s dismay, this seemingly bulletproof approach does not succeed. The baby tries and
tries, but no strategy works. The baby observed their parent twisting, so that must be part of
the solution, but something is missing. Time passes, and eventually the young child develops the
strength to push on the lid to unlock it. Now they’ve explored the proper extension and adapted
their basic twisting strategy to special cases, pushing and twisting on medicine bottles.

The purpose of this baby exploration and learning example is to highlight how learning a
causal relationship, when properly coupled with abstraction mechanisms, enables agents to learn
compact and effective knowledge for a specific environment and generalize that knowledge to other
similar but different cases. Humans have a remarkable ability to learn causal relationships and form
abstractions of observed data. This ability allows humans to interact and generalize across a wide
range of environments, circumstances, and tasks, using a compact set of causal rules that govern
most of everyday life.

4.1.2 What is Causality?

Causality is the formal study of cause-effect relationships. The practical purpose of studying such
relationships is to identify how the environment changes after interacting with the environment.
Thus far, causality has been formally studying in fields where interventions are typically difficult
or impossible—such as economics or epidemiology. However, there is a growing interest in applying
formal causal representations to computer vision and robotics. Causal relationships govern our
universe: from chemistry to physics to cooking; understanding how to manipulate the environment
to produce a desired effect is a critical component of any advanced robotic system.

There are many domains within the field of causality. In psychology, researchers have examined
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causal perception to show that humans have an irresistible urge to assign causal relationships to
certain types of stimuli, such as a launch event between two balls [301]. Psychologists have also
examined how people reason about and assign strengths to causal relationships. Such reasoning has
been argued to be based on covariation [297, 302], mechanisms [303], and dynamics [304]. These
approaches were all developed from a cognitive science perspective; instead of seeking to establish
the ground truth causal relationship, they seek to match human performance.

Within the fields of statistical inference and AI, causal inference, pioneered by Judea Pearl [291],
deals what inferences can be made given a particular causal model. This includes things like coun-
terfactual or “what-if” questions. Pearl introduced the do-operator that represents an intervention
in the causal model, allowing modelers to assess the state of a causal model under different interven-
tions. Causal inference revolution fields where causal structure can be provided by domain experts
but interventions in the real world are difficult if not impossible (e.g ., economics or epidemiology).

Casual learning from observational data is considered to be an extremely challenging problem in
the statistical and machine learning communities. The space of possible causal relations is exponen-
tial in the number of variables, and even in cases with two variables, determining the presence and
direction of a causal relationship requires multiple assumptions about the underlying data [305].
To tackle these challenges, the space of variables to consider is generally kept low, and conditional
independencies or score-based methods are used to determine the presence of a potential cause [306].

Causal learning using experimental data, under randomized controlled experiments, is the gold
standard for causal learning. Fisher’s randomized controlled experiments [307] provided the modern
paradigm for experimental design across statistics, medicine, psychology. To this day, the experi-
mental paradigm outlined by Fisher provides the only scientifically proven way to discover causal
relationships from data. To isolate cause and effect, randomized controlled experiments work by
controlling for as many confounding variables as possible. For AI, this approach is also the gold
standard, and therefore should be leveraged by artificial agents in some capacity, but the setting up
a randomized controlled experiment for every possible causal relationship is infeasible - the space of
causal relations is exponential in the number of variables and therefore the number of randomized
controlled experiments required is exponential. We must find ways for artificial agents to leverage
causal knowledge learned from observational data and experimental data to efficiently and robustly
learn causal relationships in the world.

We also outline a distinction between quantitative and qualitative causality. Quantitative causal-
ity deals with physical laws, such as acceleration, friction, electromagnetism, etc. that govern our
universe. Quantitative causality is therefore the bedrock of causality, and discovering the functional
form of these relationships is the core of the scientific method (see Section 4.2). However, for cog-
nitive agents, this resolution is typically too pedantic and detailed for effective reasoning. To this
end, qualitative causality captures the more intuitive, high-level causal relationships that humans
interact with in daily life. In Pearl’s famous “smoking causes cancer” example [291], no processes
describe how tobacco causes cellular changes that lead to cancer (a quantitative description of how
smoking causes cancer), but instead, the high-level relationship is summarized in the structure of
the Directed Acyclic Graph (DAG) and the corresponding probabilities in the Conditional Proba-
bility Table (CPT). We believe the lack of effort on merging the quantitative and qualitative causal
domains presents a significant hurdle to causal learning; without both, one will not be able to learn
grounded representations (quantitative) that allow for efficient inference (qualitative). The repre-
sentational framework presented in this book, namely the Spatial, Temporal, and Causal And-Or
Graph (STC-AOG), is capable of capturing both quantitative and qualitative causality.

In this chapter, we focus on causal learning as we believe it is the most important and least
studied domain for artificial intelligence. While we can hand-code known causal knowledge to
autonomous agents and use causal inference to aid in their decision-making process, agents without
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the ability to learn new causal information will be limited in their generalizability. The world is
a complex and ever-changing environment, and being able to learn causal relationships, not just
make inferences about them, is a core component of generalized intelligence. The challenge for
causal learning is how to efficiency find causal relationships from as little data as possible. We
believe an active, “learn as you go” approach is the correct path forward, instead of opting for
provable causal discovery. We posit this is how humans learn causal relationships both in daily life
and through more rigorous methodologies such as the scientific method.

4.2 Causal Learning as Scientific Exploration

The scientific method is the fundamental mechanism for the acquisition of new knowledge and
understanding of our universe. The basic principles of the scientific method have bee used for
millennia in some form by great minds such as Copernicus, Kepler, Galileo, and Newton, but Sir
Francis Bacon began formalizing the approach in the 19th century [308]. The scientific method gives
humankind a systematic way to learn causal relationships. The method consists of the following
basic steps: (i) ask a question, (ii) collect background information, (iii) construct a hypothesis, (iv)
test hypothesis with controlled experiments (v) analyze results to confirm or refute hypothesis.
Our hypothesis in this chapter is that artificial agents need to leverage a similar process to achieve
general artificial intelligence.

Agents need mechanisms that enable learning causal relationships from observations and in-
terventional information. Simultaneously, agents only endowed with interventional learning must
explore the space of all causal relationships, which is exponential in the number of actions and states,
to test all possible causal relationships. Thus, these two learning paradigms must be combined for
agents to learn causal relationships in a tractable and robust fashion.

Artificial agents should be endowed with processes that emulate the scientific process we use to
uncover new physical laws, test new drugs, and learn as children. This process can be summarized
into a sequential process that executes in a loop: (i) ask a question (information gain), (ii) construct
a hypothesis (experimental setup), (iii) test hypothesis (intervention execution), (iv) update model
according to outcome (model update). Robots endow with procedures to facilitate this loop are able
to learn about their world and construct a consistent, but always updating model of their reality.

We identify two major components of this scientific process in a computer system: observations
and interventions. We focus on these two paradigms as the former enables pruning the space of
possible relations to experimentally verify while the latter ensures the robot is capable of eliminating
potential confounding factors present in observational settings.

4.3 Necessity of Observations

Learning causal relationships from observations is important to provide a starting point for causal
learning. Entertaining the full space of possible causal relationships and verifying or refuting a
relationship with a controlled experiment is intractable and exponential in the number of variables.
Fortunately, learning causal relationships from observations allows agents (including humans) to
prune the space of interventional experiments needed, but observations are incapable of presenting
a complete story as the presence of confounders can rarely be eliminated [306]. Constructing causal
models from observations offers a crucial starting point for agents to explore and verify hypotheses.
Throughout daily life, agents experience the environment around them in temporal order, meaning
agents can make the (safe) assumption that causes precede effects. Most causal events in human
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society occur with a short time delay between cause and effect, and co-occurrence of cause and
effects can be used to identify perceptually causal relationships.

Within the traditional causality community, causal discovery from observational data is utilized
when interventions are difficult or impossible to perform. Causal discovery methods are divided
into two broad categories: constraint-based and score-based. Constraint-based methods are based
on conditional independence (CI) tests; seminal implementations include the PC and FCI algo-
rithms [306]. Score-based methods optimize some score function to rank possible causal structures;
seminal methods include K2 [309] and GES [310]. The key difference between the two approaches
is that constraint-based methods can handle arbitrary input data and produce DAGs that adhere
to the CI constraints present in the data while score-based methods can combine structural confi-
dence using multiple possible DAGs. While these approaches seek recover the ground-truth causal
structure, they typically struggle to do so on real-world data; however, they serve as an excellent
starting point for understanding the causal structure of the underlying data.

Following the cognitive science work of perceptual causality [301], perceptual causality [311]
learns causal relations using an information-theoretic approach that is based on the minimax en-
tropy principle [312]. Perceptual causality constructs a shallow graphical model that links causes
to their effects based on contingency data by greedily pursuing causal relations according to their
information gain. A graphical structure is constructed iteratively according to this information
gain; initially, all actions and effects are assumed to be independent, and links between causes
(actions) and their effects (fluent changes) are added with each iteration. The method relies on the
assumptions of: (i) cause preceding effect, (ii) a short temporal delay between cause and effect, and
(iii) co-occurrence measures strength of causal relation. This method selects causal relations in an
order that matches human performance data; causal relations with high information gain (added
in earlier iterations) correspond to human perceived causes.

Learning causal relationships from observational (perceptual) data is critical for agents to es-
tablish knowledge and prune exploration needed. While any method learning from observational
data is prone to potential confounders, leveraging causal information derived from observations
prevents agents from needing to establish every causal relation from experimentation.

4.4 Necessity of Experimental Data

While learning causal relations from observations is critical to leverage information from other
agents and accelerate learning, any causal learning system incapable of learning through active
intervention is prone to confounders and therefore potentially an inaccurate causal model of the
environment. Only under highly constrained settings can the ground-truth causal model be recov-
ered from observational data [306]. Thus, any agent expected to learn ground-truth causal models
must be endowed with the ability to actively intervene in the environment. Fortunately, as our
focus in this chapter is on causal learning for daily activities, allowing the agent to interact with
the environment is natural and expected in many applications. But how should an agent choose
interventions? How should the agent update its model based on the outcomes?

Selecting interventions should be based on two components: (i) how much the agent stands to
gain from performing a particular intervention and (ii) how well the intervention fits into the agent’s
current goal. How much the agent benefits from a particular intervention can be quantified using
information gain, where the information gain corresponds to the amount of model improvement
expected by performing a particular intervention. Agents can then make a final action selection by
fusing this information gain with an inference about which action is most likely to aid in completing
the task.
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Figure 4.1: Common cause (CC) and common effect (CE) structures used in the present study. D indicates
the effect of opening the door. (a) CC3 condition, three lock cues; (b) CE3 condition, three lock cues. (c)
CC4 condition, four lock cues; (d) CE4 condition, four lock cues.

Agents then must execute the selected intervention, observe the outcome, and then update
the causal model of the world according to the outcome. This actively learning procedure can be
implemented in many frameworks. We note the work of Bramley et al . [313] as an example of active
causal learning. In their work, they use a Gibbs sampler to sequentially improve a single hypothesis
of the causal model of the environment. The results show the method is able to capture learning
properties similar to human learners. This work is one amongst very few works that look at active
causal learning. In the following subsections, we’ll look at a specific case study for active causal
learning.

4.4.1 Case Study: OpenLock Task

The OpenLock environment is designed to capture challenges in causal learning for autonomous
agents. Specifically, we want to examine how well humans and agents form causal abstractions
necessary for task transfer. An essential motivation for studying causal relationships is that they
generalize assuming constant environment dynamics. We seek to answer if it possible for learn-
ing models to acquire human-like causal knowledge in the form of abstract causal descriptions of
tasks. To address this question, we designed a novel task to examine learning of action sequences
governed by different causal structures, allowing us to determine in what situations humans can
transfer their learned causal knowledge. Our design involves two types of basic causal structures
(common cause (CC) and common effect (CE); see Fig. 4.1). When multiple causal chains are con-
solidated into a single structure, they can form either CC or CE schemas. Previous studies using
an observational paradigm have found an asymmetry in human learning for common-cause and
common-effect structures [296].

To design a novel environment for humans, we developed a virtual “escape room.” Imagine that
you find yourself trapped in an empty room where the only means of escape is through a door that
will not open. Although there is no visible keyhole on the door—nor do you see any keys lying
around—there are some conspicuous levers sticking out of the walls. Your first instinct might be to
pull the levers at random to see what happens, and given the outcome, you might revise your theory
about how lever interactions relate to the opening of the door. We refer to this underlying theory
as a causal schema: i.e., a conceptual organization of events identified as cause and effect [314].
These schemas are discovered with experience and can potentially be transferred to novel target
problems to infer their characteristics [315].

In the escape room example, one method of unlocking the door is to induce the causal schema
connecting lever interactions to the door’s locking mechanism. However, it remains unclear whether
people are equally proficient in uncovering CC and CE schemas in novel situations. In the current
study, we first assessed whether human causal learning can be impacted by the underlying structure,
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comparing learning of a CC structure with learning of a CE structure. We then examined whether
learning one type of causal structure can facilitate subsequent learning of a more complex version
of the same schema involving a greater number of causal variables.

In the remainder of the chapter, we first describe the design of an experiment and report human
results. Next, we describe our hierarchical Bayesian model and model results. Finally, we discuss
the implications of our findings for causal learning.

Human Experiments

In the OpenLock task, participants were asked to “escape” from a virtual room by opening a locked
door that was controlled by a lever mechanism (see Fig. 4.2). The task was to figure out what level
mechanisms can open the door. Each lock situation consisted of seven levers surrounding a robot
arm and a door which began in a locked state. The levers pertinent to the locking mechanism
(i.e., active levers) were colored grey, and levers irrelevant to the locking mechanism (i.e., inactive
levers) were colored white. Participants were not explicitly told which levers were active or inactive
but were instead required to learn the distinction through trial and error. This was not generally
difficult, however, as the inactive levers could never be moved. The order in which the active levers
needed to be moved followed either a common cause (CC) or common effect (CE) schema (see
Fig. 4.1), and participants were given 30 attempts to discover every solution in each situation.
Participants were instructed to consider solutions as “combinations” to each lock, and discovery
of every solution/combination was required to ensure that participants understood the underlying
causal schema in each situation. Participants also operated under a movement-limit constraint
whereby only three movements could be used to both (1) interact with the levers (two movements)
and (2) push open the door (one movement). If a participant tried to move an active lever in
an incorrect order, the lever would remain stationary and a movement would be expended. Each
trial reverted to its initial state once the three movements were expended, and the experiment
automatically proceeded to the next trial after 30 attempts. The number of remaining solutions
and attempts were provided in a console window located on the same screen as the OpenLock
application.

In the environment, users commanded the movement of a simulated robot arm by clicking on
desired elements in a 2D display. Levers could either be pushed or pulled by clicking on their inner
or outer tracks, although pulling on a lever was never required to unlock the door. There were either
3 or 4 active levers in each lock situation. We refer to the 3- and 4-lever common cause situations as
CC3 and CC4 (Fig. 4.1a, Fig. 4.1c), respectively, and the 3- and 4-lever common effect situations
as CE3 and CE4 (Fig. 4.1b, Fig. 4.1d), respectively. Note that these numbers correspond with the
number of active levers. The status of the door (i.e., either locked or unlocked) was indicated by the
presence or absence of a black circle located opposite the door’s hinge. Once the door was unlocked
and the black circle disappeared, participants could command the robot arm to push the door open
by clicking on a green push button. The robot arm consisted of five segments that were free to rotate
such that all elements in the display were easily reached by the arm’s free end; the arm position
control was implemented using inverse kinematics. Box2D [316] was used to handle collision, and
the underlying simulation environment uses OpenAI Gym [317] as the virtual playground to train
agents and enforce causal schemas through a finite state machine.

Participants were randomly assigned to one of six conditions in a between-subjects experimental
design (40 participants per condition) and began the experiment by viewing a set of instructions
outlining important components and details in the lock environment1. Fifteen additional partici-
pants were recruited but subsequently removed from the analysis due to their inability to complete

1The instructional video can be viewed at https://vimeo.com/265302423

https://vimeo.com/265302423
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(b) Pushing lever

(c) Pushing door

Figure 4.2: (a) Starting configuration of a 3-lever trial. All levers begin pulled towards the robot arm, whose
base is anchored to the center of the display. The arm interacts with levers by either pushing outward or
pulling inward. This is achieved by clicking either the outer or inner regions of the levers’ radial tracks,
respectively. Only push actions are needed to unlock the door in each lock situation. Light gray levers are
always locked, which is unknown to both human subjects and RL at the beginning of training. Once the
door is unlocked, the green button can be clicked to command the arm to push the door open. The black
circle located opposite the door’s red hinge represents the door lock indicator: present if locked, absent if
unlocked. (b) Push to open a lever. (c) Open the door by clicking the green button.

Figure 4.3: (a) Average number of attempts needed to find all unique solutions in the 4-lever common cause
(CC4) and common effect (CE4) baseline conditions. Error bars indicate standard error of the mean. (b)
Transfer trial results. Average number of attempts needed to find all unique solutions in the 4-lever common
cause (CC4; left) and common effect (CE4; right) conditions. Light and dark grey bars indicate CC3 and
CE3 training, respectively. Error bars indicate standard error of the mean.

any trial in the allotted number of attempts. The first two experimental conditions were baselines
that contained five different lock situations comprised of either CC4 or CE4 trials, exclusively. These
baseline conditions for the two control groups, denoted as CC4 and CE4, were included to assess
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whether human causal learning can be impacted by the underlying structure, comparing learning
of a common-cause structure with learning of a common-effect structure. For the remaining four
conditions, we examined whether learning one type of causal structure can facilitate subsequent
learning of a more complex version of the same schema involving a greater number of causal vari-
ables (i.e., active levers). The four conditions contained six training trials with 3-lever situations,
followed by one transfer trial with a 4-lever situation. The schema underlying the 3- and 4-lever
situations was either congruent (CC3-CC4, CE3-CE4) or incongruent (CC3-CE4, CE3-CC4) and
always remained the same throughout the 3-lever training trials. Participants required approxi-
mately 17.4 min to complete the baseline trials and 17.3 min to complete the training and transfer
trials.

We first compared performance across the two baseline conditions where participants only com-
pleted the CC4 and CE4 trials. The average number of attempts to solve a 4-lever task in each
of the baseline trials is shown in Section 4.4.1. Participants showed a clear learning effect as fewer
attempts were needed for later trials, F p4, 75q “ 40.16, p ă .001. The main effect of causal structure
was trending towards significance, F p1, 78q “ 3.63, p “ .06, and results from a two-sample t-test at
the final trial (i.e., Trial 5) indicate that the task with the CE structure took significantly more
attempts to solve than the CC structure, tp78q “ 2.00, p ă .05. This result suggests that when
a situation involved relatively high structural complexity, the CE structure was more difficult to
discern than the CC structure.

Next, we examined the training performance in the four groups who completed both the training
trials with 3-levers and the transfer trial with 4-levers. A clear learning improvement was found,
indicated by a significant main effect of training trials, F p5, 152q “ 56.02, p ă .001. There was no
difference in training performance between the CC3 and CE3 groups, F p1, 158q “ 0.11. Compared
with the two control groups in the four-lever situations, participants showed similar performance in
the three-lever situations, suggesting that structural complexity impacts the comparative difficulty
between CC and CE trials. For simple structures with fewer causal variables, people appear to learn
different types of causal structures equally well. However, as complexity increases, some causal
structures appear easier to learn than others. To further investigate whether the four training
groups achieved the same level of learning, we compared the performance at the final training
trial in the three-lever task. There were no differences in performance between the CC3-CC4 and
CC3-CE4 groups, t(78) = 0.87, or the CE3-CC4 and CE3-CE4 groups, t(78) = 0.48. This suggests
that participants in each training group had approximately the same level of understanding of the
underlying causal schema before moving to their respective transfer trials.

Finally, we examined participants’ transfer performance. The average number of attempts
needed to solve the transfer trials are depicted in Section 4.4.1. A two-way ANOVA revealed a
significant interaction effect between the training structure and the testing structure, F p1, 156q “
24.94, p ă .001, indicating superior transfer when the same type of causal structures were used in
the training and transfer trials. The resulting plot shows that participants trained under a CC3
structure performed better in the CC4 condition than those trained under a CE3 causal structure,
tp78q “ 2.62, p “ .01. Similarly, participants trained under a CE3 structure performed better in
the CE4 test trials than did those who trained under a CC3 structure, tp78q “ 4.27, p ă .001.
Consistent with the baseline groups, there was also a significant main effect of causal struc-
ture in the transfer test, as the CE4 condition required more attempts than the CC4 condition,
F p1, 158q “ 17.14, p ă .001.
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Causal Theory Induction

Next, we examine a hierarchical Bayesian approach to learning causal abstractions. The hierarchy
is defined by Spatial, Temporal, and Causal And-Or Graphs (STC-AOGs), where the topmost layer
of the hierarchy defines the most abstract knowledge in the model. At each successive layer, the
hierarchy moves from more abstract information to more specific information about this task and
environment. The bottommost layer is comprised of individual actions and their effects.

Causal theory induction provides a Bayesian account of how hierarchical causal theories can be
induced from data [298, 299, 318]. The key insight is: hierarchy enables abstraction. At the highest
level, a theory provides general background knowledge about a task or environment. Theories consist
of principles, principles lead to structure, and structure leads to data.

Our agent utilizes two theories to learn a model of the OpenLock environment: (i) an instance-
level associative theory regarding which attributes and actions induce state changes in the environ-
ment, denoted as the bottom-up β theory, and (ii) an abstract-level causal structure theory about
which atomic causal structures are useful for the task, denoted as the top-down γ theory.

Instance-level Inductive Learning

A hypothesis space, ΩC , is defined over possible causal chains, c P ΩC . Each chain is defined as a
tuple of subchains: c “ pc0, . . . , ckq, where k is the length of the chain and each subchain is defined
as a tuple ci “ pai, si, cr

a
i , cr

s
i q. Each chain comprises an STC-AOG and each subchain represents

an STC fragment. Each ai is an action node that the agent can execute, si is a state node, crai is a
causal relation that defines how a state si transitions under an action ai, and crsi is a causal relation
that defines how state si is affected by changes to the previous state, si´1. Each si is defined by a set
of time-invariant attributes, φi and time-varying fluents, fi [319, 96, 95]; i.e., si “ pφi, fiq. Action
nodes can be directly intervened on, but state nodes cannot. This means an agent can directly
influence (i.e., execute) an action, but how those actions affect the world must be actively learned.
The structure of the general causal chain is shown in Fig. 4.4. As an example using Fig. 4.2a, if the
agent executes push on the upper lever, the lower lever may transition from pulled to pushed, and
the left lever may transition from locked to unlocked.

The space of states is defined as ΩS “ Ωφ ˆ ΩF , where the space of attributes Ωφ consists of
position and color, and the space of fluents ΩF consists of binary values for lever status (pushed
or pulled) and lever lock status (locked or unlocked). The space of causal relations is defined as
ΩCR “ ΩF ˆΩF , capturing the possibly binary transitions between previous fluent values and the
next fluent values.

Our agent induces instance-level knowledge regarding which objects (i.e., instances) can produce
causal state changes through interaction (see Section 4.4.1) and simultaneously learns an abstract
structural understanding of the task (i.e., schemas; see Section 4.4.1). The two learning mechanisms
are combined to form a causal theory of the environment, and the agent uses this theory to reason
about the optimal action to select based on past experiences (i.e., interventions; see Section 4.4.1).
After taking an action, the agent observes the effects and updates its model of both the instance-
level knowledge and the abstract structural knowledge.

The agent seeks to learn which instance-level components of the scene are associated with
causal events; i.e., we wish to learn a likelihood term to encode the probability that a causal event
will occur. We adhere to a basic yet general associative learning theory: causal relations induce
state changes in the environment, and non-causal relations do not, referred to as the bottom-up
β theory. We learn two independent components: attributes and actions, and we assume they are
independent to learn a general associative theory, rather than specific knowledge regarding an exact
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lower right

door

left
<latexit sha1_base64="KH1TRbQ/IsqgacvFFoRtGZiWoVs="></latexit>

. . .<latexit sha1_base64="NXTVkOsAfTg5I7QIbMKKxEzGwmQ="></latexit>

left

lower

door

push

push

push

{PL ) PH}

{PL ) PH}

{PL ) PH}

{L ) U}

{L ) U}

<latexit sha1_base64="wp/s+BACnKqC1juANGJVt/1OgW0=">AAAJ9nictVZLj9s2EFa2bRy7j2TbYy9C1wtsAFkQta8AhYugveTQwxboJgEsd0FTY5swRQokVdtR9VeKXope+3f6b0pKtix7N84iTQnYIDkz37yHGqWMKh0E/zw4+OjjTx62HrU7n372+RePnxx++VKJTBK4JoIJ+XqEFTDK4VpTzeB1KgEnIwavRrMfLP3VryAVFfxnvUxhmOAJp2NKsDZXN4cP/4hGMKE813T2JqVEZxKKTmRPSi8Z5AzGuugPMCdTIftzUHrYJEs6mTbogEt6DOMozRiDOL/6sVif1dSeX6zOTJCZOa/JGV9dXBcd16yIixgGscRzzwXGaKpg6GLtngQe8sPzp+6J0lhD8NTNIw0LrXVlavHtu8SDtSxqyoo5yHsI95rKwwZALMS75ZF/7hmhE0xs9Ju22+jcSzzwL89rBPQ+CL3A3yCEb0E4bkIQKgkDj3IO0lWQ9oNUewnlNMkSV9E30Efnqa409KyBtZVaS+tlN0qn9CbofhjwtQMGHNXg6EOBo43pYY0edrciayttVRH+peci/9SKkNLXqI7nqgUKtxuZFlwq0yAaSynmXbfBYruiiIp9+IGPSnj0/8Abl1Flf/ifFVTRX8fz1Mbm2SY2XSJvgl/UdjDLEVKnILDuXtzlbjUf9lqzHiK7Dt9SYf4v7nT5/ZTYYhuMGCYzr/fdcDOaer161OzjRA3O8G2c9cyoWYP9rOg++uspcMuA4y3eplO/rRt7HyPaMKK9jOGG0aqOgMdbj9HNkyOTsnK5tzdotTlyVuvq5vCgH8WCZAlwTRhWaoBM1w9zLDU1w8C8N5mZBMYGPIGB2XKcgBrm5VtauMfmJnbHQpof125525TIcaLUMhkZzgTrqdql2cu7aINMj58Nc8rTTAMnlaJxxlwtXPswuzGVQDRbmg0mkhpbXTLF0iTIPN+dLTU2PEV1ZbeMjiSWy5xgRjwtAZSXCkVtYimfeGX9Ks+AUa48NcUpKH8CIgEtKfGOy9zEQIQsvwmUnxrbJaQmTVZ8l5IIaSaiIVRIK3njr6SLNboNkGDK2GhpnYjDnIgkwSa1O31VDNBwcGrTEyWlWpaXgNF0JBZ5JDMGgyimCSxSGdmM2D0Pw7Ib7Tns+WGqIyOIF8P8CBW5f5aaz4AKJZmB5L2zJFvh2ZgbIfORkZvKWBZ5UuS8iCp78zNUmGUKDu2W1+3Ny9BHp374U3j0/PtV6T1yvna+cU4c5Fw6z50XzpVz7ZBWq9VrXbQu24v27+0/239VrAcPVjJfOVur/fe/Gks+Zg==</latexit>

upper

lower

door

push

push

push

{PL ) PH}

{PL ) PH}

{PL ) PH}

{L ) U}

{L ) U}

<latexit sha1_base64="HnA3xUZXGnXpIbTblPaFS3Bwlcw="></latexit>

upper

push

{PL ) PH}
<latexit sha1_base64="BsjJ1UoC2rvsU7qr940h3AuQv6A="></latexit>

lower

push

{PL ) PH}
{L ) U}

<latexit sha1_base64="DX9PIxvIBSsAYmvqYr4eabZZLRs="></latexit>

door

push{L ) U}

<latexit sha1_base64="Mr6x9OElrk4DvyT7NRzXi9/sJXo="></latexit>

p(gM ; �)
<latexit sha1_base64="lSQZE0vaY6wDmhnMQWxwR2JSvNM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBQUvRS9ehAr2A9pYNttNunQ3ibubQgn9HV48KOLVH+PNf+O2zUFbHww83pthZp4Xc6a0bX9buZXVtfWN/GZha3tnd6+4f9BUUSIJbZCIR7LtYUU5C2lDM81pO5YUC4/Tlje8mfqtEZWKReGDHsfUFTgImc8I1kZy43LweHfVDbAQ+LRXLNkVewa0TJyMlCBDvVf86vYjkggaasKxUh3HjrWbYqkZ4XRS6CaKxpgMcUA7hoZYUOWms6Mn6MQofeRH0lSo0Uz9PZFiodRYeKZTYD1Qi95U/M/rJNq/dFMWxommIZkv8hOOdISmCaA+k5RoPjYEE8nMrYgMsMREm5wKJgRn8eVl0qxWnLNK9f68VLvO4sjDERxDGRy4gBrcQh0aQOAJnuEV3qyR9WK9Wx/z1pyVzRzCH1ifP70JkW0=</latexit>

p(gA; �)
<latexit sha1_base64="/wR3EEE2acAGwM7DTtidHB4s1+k=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBQUvVS8eK9gPaGPZbDfp0t0k7m4KJfR3ePGgiFd/jDf/jds2B219MPB4b4aZeV7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QVNFiSS0QSIeybaHFeUspA3NNKftWFIsPE5b3vB26rdGVCoWhQ96HFNX4CBkPiNYG8mNy8Hj9VU3wELg016xZFfsGdAycTJSggz1XvGr249IImioCcdKdRw71m6KpWaE00mhmygaYzLEAe0YGmJBlZvOjp6gE6P0kR9JU6FGM/X3RIqFUmPhmU6B9UAtelPxP6+TaP/STVkYJ5qGZL7ITzjSEZomgPpMUqL52BBMJDO3IjLAEhNtciqYEJzFl5dJs1pxzirV+/NS7SaLIw9HcAxlcOACanAHdWgAgSd4hld4s0bWi/Vufcxbc1Y2cwh/YH3+AKp5kWE=</latexit>

p(gI |do(q); �)
<latexit sha1_base64="2kWmEETbepqdi+vQ9FF10szEIh0=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAjtpiRVUHBTdKO7CvYBbSyTySQdOjOJMxMhxPorblwo4tYPceffOG2z0NYDFw7n3Mu993gxJVLZ9rextLyyurZe2Chubm3v7Jp7+20ZJQLhFopoJLoelJgSjluKKIq7scCQeRR3vNHlxO88YCFJxG9VGmOXwZCTgCCotDQwS3ElvLt+9KPKffW8H0LGYHVglu2aPYW1SJyclEGO5sD86vsRShjmClEoZc+xY+VmUCiCKB4X+4nEMUQjGOKephwyLN1sevzYOtKKbwWR0MWVNVV/T2SQSZkyT3cyqIZy3puI/3m9RAVnbkZ4nCjM0WxRkFBLRdYkCcsnAiNFU00gEkTfaqEhFBApnVdRh+DMv7xI2vWac1yr35yUGxd5HAVwAA5BBTjgFDTAFWiCFkAgBc/gFbwZT8aL8W58zFqXjHymBP7A+PwBT5WT5w==</latexit>

p(c|do(q); �)
<latexit sha1_base64="0y9lJws27FV2R5Fu9PD2L3ewklE=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvQbspMFRTcFN24rGAf0A4lk8m0oUlmTDJKmfZT3LhQxK1f4s6/MW1noa0HLhzOuZd77/FjRpV2nG8rt7a+sbmV3y7s7O7tH9jFw5aKEolJE0cskh0fKcKoIE1NNSOdWBLEfUba/uhm5rcfiVQ0Evd6HBOPo4GgIcVIG6lvF+MyngRR+aFy1RsgzlGlb5ecqjMHXCVuRkogQ6Nvf/WCCCecCI0ZUqrrOrH2UiQ1xYxMC71EkRjhERqQrqECcaK8dH76FJ4aJYBhJE0JDefq74kUcaXG3DedHOmhWvZm4n9eN9HhpZdSESeaCLxYFCYM6gjOcoABlQRrNjYEYUnNrRAPkURYm7QKJgR3+eVV0qpV3bNq7e68VL/O4siDY3ACysAFF6AObkEDNAEGT+AZvII3a2K9WO/Wx6I1Z2UzR+APrM8f9k2TKA==</latexit>

p(ci|do(⌧, q); �)
<latexit sha1_base64="2KvixuzZO2C5vAPNVBZ5Z1pL400=">AAACAnicbVDLSgNBEJz1GeNr1ZN4GQxCAhJ2o6DgJejFYwTzgGwIvbOzyZCZ3XVmVggxePFXvHhQxKtf4c2/cfI4aGJBQ1HVTXeXn3CmtON8WwuLS8srq5m17PrG5ta2vbNbU3EqCa2SmMey4YOinEW0qpnmtJFICsLntO73rkZ+/Z5KxeLoVvcT2hLQiVjICGgjte39JE/a7CGI856G9PiucOF1QAgo4Ladc4rOGHieuFOSQ1NU2vaXF8QkFTTShINSTddJdGsAUjPC6TDrpYomQHrQoU1DIxBUtQbjF4b4yCgBDmNpKtJ4rP6eGIBQqi980ylAd9WsNxL/85qpDs9bAxYlqaYRmSwKU451jEd54IBJSjTvGwJEMnMrJl2QQLRJLWtCcGdfnie1UtE9KZZuTnPly2kcGXSADlEeuegMldE1qqAqIugRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx995pYy</latexit>

(a)
<latexit sha1_base64="wnCYp9k7ym6+w2psvUSlSiCYxy4=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hSien3WLJrbgzkGXiZaQEGerd4lenF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2cXT8iJVXqkH2lbCslM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNF/UTSTAi0/dJT2jOUI4toUwLeythQ6opQxtSwYbgLb68TJrVindWqd6el2pXWRx5OIJjKIMHF1CDG6hDAxgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP06ykK0=</latexit>

Abstract-level Structure Learning
<latexit sha1_base64="+P6NMwUqgm9P9MbJAokMsZn2P6M=">AAACCnicbVA9TwJBEN3DL8Qv1NJmlZjYSO6w0BK1sbDAKB8JELK3zMGGvb3L7hwJIdQ2/hUbC42x9RfY+W9cPgoFXzLJy3szmZnnx1IYdN1vJ7W0vLK6ll7PbGxube9kd/cqJko0hzKPZKRrPjMghYIyCpRQizWw0JdQ9XvXY7/aB21EpB5wEEMzZB0lAsEZWqmVPbz0DWrG8VRCHyS9R51wTDTQW2BaCdVpZXNu3p2ALhJvRnJkhlIr+9VoRzwJQSGXzJi658bYHDKNgksYZRqJgZjxHutA3VLFQjDN4eSVET22SpsGkbalkE7U3xNDFhozCH3bGTLsmnlvLP7n1RMMLppDoeIEQfHpoiCRFCM6zoW2hQaOcmAJ41rYWynvsnEyNr2MDcGbf3mRVAp57yxfuCvkilezONLkgByRE+KRc1IkN6REyoSTR/JMXsmb8+S8OO/Ox7Q15cxm9skfOJ8/YMmasQ==</latexit>

(b)
<latexit sha1_base64="v0C1SROR1pMUbMaRK5tCQm0ofRo=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hGkxOu8WSW3FnIMvEy0gJMtS7xa9OL2JJyBUySY1pe26Mfko1Cib5pNBJDI8pG9EBb1uqaMiNn84unpATq/RIP9K2FJKZ+nsipaEx4zCwnSHFoVn0puJ/XjvB/qWfChUnyBWbL+onkmBEpu+TntCcoRxbQpkW9lbChlRThjakgg3BW3x5mTSrFe+sUr09L9WusjjycATHUAYPLqAGN1CHBjBQ8Ayv8OYY58V5dz7mrTknmzmEP3A+fwBQOJCu</latexit>

Subchain Posterior
<latexit sha1_base64="fi2GJSJl+8fbpo6NA90oGyQYvqg=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSB4CrvxoMegF48RzQOSJcxOepMhszPLzKwYQn7FiwdFvPoj3vwbJ4+DJhY0FFXddHdFqeDG+v63t7a+sbm1ndvJ7+7tHxwWjooNozLNsM6UULoVUYOCS6xbbgW2Uo00iQQ2o+HN1G8+ojZcyQc7SjFMaF/ymDNqndQtFO+ziA0ol6SmjEXNle4WSn7Zn4GskmBBSrBArVv46vQUyxKUlglqTDvwUxuOqbacCZzkO5nBlLIh7WPbUUkTNOF4dvuEnDmlR2KlXUlLZurviTFNjBklketMqB2YZW8q/ue1MxtfhWMu08yiZPNFcSaIVWQaBOlxjcyKkSOUae5uJS4ITZlLweRdCMHyy6ukUSkHF+XKXaVUvV7EkYMTOIVzCOASqnALNagDgyd4hld48ybei/fufcxb17zFzDH8gff5AxLXlHU=</latexit>

(c)
<latexit sha1_base64="3r0F2MUJfOW8aJVrYPSL1yk62qM=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzHBhtyhiZZEG0tMBIxwIXvLAhv29i67c0Zy4V/YWGiMrf/Gzn/jAlco+JJJXt6bycy8IJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QNFGiGW+wSEb6PqCGS6F4AwVKfh9rTsNA8lYwup76rUeujYjUHY5j7od0oERfMIpWeih3kD9hyian3WLJrbgzkGXiZaQEGerd4lenF7Ek5AqZpMa0PTdGP6UaBZN8UugkhseUjeiAty1VNOTGT2cXT8iJVXqkH2lbCslM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNF/UTSTAi0/dJT2jOUI4toUwLeythQ6opQxtSwYbgLb68TJrVindWqd6el2pXWRx5OIJjKIMHF1CDG6hDAxgoeIZXeHOM8+K8Ox/z1pyTzRzCHzifP1G+kK8=</latexit>

Instance-level Inductive Learning
<latexit sha1_base64="wwgu5s/VjL41ay4QR89ldzOZmwQ=">AAACCnicbVA9SwNBEN2LXzF+nVrarAbBxnAXCy2DNgYsIpgPSELY20ySJXt7x+5cIITUNv4VGwtFbP0Fdv4bNx+FJj4YeLw3w8y8IJbCoOd9O6mV1bX1jfRmZmt7Z3fP3T+omCjRHMo8kpGuBcyAFArKKFBCLdbAwkBCNejfTPzqALQRkXrAYQzNkHWV6AjO0Eot97ioDDLF4VzCACQtqnbCUQyA3gHTSqhuy816OW8Kukz8OcmSOUot96vRjngSgkIumTF134uxOWIaBZcwzjQSAzHjfdaFuqWKhWCao+krY3pqlTbtRNqWQjpVf0+MWGjMMAxsZ8iwZxa9ififV0+wc9UcCRUnCIrPFnUSSTGik1xoW2jgKIeWMK6FvZXyHtOMo00vY0PwF19eJpV8zr/I5e/z2cL1PI40OSIn5Iz45JIUyC0pkTLh5JE8k1fy5jw5L8678zFrTTnzmUPyB87nDyb9mow=</latexit>

p(ci|⇢i, do(⌧, q); �,�) / p(⇢i|ci;�)p(ci|do(⌧, q); �)
<latexit sha1_base64="g9Ak2WYNN488WRn+67eG+psVNhA=">AAACQnicbVBNTxsxFPSmH9BA26UcuViNkBIpinZpJSpxQeXCEaQGqLLR6q3jJFbstWu/rRQt/DYu/QXc+gN64QBCvfZQJ7uHljCSpdHMm2d7MiOFwyj6GTSePX/xcm39VXNj8/Wbt+HWuzOnC8t4n2mp7UUGjkuR8z4KlPzCWA4qk/w8mx0t/PPv3Dqh8y84N3yoYJKLsWCAXkrDr6bNUnGZ2KlORXek2wlC0f3WOUgmoBR0k4wjdGhirDaoqWlXk5c+dFB51YKVZCcNW1EvWoKukrgmLVLjJA1vkpFmheI5MgnODeLI4LAEi4JJftVMCscNsBlM+MDTHBR3w3JZwRXd9cqIjrX1J0e6VP9NlKCcm6vMTyrAqXvsLcSnvEGB40/DUuSmQJ6z6qJxIakvY9EnHQnLGcq5J8Cs8G+lbAoWGPrWm76E+PGXV8nZXi/+0Ns7/dg6/FzXsU52yHvSJjHZJ4fkmJyQPmHkmvwid+Q++BHcBg/B72q0EdSZbfIfgj9/AUZPsAA=</latexit>

p(⇢i|ci;�)
<latexit sha1_base64="YEqFQoQfFBJKxbevCGS2/3+qTSE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiRVUHBTdOOygn1AE8JkOmmHTmbCzEQIsf6KGxeKuPVD3Pk3TtsstPXAhcM593LvPWHCqNKO822trK6tb2yWtsrbO7t7+/bBYUeJVGLSxoIJ2QuRIoxy0tZUM9JLJEFxyEg3HN9M/e4DkYoKfq+zhPgxGnIaUYy0kQK7ktQ8ORIBfcQBvfJCotFpYFedujMDXCZuQaqgQCuwv7yBwGlMuMYMKdV3nUT7OZKaYkYmZS9VJEF4jIakbyhHMVF+Pjt+Ak+MMoCRkKa4hjP190SOYqWyODSdMdIjtehNxf+8fqqjSz+nPEk14Xi+KEoZ1AJOk4ADKgnWLDMEYUnNrRCPkERYm7zKJgR38eVl0mnU3bN64+682rwu4iiBI3AMasAFF6AJbkELtAEGGXgGr+DNerJerHfrY966YhUzFfAH1ucPLJyUdQ==</latexit>

p(⇢i|ai;�)
<latexit sha1_base64="ZOINPfr8eWQ9B5/FlipI3mv0o8s=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZSkCgpuim5cVrAPaEKYTCft0MlMmJkINRZ/xY0LRdz6H+78G6dtFtp64MLhnHu5954wYVRpx/m2CkvLK6trxfXSxubW9o69u9dSIpWYNLFgQnZCpAijnDQ11Yx0EklQHDLSDofXE799T6Sigt/pUUL8GPU5jShG2kiBfZBUPDkQAX1EAb30QqLRCQzsslN1poCLxM1JGeRoBPaX1xM4jQnXmCGluq6TaD9DUlPMyLjkpYokCA9Rn3QN5Sgmys+m14/hsVF6MBLSFNdwqv6eyFCs1CgOTWeM9EDNexPxP6+b6ujCzyhPUk04ni2KUga1gJMoYI9KgjUbGYKwpOZWiAdIIqxNYCUTgjv/8iJp1aruabV2e1auX+VxFMEhOAIV4IJzUAc3oAGaAIMH8AxewZv1ZL1Y79bHrLVg5TP74A+szx+GL5Sd</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

grey
<latexit sha1_base64="sOLvsTR+UxzYVUnkzdX/sW+KxoQ=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDbbSbt0s4m7k2II/R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRDJosEpHq+FSD4BKayFFAJ1ZAQ19A2x/fzvz2BJTmkXzANAYvpEPJA84oGsnrITwhYjZUkE775YpTdeawV4mbkwrJ0eiXv3qDiCUhSGSCat11nRi9jCrkTMC01Es0xJSN6RC6hkoagvay+dFT+8woAzuIlCmJ9lz9PZHRUOs09E1nSHGkl72Z+J/XTTC49jIu4wRBssWiIBE2RvYsAXvAFTAUqSGUKW5utdmIKsrQ5FQyIbjLL6+SVq3qXlRr95eV+k0eR5GckFNyTlxyRerkjjRIkzDySJ7JK3mzJtaL9W59LFoLVj5zTP7A+vwBueeSuA==</latexit>

white<latexit sha1_base64="nKwcoA8lyTNvxqfnHKNcCW2YpWM=">AAAB9XicbVDLTgJBEJz1ifhCPXqZSEw8kV000SPRi0dM5JHASmaHBibMzm5mekWy4T+8eNAYr/6LN//GAfagYCWdVKq6090VxFIYdN1vZ2V1bX1jM7eV397Z3dsvHBzWTZRoDjUeyUg3A2ZACgU1FCihGWtgYSChEQxvpn7jEbQRkbrHcQx+yPpK9ARnaKWHNsITIqajgUCYdApFt+TOQJeJl5EiyVDtFL7a3YgnISjkkhnT8twY/ZRpFFzCJN9ODMSMD1kfWpYqFoLx09nVE3pqlS7tRdqWQjpTf0+kLDRmHAa2M2Q4MIveVPzPayXYu/JToeIEQfH5ol4iKUZ0GgHtCg0c5dgSxrWwt1I+YJpxtEHlbQje4svLpF4ueeel8t1FsXKdxZEjx+SEnBGPXJIKuSVVUiOcaPJMXsmbM3JenHfnY9664mQzR+QPnM8fhWSTLA==</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

push
<latexit sha1_base64="ZTLkaZ952L97iqh9ne54vt5r3/Y=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCGzI7DDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmd+c8y1EZF6wEnM/ZAOlOgLRtFKfgf5EyKmcWKG026x5JbdOcgq8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPi10EsNjykZ0wNuWKhpy46fzo6fkzCo90o+0LYVkrv6eSGlozCQMbGdIcWiWvZn4n9dOsH/tp0LFCXLFFov6iSQYkVkCpCc0ZygnllCmhb2VsCHVlKHNqWBD8JZfXiWNStm7KFfuL0vVmyyOPJzAKZyDB1dQhTuoQR0YPMIzvMKbM3ZenHfnY9Gac7KZY/gD5/MHx8OSwQ==</latexit>

pull
<latexit sha1_base64="Tgl++7gvsxVdFU4yiPqniSsWnkM=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCGzI7NDBhdnad6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6nfnNMWgjIvWAkxj8kA2U6AvO0Ep+B+EJEdM4kXLaLZbcsjsHXSVeRkokQ61b/Or0Ip6EoJBLZkzbc2P0U6ZRcAnTQicxEDM+YgNoW6pYCMZP50dP6ZlVerQfaVsK6Vz9PZGy0JhJGNjOkOHQLHsz8T+vnWD/2k+FihMExReL+omkGNFZArQnNHCUE0sY18LeSvmQacbR5lSwIXjLL6+SRqXsXZQr95el6k0WR56ckFNyTjxyRarkjtRInXDySJ7JK3lzxs6L8+58LFpzTjZzTP7A+fwBwy2Svg==</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

0
<latexit sha1_base64="9fcUy+IojPgOgVbR/skgdFCU9Gg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120y7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFrpoYv8CREzd9Irld2KOwNZJl5OypCj3it9dfsxSyOukElqTMdzE/QzqlEwySfFbmp4QtmIDnjHUkUjbvxsdvGEnFqlT8JY21JIZurviYxGxoyjwHZGFIdm0ZuK/3mdFMMrPxMqSZErNl8UppJgTKbvk77QnKEcW0KZFvZWwoZUU4Y2pKINwVt8eZk0qxXvvFK9uyjXrvM4CnAMJ3AGHlxCDW6hDg1goOAZXuHNMc6L8+58zFtXnHzmCP7A+fwB66WREw==</latexit>

1<latexit sha1_base64="adRpIZt3lSaNrO4CYp/+o/gyKs8=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWumhi/CEiJk36ZXKbsWdgS4TLydlkqPeK311+zFPI1DIJTOm47kJ+hnTKLiESbGbGkgYH7EBdCxVLALjZ7OLJ/TUKn0axtqWQjpTf09kLDJmHAW2M2I4NIveVPzP66QYXvmZUEmKoPh8UZhKijGdvk/7QgNHObaEcS3srZQPmWYcbUhFG4K3+PIyaVYr3nmlendRrl3ncRTIMTkhZ8Qjl6RGbkmdNAgnijyTV/LmGOfFeXc+5q0rTj5zRP7A+fwB7SqRFA==</latexit> 2<latexit sha1_base64="YtDkI+a6qDElBCOqqCQTPHmMFH0=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWumhi/CEiFl10iuV3Yo7A10mXk7KJEe9V/rq9mOeRqCQS2ZMx3MT9DOmUXAJk2I3NZAwPmID6FiqWATGz2YXT+ipVfo0jLUthXSm/p7IWGTMOApsZ8RwaBa9qfif10kxvPIzoZIUQfH5ojCVFGM6fZ/2hQaOcmwJ41rYWykfMs042pCKNgRv8eVl0qxWvPNK9e6iXLvO4yiQY3JCzohHLkmN3JI6aRBOFHkmr+TNMc6L8+58zFtXnHzmiPyB8/kD7q+RFQ==</latexit>

3
<latexit sha1_base64="BxoFW+ratr+P1gVXcCKzG1XErrE=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xkUeEDZkdBpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKVHrrInxAxrU57xZJbducgq8TLSAky1HvFr24/YknIFTJJjel4box+SjUKJvm00E0Mjykb0yHvWKpoyI2fzi+ekjOr9Mkg0rYUkrn6eyKloTGTMLCdIcWRWfZm4n9eJ8HBlZ8KFSfIFVssGiSSYERm75O+0JyhnFhCmRb2VsJGVFOGNqSCDcFbfnmVNCtlr1qu3F2UatdZHHk4gVM4Bw8uoQa3UIcGMFDwDK/w5hjnxXl3PhatOSebOYY/cD5/APA0kRY=</latexit>

4<latexit sha1_base64="v51shU1fwB6TzI111wCKhRT7bEs=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaRRI9ELx4xkUeEDZkdGpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiOTR4JCPdDpgBKRQ0UKCEdqyBhYGEVjC+mfmtR9BGROoeJzH4IRsqMRCcoZUeughPiJhWp71iyS27c9BV4mWkRDLUe8Wvbj/iSQgKuWTGdDw3Rj9lGgWXMC10EwMx42M2hI6lioVg/HR+8ZSeWaVPB5G2pZDO1d8TKQuNmYSB7QwZjsyyNxP/8zoJDq78VKg4QVB8sWiQSIoRnb1P+0IDRzmxhHEt7K2Uj5hmHG1IBRuCt/zyKmlWyt5FuXJXLdWuszjy5IScknPikUtSI7ekThqEE0WeySt5c4zz4rw7H4vWnJPNHJM/cD5/APG5kRc=</latexit> 5
<latexit sha1_base64="Rt4X+Yit2Sz25C6jtIBKKecXtdo=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+YyCPChswOA0yYnd3M9BrJhr/w4kFjvPo33vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZG6x3HM/ZAOlOgLRtFKDx3kT4iYXky6xZJbdmcgy8TLSAky1LrFr04vYknIFTJJjWl7box+SjUKJvmk0EkMjykb0QFvW6poyI2fzi6ekBOr9Eg/0rYUkpn6eyKloTHjMLCdIcWhWfSm4n9eO8H+lZ8KFSfIFZsv6ieSYESm75Oe0JyhHFtCmRb2VsKGVFOGNqSCDcFbfHmZNCpl76xcuTsvVa+zOPJwBMdwCh5cQhVuoQZ1YKDgGV7hzTHOi/PufMxbc042cwh/4Hz+APM+kRg=</latexit>

6
<latexit sha1_base64="cuu9upNzNRmb6e9hTJBZlp/QSu4=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+YyCPChswOA0yYnd3M9BrJhr/w4kFjvPo33vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZG6x3HM/ZAOlOgLRtFKDx3kT4iYXky6xZJbdmcgy8TLSAky1LrFr04vYknIFTJJjWl7box+SjUKJvmk0EkMjykb0QFvW6poyI2fzi6ekBOr9Eg/0rYUkpn6eyKloTHjMLCdIcWhWfSm4n9eO8H+lZ8KFSfIFZsv6ieSYESm75Oe0JyhHFtCmRb2VsKGVFOGNqSCDcFbfHmZNCpl76xcuTsvVa+zOPJwBMdwCh5cQhVuoQZ1YKDgGV7hzTHOi/PufMxbc042cwh/4Hz+APTDkRk=</latexit>

7
<latexit sha1_base64="kUzgfQazsrnSKpRktugcXUq0PAU=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHbRBI9ELx4xkUeEDZkdGpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiOTR4JCPdDpgBKRQ0UKCEdqyBhYGEVjC+mfmtR9BGROoeJzH4IRsqMRCcoZUeughPiJhWp71iyS27c9BV4mWkRDLUe8Wvbj/iSQgKuWTGdDw3Rj9lGgWXMC10EwMx42M2hI6lioVg/HR+8ZSeWaVPB5G2pZDO1d8TKQuNmYSB7QwZjsyyNxP/8zoJDq78VKg4QVB8sWiQSIoRnb1P+0IDRzmxhHEt7K2Uj5hmHG1IBRuCt/zyKmlWyt5FuXJ3WapdZ3HkyQk5JefEI1VSI7ekThqEE0WeySt5c4zz4rw7H4vWnJPNHJM/cD5/APZIkRo=</latexit>

p(⇢i|color;�)
<latexit sha1_base64="CmiKWL90GihBKtgKI6xx7tgtvRA=">AAACCHicbVC7SgNBFJ31GeNr1dLCwSDEJuxGQcEmaGMZwTwgG8Ls5CYZMvtg5q4YYkobf8XGQhFbP8HOv3GSbKGJBy4czrl37tzjx1JodJxva2FxaXllNbOWXd/Y3Nq2d3arOkoUhwqPZKTqPtMgRQgVFCihHitggS+h5vevxn7tDpQWUXiLgxiaAeuGoiM4QyO17IM476le1BIPHsI9Ig4nb44uPB+QHdOWnXMKzgR0nrgpyZEU5Zb95bUjngQQIpdM64brxNgcMoWCSxhlvURDzHifdaFhaMgC0M10KT0ySpt2ImUqRDpRf08MWaD1IPBNZ8Cwp2e9sfif10iwc94cijBOEEI+XdRJJMWIjlOhbaGAoxwYwrgS5q+U95hiHE12WROCO3vyPKkWC+5JoXhzmitdpnFkyD45JHnikjNSItekTCqEk0fyTF7Jm/VkvVjv1se0dcFKZ/bIH1ifPxqYmgI=</latexit>

p(⇢i|position;�)
<latexit sha1_base64="Wg6dmqUzumkZV5DlIeS46tDE/cA=">AAACC3icbZC9SgNBFIVn/Y3xb9XSZjAIsQm7UVCwCdpYKphEyIYwO7lJhszuLDN3xbCmt/FVbCwUsfUF7HwbJzGFJh4Y+DjnXoZ7wkQKg5735czNLywuLedW8qtr6xub7tZ2zahUc6hyJZW+CZkBKWKookAJN4kGFoUS6mH/fJTXb0EboeJrHCTQjFg3Fh3BGVqr5e4lxUD3VEvcBwh3iJglyohRNjwNQkB2QFtuwSt5Y9FZ8CdQIBNdttzPoK14GkGMXDJjGr6XYDNjGgWXMMwHqYGE8T7rQsNizCIwzWx8y5DuW6dNO0rbFyMdu783MhYZM4hCOxkx7JnpbGT+lzVS7Jw0MxEnKULMfz7qpJKioqNiaFto4CgHFhjXtgJOeY9pxtHWl7cl+NMnz0KtXPIPS+Wro0LlbFJHjuySPVIkPjkmFXJBLkmVcPJAnsgLeXUenWfnzXn/GZ1zJjs75I+cj2+58Jt2</latexit>

Causal event, ⇢i
<latexit sha1_base64="Q2HYnyd0sJmgyu6uqoNejj5T/Cg=">AAACBHicbVC7SgNBFJ2NrxhfUcs0g0GwkLAbBS2DaSwjmAckyzI7uUmGzD6YuRsMSwobf8XGQhFbP8LOv3HyKDTxwIXDOffO3Hv8WAqNtv1tZdbWNza3stu5nd29/YP84VFDR4niUOeRjFTLZxqkCKGOAiW0YgUs8CU0/WF16jdHoLSIwnscx+AGrB+KnuAMjeTlCx2EB0yrLNFMUhhBiOd00lGDyBNevmiX7BnoKnEWpEgWqHn5r0434klgHuGSad127BjdlCkUXMIk10k0xIwPWR/ahoYsAO2msyMm9NQoXdqLlKkQ6Uz9PZGyQOtx4JvOgOFAL3tT8T+vnWDv2k1FGCcIIZ9/1EskxYhOE6FdoYCjHBvCuBJmV8oHTDGOJrecCcFZPnmVNMol56JUvrssVm4WcWRJgZyQM+KQK1Iht6RG6oSTR/JMXsmb9WS9WO/Wx7w1Yy1mjskfWJ8/xOSYKg==</latexit>

s0

s1

s2

a0

a1

a2

cra
0

cra
1

cra
2

crs
1

crs
2

<latexit sha1_base64="0mqBEznJMbpJAZ/VHqGIlbZkIpk="></latexit>

Uninstantiated
<latexit sha1_base64="ULWOWw46jLJkpbKL7pI6xG8dse4="></latexit>

causal chain<latexit sha1_base64="Soioi4uIsGAeZIpCRclWu2bjAg0="></latexit>

Figure 4.4: Illustration of top-down and bottom-up processes. (a) Abstract-level structure learning hierarchy.
At the top, atomic schemas provide the agent with environment-invariant task structures. At the bottom,
causal subchains represent a single time-step in the environment. The agent constructs the hierarchy and
makes decisions at the causal subchain resolution. Atomic schemas gM provide the top-level structural knowl-
edge. Abstract schemas gA are structures specific to a task, but not a particular environment. Instantiated
schemas gI are structures specific to a task and a particular environment. Causal chains c are structures
representing a single attempt; an abstract, uninstantiated causal chain is also shown for notation. Each
subchain ci is a structure corresponding to a single action. PL, PH, L, U denote fluents pulled, pushed, locked,
and unlocked, respectively. (b) The subchain posterior computed using the abstract-level structure learning
and instance-level inductive learning. (c) Instance-level inductive learning. Each likelihood term is learned
from causal events, ρi. Likelihood terms are combined for actions, positions, and colors.

causal circumstance.
Our agent learns a likelihood term for each attribute φij and action ai using Dirichlet distri-

butions because they serve as a conjugate prior to the multinomial distribution. First, a global
Dirichlet parameterized by αG is used across all trials to encode long-term beliefs about various en-
vironments. Upon entering a new trial, a local Dirichlet parameterized by αL P r1, 10s is initialized
to kαG, where k is a normalizing factor. Such design of using a scaled local distribution is necessary
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to allow αL to adapt faster than αG within one trial; i.e., agents must adapt more rapidly to the
current trial compared to across all trials. Thus, we have a set of Dirichlet distributions to maintain
beliefs: a Dirichlet for each attribute (e.g ., position and color) as well as a Dirichlet for actions.

We introduce ρ to represent a casual event or observation occurring in the environment. Our
agent wishes to assess the likelihood of a particular causal chain producing a casual event. The
agent computes this likelihood by decomposing the chain into subchains

ppρ|c;βq “
ź

ciPc

ppρi|ci;βq, (4.1)

where ppρi|ci;βq is formulated as

ppρi|ci;βq9ppρi|ai;βq
ź

φijPsi
siPci

ppρi|φij ;βq, (4.2)

where ppρi|φij ;βq and ppρi|ai;βq follow multinomial distributions parameterized by a sample from
the attribute and action Dirichlet distribution, respectively.2 Intuitively, this bottom-up associative
likelihood encodes a naive Bayesian prediction of how likely a particular subchain is to be involved
with any causal event by considering how frequently the attributes and actions have been in causal
events in the past, without regard for task structure. For example, we would expect an agent in
OpenLock to learn that grey levers always move and white levers never move.

Abstract-level Structure Learning

Given this understanding of how low-level attributes transfer across environments, the agent also
needs to learn abstract causal structures that govern a task. We refer to these structures as schemas;
these schemas are used to encode generalized knowledge about task structure that is invariant to a
specific observational environment.

A space of atomic causal schemas, ΩgM , of causal chain, Common Cause (CC), and Common
Effect (CE), serve as categories for the Bayesian prior. The belief in each atomic schema is mod-
eled as a multinomial distribution, whose parameters are defined by a Dirichlet distribution. This
root Dirichlet distribution’s parameters are updated after every trial according to the top-down
causal theory γ, computed as the minimal graph edit distance between an atomic schema and the
trial’s solution structure. This process yields a prior over atomic schemas, denoted as ppgM ; γq, and
provides the prior for the top-down inference process. Such abstraction allows agents to transfer
beliefs between the abstract notions of CC and CE without considering task-specific requirements;
e.g ., 3- or 4-lever configurations.

Next, we compute the belief in abstract instantiations of the atomic schemas. These abstract
schemas share structural properties with atomic schemas but have a structure that matches the task
definition. For instance, each schema must have three subchains to account for the 3-action limit
imposed by the environment and should have N trajectories, where N is the number of solutions
in the trial. Each abstract schema is denoted as gA, and the space of abstract schemas, denoted
ΩgA , is enumerated. The belief in an abstract causal schema is computed as

ppgA; γq “
ÿ

gMPΩ
gM

ppgA|gM qppgM ; γq. (4.3)

The abstract structural space can be used to transfer beliefs between rooms; however, we need to
perform inference over settings of positions and colors in this trial as the agent executes. Thus, the

2See supplementary materials for additional details.
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agent enumerates a space of instantiated schemas ΩgI , where each gI is an instantiated schema.
The agent then computes the belief in an instantiated schema as

ppgI |dopqq; γq “
ÿ

gAPΩ
gA

ppgI |gA, dopqqqppgA; γq, (4.4)

where dopqq represents the do operator [291], and q represents the solutions already executed.
Conditioning on dopqq constrains the space to have instantiated solutions that contain the solutions
already discovered by the agent in this trial. Causal chains c define the next lower level in the
hierarchy, where each chain corresponds to a single attempt. The belief in a causal chain is computed
as

ppc|dopqq; γq “
ÿ

gIPΩ
gI

ppc|gI , dopqqqppgI |dopqq; γq. (4.5)

Finally, the agent computes the belief in each possible subchain as

ppci|dopτ, qq; γq “
ÿ

cPΩC

ppci|c, dopτ, qqqppc|dopqq; γq, (4.6)

where dopτ, qq represents the intervention of performing the action sequence executed thus far in
this attempt τ , and performing all solutions found thus far q. This hierarchical process allows
the agent to learn and reason about abstract task structure, taking into consideration the specific
instantiation of the trial, as well as the agent’s own history within this trial.2

Intervention Selection

Our agent’s goal is to pick the action it believes has the highest chance of (i) being causally plausible
in the environment and (ii) being part of the solution to the task. We decompose each subchain
ci into its respective parts, ci “ pai, si, criq. The agent combines the top-down and bottom-up
processes into a final subchain posterior:

ppci|ρi, dopτ, qq; γ, βq9ppci|dopτ, qq; γqppρi|ci;βq. (4.7)

Next, the agent marginalizes over the causal relations cri and states si to obtain a final, action-level
term to select interventions

ppai|ρi, dopτ, qq; γ, βq “
ÿ

siPΩS

ÿ

crai PΩCR

ÿ

crsi PΩCR

ppai, si, cr
a
i , cr

s
i |ρi, dopτ, qq; γ, βq. (4.8)

The agent uses a model-based planner to produce action sequences capable of opening the door
(following human participant instructions in [320]). The goal is defined as reaching a particular state
s˚, and the agent seeks to execute the action at to maximize the posterior subject to the constraints
that the action appears in the set of chains that satisfy the goal, ΩC˚ “ tc P ΩC | s˚ P cu.
We define the set of actions that appear in chains satisfying the goal as ΩA˚ “ ta P ΩA|Dc P
ΩC˚ , D s, cr

a, crs |pa, s, cra, crsq P cu. The agent’s final planning goal is

a˚t “ arg max
aiPΩA˚

ppai|ρi, dopτ, qq; γ, βq. (4.9)

At each time-step, the agent selects the action that maximizes this planning objective and updates
its beliefs about the world using the processes described in Section 4.4.1 and Section 4.4.1. This
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iterative process consists of optimal decision-making based on the agent’s current understanding of
the world, followed by the agent updating their understanding based on the observed outcome.

In this section, we compare results between predominate reinforcement learning (RL) algo-
rithms with the proposed theory-based causal transfer model. Specifically, we compare the pro-
posed method against Deep Q-Network (DQN) [321], DQN with prioritized experience replay
(DQN (PE)) [322], Advantage Actor-Critic (A2C) [323], Trust Region Policy Optimization (TRPO) [324],
Proximal Policy Optimization (PPO) [325], and Model-Agnostic Meta-Learning (MAML) [326]
agents. Below, we use the term positive transfer and negative transfer to indicate that agent per-
formance benefits from or is hindered from the training phase, respectively.

Experimental Setup

The proposed model follows the same procedure as the one used for human studies presented
in [320]. Baseline (no transfer) agents are placed in 4-lever scenarios for all trials. Transfer agents
are evaluated in two phases: training and transfer. For every training trial, the agent is placed into a
3-lever trial and allowed 30 attempts to find all solutions. In the transfer phase, the agent is tasked
with a 4-lever trial. Critically, the agent only sees each trial (room) one time, so generalizations
must be formed quickly to transfer between trials successfully. See Section 4.4.1 for more details.

When executing various RL agents under this experimental setup, no meaningful learning takes
place. Instead, we train RL agents by looping through all rooms repeatedly (thereby seeing each
room multiple times). Agents are also allowed 700 attempts in each trial to find all solutions. During
training, agents execute for 200 training iterations, where each iteration consists of looping through
all six 3-lever trials. During transfer, agents execute for 200 transfer iterations, where each iteration
consists of looping through all five 4-lever trials. Note that the setup for RL agents is advantageous;
in comparison, both the proposed model and human subjects are only allowed 30 attempts (versus
700) during the training and 1 (versus 200) iteration for testing.

Reinforcement Learning Results

The RL results, shown in Fig. 4.5, demonstrate that A2C, TRPO, and PPO are capable of learning
how to solve the OpenLock task from scratch. However, A2C in the Common Cause 4 (CC4)
condition is the only agent showing positive transfer; every other agent in every condition shows
negative transfer.

These results indicate that model-free RL algorithms are capable of learning how to achieve this
task; however, the capability to transfer the learned abstract knowledge is markedly different from
the human performance shown in [320]. Due to the overall negative transfer trends shown by nearly
every RL agent, we conclude that these RL algorithms cannot capture the correct abstractions to
transfer knowledge between the 3-lever training phase and the 4-lever transfer phase. It is worth
noting that the RL algorithms found the Common Effect 4 (CE4) condition more difficult than
CC4, a result also shown in our proposed model results and human participants.

Theory-based Causal Transfer Results

The results using the proposed model are shown in Fig. 4.6. These results are qualitatively and
quantitatively similar to the human participant results presented in [320], and starkly different from
the RL results. We execute 40 agents in each condition, matching the number of human subjects
described in [320].

Specifically, our agent does not require looping over trials multiple times—it is capable of learn-
ing and generalizing from seeing each trial only one time. In the baseline agents, the CC4 condition
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Figure 4.5: RL results for baseline and transfer conditions. Baseline (no transfer) results show the best-
performing algorithms (PPO, TRPO) achieving approximately 10 and 25 attempts by the end of the baseline
training for CC4 and CE4, respectively. A2C is the only algorithm to show positive transfer; A2C performed
better with training for the CC4 condition. The last 50 iterations are not shown due to the use of a smoothing
function.

Figure 4.6: Results using the proposed theory-based causal transfer. (a) Proposed model baseline results for
CC4/CE4. We see an asymmetry between the difficulty of CC and CE. (b) Human baseline performance
[320]. (c) Proposed model transfer results for training in Common Cause 3 (CC3)/Common Effect 3 (CE3).
The transfer results show that transferring to an incongruent condition (i.e., different structure, additional
lever; e.g ., CC3 to CE4) was always more difficult than transferring to a congruent condition (i.e., same
structure, additional lever; e.g ., CC3 to CC4). (d) Human transfer performance [320].

was more difficult than CE4; this trend was also observed in human participants. During transfer,
we see a similar performance as the baseline results; however, for congruent cases (transferring from
the same structure with an additional lever) were easier than incongruent cases (transferring to a
different structure with an additional lever; CE4 transfer); this result was statistically significant for
CE4: tp79q “ 3.0; p “ 0.004. For CC4 transfer, no significance was observed (tp79q “ 0.63; p “ 0.44),
indicating both CC3 and CE3 obtained near-equal performance when transferred to CC4.

These learning results are significantly different from the RL results; the proposed causal theory-
based model is capable of learning the correct abstraction using instance and structural learning
schemes, showing similar trends as the human participants. It is worth noting that RL agents were
trained under highly advantageous settings. RL agents: (i) were given more attempts per trial;
and (ii) more importantly, were allowed to learn in the same trial multiple times. In contrast, the
present model learns the proper mechanisms to: (i) transfer knowledge to structurally equivalent
but observationally different scenarios (baseline experiments); (ii) transfer knowledge to cases with
structural differences (transfer experiments); and (iii) do so using the same experimental setup as
humans. The model accomplishes this by understanding which scene components are capable of
inducing state changes in the environment while leveraging overall task structure3.

3For additional model results and ablations, see supplementary.
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4.5 Conclusion

In this chapter, we show how the theory-based causal transfer coupled with an associative learning
scheme can be used to learn abstract, transferable structural knowledge under both observationally
and structurally varying tasks. We executed a plethora of RL algorithms, none of which were capable
of learning a transferable representation of the OpenLock task, even under favorable baseline and
transfer conditions. In contrast, the proposed model results are not only capable of successfully
completing the task, but also adhere closely to the human participant results in [320].

These results suggest that current RL methods lack the necessary learning mechanisms to
learn generalized representations in hierarchical, structured tasks. Our model results indicate hu-
man causal transfer follows similar abstractions as those presented in this work, namely learning
abstract causal structures and learning instance-specific knowledge that connects this particular
environment to abstract structures. The model presented here can be used in any reinforcement
learning environment where: (i) the environment is governed by a causal structure, (ii) causal
cues can be uncovered from interacting with objects with observable attributes, and (iii) different
circumstances share some common causal properties (structure and/or attributes).
How can RL benefit from structured causal knowledge? Model-free RL is apt at learn-
ing a representation to maximize a reward within simple, non-hierarchical environments using a
greedy process. Thus, current approaches do not restrict or impose learning an abstract structural
representation of the environment. RL algorithms should be augmented with mechanisms to learn
explicit structural knowledge and jointly optimized to learn both an abstract structural encoding
of the task while maximizing rewards. Learning such structural knowledge should not only aid in
learning transferable policies but also help RL perform better in hierarchical environments. We will
investigate how to combine these fields as future work.
Why is CE more difficult than CC? Human participants, RL, and the proposed model all
found CE more difficult than CC. A natural question is: why? We posit that it occurs from a
decision-tree perspective. In the CC condition, if the agent makes a mistake on the first action, the
environment will not change, and the rest of the attempt is bound to fail. However, should the agent
choose the correct grey lever, the agent can choose either remaining grey levers; both of which will
unlock the door. Conversely, in the CE condition, the agent has two grey levers to choose from in
the first action; both will unlock the lever needed to unlock the door. However, the second action is
more ambiguous. The agent could choose the correct lever, but it could also choose the other grey
lever. Such complexity leads to more failure paths from a decision-tree planning perspective. The
CC condition receives immediate feedback on the first action as to whether or not this plan will
fail; the CE condition, on the other hand, has more failure pathways. We plan to investigate this
property further, as this asymmetry was unexpected and unexplored in the literature.
Why is this task difficult for model-free RL? The OpenLock environment presented here
presents many challenges to traditional RL. First, the variation of the lever configurations of trials
requires learning abstractions between configurations; each trial can be thought of as a different
“game” with the same causal schema. DDQN was designed to learn singular games at a time rather
than transfer knowledge between different games [327].

Second, the environment’s state and action spaces are low dimensional and discrete. This results
in a discrete and sparse reward function, which makes gradient descent difficult for DDQN. In
contrast to most Atari games where random actions typically move the player (or perform another
typically inconsequential action), exploratory mistakes in OpenLock are very common and almost
always result in failing to open the door.

Third, state changes modify the underlying mechanics of the environment; e.g ., for CC trials,
pushing on L0 unlocks L1 and L2. This is unlike traditional Atari games where the visual dynamics
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of the environment directly influence the reward function. While this maintains the Markov property
assumed in Q-learning, it requires reasoning about the latent state space of the causal schema, which
is not present in most Atari games.

Fourth, humans using an optimal policy must remember their previous solutions; i.e., an optimal
policy is non-Markovian. If humans were using a Markovian policy, their attempts to find the second
and/or third solutions should be evenly distributed with the first solution found. However, many
participants find all solutions within 2-3 attempts (finding two solutions in two attempts requires
a lucky guess on the first attempt).

RL assumes the problem is Markovian and is therefore unable to remember the solutions already
found. We relaxed this constraint by allowing the state space to be semi-Markovian; the number of
solutions found was appended to the state space as a binary vector. However, empirically, this made
no difference in performance to the fully-Markovian RL results. In fact, using any combination of the
unique solutions reward function resulted in essentially no learning; after the agent finds a solution
and takes the exact same action sequence again, they are given no reward. This means the agent
only has one positive example per trial per solution, making it difficult to learn a meaningful policy
during experience replay and gradient descent. However, future work should include an exploration
into RL agents explicitly equipped with memory, such as a recurrent neural network (RNN). These
agents may be better equipped to handle the long-term temporal constraints of finding all solutions.
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Chapter 5

Tool Use

In this work, we present a new framework—task-oriented modeling, learning and recognition which
aims at understanding the underlying functions, physics and causality in using objects as “tools.”
Given a task, such as, cracking a nut or painting a wall, we represent each object, e.g ., a hammer or
brush, in a generative spatio-temporal representation consisting of four components: i) an affordance
basis to be grasped by hand; ii) a functional basis to act on a target object (the nut), iii) the
imagined actions with typical motion trajectories; and iv) the underlying physical concepts, e.g .,
force, pressure, etc. In a learning phase, our algorithm observes only one RGB-D video, in which
a rational human picks up one object (i.e., tool) among a number of candidates to accomplish
the task. From this example, our algorithm learns the essential physical concepts in the task (e.g .,
forces in cracking nuts). In an inference phase, our algorithm is given a new set of objects (daily
objects or stones), and picks the best choice available together with the inferred affordance basis,
functional basis, imagined human actions (sequence of poses), and the expected physical quantity
that it will produce. From this new perspective, any objects can be viewed as a hammer or a shovel,
and object recognition is not merely memorizing typical appearance examples for each category but
reasoning the physical mechanisms in various tasks to achieve generalization.

5.1 Introduction

1

In this work, we rethink object recognition from the perspective of an agent: how objects are
used as “tools” in actions to accomplish a “task.” Here a task is defined as changing the physical
states of a target object by actions, such as, cracking a nut or painting a wall. A tool is a physical
object used in the human action to achieve the task, such as a hammer or brush, and it can be
any daily objects and is not restricted to conventional hardware tools. This leads us to a new
framework—task-oriented modeling, learning and recognition, which aims at understanding the
underlying functions, physics and causality in using objects as tools in various task categories.

Fig. 5.1 illustrates the two phases of this new framework. In a learning phase, our algorithm
observes only one RGB-D video as an example, in which a rational human picks up one object, the
hammer, among a number of candidates to accomplish the task. From this example, our algorithm
reasons about the essential physical concepts in the task (e.g ., forces produced at the far end of the
hammer), and thus learns the task-oriented model. In an inference phase, our algorithm is given a
new set of daily objects (on the desk in (b)), and makes the best choice available (the wooden leg)
to accomplish the task.

1Yixin Zhu and Yibiao Zhao contribute equally to this work.
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Figure 5.1: Task-oriented object recognition. (a) In a learning phase, a rational human is observed picking a
hammer among other tools to crack a nut. (b) In an inference phase, the algorithm is asked to pick the best
object (i.e., the wooden leg) on the table for the same task. This generalization entails physical reasoning.

From this new perspective, any objects can be viewed as a hammer or a shovel, and this gen-
erative representation allows computer vision algorithms to generalize object recognition to novel
functions and situations by reasoning the physical mechanisms in various tasks, and go beyond
memorizing typical examples for each object category as the prevailing appearance-based recogni-
tion methods do in the literature.

Fig. 5.2 shows some typical results in our experiments to illustrate this new task-oriented object
recognition framework.

Given three tasks: chop wood, shovel dirt, and paint wall, and three groups of objects: con-
ventional tools, household objects, and stones, our algorithm ranks the objects in each group for a
task. Fig. 5.2 shows the top two choices together with imagined actions using such objects for the
tasks.

Our task-oriented object representation is a generative model consisting of four components in
a hierarchical spatial-temporal parse graph:

i) An affordance basis to be grasped by hand;
ii) A functional basis to act on the target object;
iii) An imagined action with pose sequence and velocity;
iv) The physical concepts produced, e.g ., force, pressure.
In the learning phase, our algorithm parses the input RGB-D video by simultaneously recon-

structing the 3D meshes of tools and tracking human actions. We assume that the human makes
rational decisions in demonstration: picks the best object, grasps the right place, takes the right
action (poses, trajectory and velocity), and lands on the target object with the right spots. These
decisions are nearly optimal against a large number of compositional alternative choices. Using a
ranking-SVM approach, our algorithm will discover the best underlying physical concepts in the
human demonstration, and thus the essence of the task.

In the inference stage, our algorithm segments the input RGB-D image into objects as a set
of candidates, and computes the task-oriented representation—the optimal parse graph for each
candidate and each task by evaluating different combinations. This parse graph includes the best
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Figure 5.2: Given three tasks: chop wood, shovel dirt, and paint wall. Our algorithm picks and ranks objects
for each task among objects in three groups: 1) conventional tools, 2) household objects, and 3) stones, and
output the imagined tool-use: affordance basis (the green spot to grasp with hand), functional basis (the red
area applied to the target object), and the imagined action pose sequence.

object and its tool-use: affordance basis (green spot), functional basis (red spot), actions (pose
sequence), and the quantity of the physical concepts produced by the action.

This work has four major contributions:
1. We propose a novel problem of task-oriented object recognition, which is more general than

defining object categories by typical examples, and is of great importance for object manipulation
in robotics applications.

2. We propose a task-oriented representation which includes both the visible object and the imag-
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Figure 5.3: The task-oriented representation of a hammer and its use in a task (crack a nut) in a joint spatial,
temporal, and causal space. The components in grey area are imagined during inference phase.

ined use (action and physics). The latter is the “dark matter” [157] in computer vision.
3. Given an input object, our method can imagine the plausible tool-use and thus allows vision

algorithms to reason innovative use of daily object—a crucial aspect of human and machine
intelligence.

4. Our algorithm can learn the physical concepts from a single RGB-D video and reason about the
essence of physics for a task.

5.2 Task-oriented object representation

Tools and tool-uses are traditionally studied in cognitive science [328, 329, 330, 331] with verbal
definitions and case studies, and an explicit formal representation is missing in the literature.

In our task-oriented modeling and learning framework, an object used for a task is represented
in a joint spatial, temporal, and causal parse graph pg “ ppgs, pgt, pgcq including three aspects
shown in Fig. 5.3:

i) A spatial parse graph pgs represents object decomposition and 3D relations with the imagined
pose;

ii) A temporal parse graph pgt represents the pose sequence in actions; and
iii) A causal parse graph pgc represents the physical quantities produced by the action on the

target object.
In this representation, only the object is visible as input, all other components are imagined.

5.2.1 Tool in 3D space

An object (or tool) is observed in a RGB-D image in the inference stage, which is then segmented
from the background and filled-in to become a 3D solid object denoted by X. The 3D object is
then decomposed into two key parts in the spatial parse graph pgs:
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1) Affordance basis BA, where the imagined human hand grasps the object with certain
pose. Through offline training, we have collected a small set of hand poses for grasping. The parse
graph pgs encodes the 3D positions and 3D orientations between the hand poses and the affordance
basis during the tool-use, using 3D geometric relations between the hand pose and the affordance
basis, as it is done in [153].

The parse graph pgs will have lower energy or high probability when the hand hold the object
comfortably (see the trajectory of affordance basis BA in Fig. 5.3).

2) Functional basis BF, where the object (or tool) is applied to a target object (the nut) to
change its physical state (i.e., fluent). The spatial parse graph pgs also encodes the 3D relations
between the functional basis BF and the 3D shape of the target object during the action. We
consider three types of the functional basis:

(a) a single contact spot (e.g ., hammer); (b) a sharp contacting line segment or edge (e.g ., axe
and saw); and (c) flat contacting area (e.g ., shovel).

We define a space ΩS “ tpgsu as the set of all possible spatial parse graph pgs which is a
product space of all the possible objects, their affordance bases, functional bases, hand poses, and
3D relations above.

5.2.2 Tool-use in time

A tool-use is a specific action sequence that engages the tool in a task, and is represented by
a temporal parse graph pgt. pgt represents the human action A as a sequence of 3D poses. In
this work, since we only consider hand-hold objects, we collect some typical action sequences for
the arm and hand movements using tools by RGB-D sensors, such as, hammering, shoveling, etc.
These actions are then clustered into average pose sequences. For each of the sequence, we record
the trajectories of the hand pose (or affordnace basis) and the functional basis.

We define a space ΩT “ tpgtu as the set of possible pose sequences and their associated trajec-
tories of the affordance basis BA and functional basis BF .

5.2.3 Physical concept and causality

We consider of thirteen basic physical concepts involved in tool-use, which can be extracted or
derived from the spatial and temporal parse graphs as Fig. 5.4 illustrates.

Firstly, as the blue dots and lines in Fig. 5.4 illustrates, we reconstruct the 3D mesh from the
input 3D object and thus calculate its volume, and by estimating its material category, we get its
density. From volume and density we further calculate the mass of the objects and its parts (when
different materials are used).

Secondly, as the green dots and lines Fig. 5.4 illustrates, we can derive the displacement from
the 3D trajectory of affordance basis and functional basis, and then calculate the velocity and
acceleration of the two bases.

Thirdly, as red dots and line shows, we can estimate the contact spot, line and area from the
functional basis and target object, and further compute the momentum, and impulse. We can then
also compute basic physical concepts, such as forces, pressure, work, etc.

Physical concept operators ∇. We define a set of operators, including addition ∇`p¨, ¨q,
subtraction ∇´p¨, ¨q, multiplication ∇ˆp¨, ¨q, division ∇{p¨, ¨q, negation ∇negp¨q, space integration
∇ş

S
p¨q, time integration ∇ş

T
p¨q, space derivation ∇BS p¨q and time derivation ∇BT p¨q. For example, the

concept of the force and acceleration are defined as: force “ ∇ˆpmass, accelerationq, acceleration “
∇Btpvelocityq



CHAPTER 5. TOOL USE 121

Figure 5.4: Thirteen physical concepts involved in tool-use and their compositional relations. By parsing
human demonstration, the physical concepts of material, volume, concept area, and displacement are es-
timated from 3D meshes of tool (blue), trajectories of tool-use (green) or jointly (red). The higher-level
physical concepts can be further derived recursively.

The causal parse graph pgc includes the specific physical concepts used in a tool-use which is
often an instantiated sub-graph of the concept graph in Fig. 5.4.

Since the law of physics is universally applicable, the major advantage of using physical concepts
is the ability to generalize to novel situations.

5.3 Problem definition

5.3.1 Learning physical concept

Given a task, the goal of the learning algorithm is to find the essential physical concept that best
explains why a selected tool and tool-use is optimal.

Rational choice assumption states that human choices are rational and near-optimal. As
shown in Fig. 5.5 (a-d), we assume that human chooses the optimal tool and tool-use pg˚ (in
blue box) based on the essential physical concept, so that most of other tools and tool-uses in the
hypothesis spaces should not outperform the demonstration.

For instance, let us assume the essential physical concept to explain the choice of a tool is to
maximize “mass,” then other tools should not offer more “mass” than the selected one. If there is
a heavier tool not picked by human, it implies that “mass” is not the essential physical concept.

During learning stage, we consider the selected tool and tool-use as the only positive training
example, and we randomly sample n different combinations of tools and tool-uses pgi, i “ 1 ¨ ¨ ¨n
in the hypothesis spaces as negative training samples.

Ranking function. Based on the rational choice assumption, we pose the tool recognition as
a ranking problem [332], so that the human demonstration should be better than other tools and
tool-uses with respect to the learned ranking function.

The goal of the learning is to find a ranking function indicating the essential purposes of tool-use
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Figure 5.5: An illustration of learning and inference. (a)–(d) We assume the human choice (shown in blue
bounding box) of tool and tool-use (action and affordance / functional bases) is near-optimal, thus most
of other combinations of tool and tool-use (action, affordance / functional bases) in the hypotheses spaces
should not outperform human demonstration. Based on this assumption, we treat the human demonstration
as positive example, and random sample other tools and tool-uses in the hypothesis spaces as negative
examples. (e) During the inference, given an image of static scene in a novel situation, (f) the algorithm
infers the best tool and imagines the optimal tool-use.

in a given task.

Rppgq “ ω ¨ φppgq, (5.1)

where ω are the weighting coefficients of the physical concepts. Intuitively, each coefficient reflects
the importance of its corresponding physical concept for the task.

Learning ranking function is equivalent to find the weight coefficients so that the maximum
number of pairwise constraints is fulfilled.

@i P t1, ¨ ¨ ¨ , nu : ω ¨ φppg˚q ą ω ¨ φppgiq (5.2)

In this way, these constraints enforce the human demonstration pg˚ has the highest ranking score
compared with the other negative samples pgi under the essential physical concept.

We approximate the solution by introducing nonnegative slack variables, similar to SVM clas-
sification [332]. This leads to the following optimization problem

min
1

2
ω ¨ ω ` λ

n
ÿ

i

ξ2
i (5.3)

s.t. @i P t1, ¨ ¨ ¨ , nu :

ω ¨ φppg˚q ´ ω ¨ φppgiq ą 1´ ξ2
i (5.4)

ξi ě 0, (5.5)

where ξi is a slack variable for each constraint, and λ is the trade-off parameter between maximizing
the margin and satisfying the rational choice constraints.

This is a general formulation for the task-oriented modeling and learning problem, where the
parse graph pg includes objects X, human action A and affordance / functional basis BA / BF . In
this way, this framework subsumes following special cases: i) object recognition based on appearance
and geometry φpXq, ii) action recognition φpAq, iii) detecting furniture by their affordance φpBAq,
and iv) physical concept φppgcq. In this work, we only focus on learning physical concepts.

In our experiment, we only consider the scenario that the learner only observes one demonstra-
tion of the teacher choosing one tool from a few candidates. Instead of feeding a large dataset for
training, we are more interested in how much the algorithm can learn from such a small sample
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learning problem. Therefore, we only infer a single physical concept for functional and affordance
basis respectively by iterating over the concept space, while this formulation can be naturally
generalized to more sophisticated scenarios for future study.

5.3.2 Recognizing tools by imagining tool-uses

Traditional object recognition methods assume that visual patterns of the objects in both train-
ing and testing sets share the same distribution. However, such assumption does not hold in tool
recognition problem. The visual appearances of tools at different situations have fundamental dif-
ferences. For instance, a hammer and a stone can be used to crack a nut, despite the fact the their
appearances are quite different.

In order to address this challenge, we propose this algorithm to recognize tools by essential
physical concepts and imagine tool-uses during the inference.

Recognize tools by essential physical concepts. Fortunately, as domain general mecha-
nisms, the essential physical concepts in a given task are invariant across different situations. For
instance, a hammer and a stone can be categorized as the same tool to crack a nut due to the
similar ability to provide enough “force.” In the inference, we use the learned ranking function to
recognize the best tool.

pg˚ “ arg maxω ¨ φppgq, (5.6)

Imagine tool-use beyond observations. Given an observed image of tool without actually
seeing the tool-use, our algorithm first imagines different tool-uses (human action and affordance
/ functional bases), and then combines the imagined tool-uses with observed tools to recognize the
best tool by evaluating the ranking function.

The imagined tool-uses are generated by sampling human action and affordance/functional bases
from the hypothesis spaces as shown in Fig. 5.5 (c-d). We first assign the trajectories of imaged
human hand movement to the affordance basis, then compute the trajectory of functional basis by
applying the relative 3D transformation between the two bases. Lastly, we calculate the physical
concepts recursively as discussed in Section 5.2.3, and evaluate the ranking function accordingly.

The ability of imagining tool-use is particularly important for an agent to predict how they can
use a tool, and physically interact with their environment.

Moreover, such ability of imagining tool-use enables the agent to actively explore different kinds
of tool-uses instead of to simply mimic the observed tool-use in human demonstration. Although
the tool-use in human demonstration is assumed to be optimal, other tool-uses may be better in
different situations. For example, the way you use a stone to crack a nut may be quite different
from the way you use a hammer.

5.3.3 Parsing human demonstration

In this section we show how we use the off-the-shelf computer vision algorithms to parse the input
RGB-D video of human demonstration.

3D reconstruction. We apply the KinectFusion algorithm [271] to generate a 3D reconstruc-
tion of the static scene, including a tool and an object. KinectFusion is GPU optimized such that
it can run at interactive rates. Each frame of depth image captured by RGB-D sensors has a lot
of missing data. By moving the sensor around, the KinectFusion algorithm fills these holes by
combining temporal frames into a smooth 3D point cloud / mesh (Fig. 5.6 (a)). In this work, we
only focus on medium sized tool that can be held in one hand, and can be well reconstructed by
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Figure 5.6: Spatial-temporal parsing of human demonstration. (a) Using KinectFusion, we first reconstruct 3D
scene, including the tool and the target object. (b) Given a RGB-D video of tool-use by human demonstration,
(d) affordance / functional bases can be detected by (c) 3D tracking.

a consumer-level RGB-D sensor. By fitting the plane of the table, the tool and the target object
then can be extracted from background.

3D tracking of tool and target object. Tracking the 3D mesh of tool and target object
allows the algorithm to perceive the interactions and detect status changes. In this work, we use
an off-the-shelf 3D tracking algorithm based on Point Cloud Library [333]. The algorithm first
performs object segmentation using the first depth frame of the RGB-D video, and then invokes
particle filtering [334] to track each object segment as well as estimating the 3D orientation frame
by frame (Fig. 5.6 (c)).

3D hand tracking. 3D tracking of hand positions and orientations are achieved by 3D skele-
ton tracking [155]. The skeleton tracking outputs a full body skeleton, including 3D position and
orientation of each joint. Without loss of generality, we assume the interacting hand to be the right
hand.

Contact detection. Given the tracked 3D hand pose / tool / target object, we perform touch
detection (Fig. 5.6 (d)) by measuring the euclidean distance among them. The touch detection
between the human hand and the tool localizes the 3D location of the affordance basis, while the
touch detection between the tool and the target object yields the 3D location of the functional
basis.
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5.4 Experiment

In this section, we first introduce our dataset, and evaluate our algorithm in three aspects: (i)
learning physical concepts; (ii) recognizing tools; and (iii) imagining tool-uses.

5.4.1 Dataset

We designed a new Tool & Tool-Use (TTU) dataset for evaluating the recognition of tools and
task-oriented objects. The dataset contains a collection of static 3D object instances, together with
a set of human demonstrations of tool-use.

The 3D object instances include 452 static 3D meshes, ranging from typical tools, household
objects and stones. Some of these object instances are shown in Fig. 5.7. Some typical actions are
illustrated in Fig. 5.5. Each action contains a sequence (3-4 seconds) of full body skeletons.

5.4.2 Learning physical concept

We first evaluate our learning algorithm by comparing with human judgments. Forty human sub-
jects annotated the essential physical concepts for four different tasks, the distribution of annotated
the essential physical concepts is shown as the blue bars in Fig. 5.8. Interestingly, human subjects
have relative consistent common knowledge that force and momentum are useful for cracking nuts,
and pressure is important for chopping wood. Our algorithm learned very similar physical concepts
as the red bars shown in Fig. 5.8. For the other two tasks i.e., shovel dirt and paint wall, although
the human judgments are relatively ambiguous, our algorithm still produces relative similar results
of learned physical concepts.

Fig. 5.9 shows an example of learning physical concept for cracking a nut. Given a set of RGB-D
images of ten tool candidates in Fig. 5.9 (a) and a human demonstration of tool-use in Fig. 5.9
(b), our algorithm imagines different kinds of tool-use as shown in Fig. 5.9 (c), and ranks them
with respect to different physical concepts. By assuming human demonstration is rational and near-
optimal, our learning algorithm selects physical concepts by minimizing the number of violations
as the red area on the left of Fig. 5.9 (c). For instance, the plot of “force” shows ranked pairs of
tool and tool-use with respect to the forces applied on the functional basis. The force produced
by human demonstration (the black vertical line) is larger than most of the generated tool-uses,
thus it is near-optimal. The instances on the right of Fig. 5.9 (c) are sampled tools and tool-uses.
The red ones are the cases outperform human demonstration, while the gray ones are the cases
underperform human demonstration.

5.4.3 Inferring tools and tool-uses

In the Fig. 5.2, we illustrate qualitative results of inferred tool and tool-use for three tasks, i.e. chop
wood, shovel dirt, and paint wall. By evaluating in three scenarios: (a) typical tools, (b) household
objects, (c) natural stones, we are interested in the generalization ability of the learned model.

Recognizing tools

We asked four human subjects to rank tool candidates shown in Fig. 5.2. For the task of chopping
wood in Fig. 5.10, we plot tool candidates in terms of their average ranking by human subjects
(x-axis) and their ranking generated by our algorithm (y-axis).
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Figure 5.7: Sample tool instances in dataset. (a) typical tools (b) household objects (c) natural stones.

The three columns show different testing scenarios. We can see that our model learned from
canonical cases of tool-use can be easily generalized to recognize tools in novel situation, i.e., house-
hold objects and natural stones. The correlation between algorithm ranking and human ranking is
consistent across these three scenarios. Sometimes, the algorithm works even better on the stone
scenarios.
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Figure 5.8: Learning essential physical concepts of tool-use. The red bars represent human judgments about
what the essential physical concepts are for each task. The blue bars represent weight coefficients of different
physical concepts learned by our algorithm.

The three rows represent different levels of tool-use: (a) the “tool-ranking with random use”
evaluates the ranking of tools by calculating the expected scores of random tool-use; (b) the “tool-
ranking with inferred use” evaluates the ranking of tools by calculating their optimal tool-use
inferred by our algorithm; (c) the “tool-ranking with best use” evaluates the ranking of tools by
their best uses given by human subjects. The Table 5.1 summarizes the correlations between human
rankings and algorithm rankings on three tasks.

Table 5.1: Accuracy of tool recognition. This table shows the correlation between the ranking generated by
our algorithm and the average ranking annotated by human subjects. The three rows represent different
levels of tool-use imagined by our inference algorithm. The qualitative and quantitative ranking results of
tool candidates are illustrated in Fig. 5.2 and Fig. 5.10 respectively.

correlation of ranking

algorithm vs. human

chop wood shovel dirt paint wall

tool object stone tool object stone tool object stone

tool + random use 0.07 0.14 0.20 0.52 0.32 0.09 0.12 0.11 0.31

tool + inferred use 0.48 0.25 0.89 0.64 0.89 0.14 0.10 0.64 0.20

tool + best use 0.83 0.43 0.89 0.64 0.89 0.14 0.10 0.64 0.20
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Figure 5.9: Learning physical concept from single human demonstration for cracking a nut. (a) A set of
tool candidates are given by RGB-D images. (b) The human demonstration of tool-use is assumed to be
near-optimal. (c) The algorithm sorts all the samples of tool-uses with respect to different physical concepts.
The black vertical bar represents the human demonstration of tool-use, while the red area and gray area
represent samples that outperform and underperform human demonstration receptively. We showed six
sampled tool and tool-use, three of which outperform human demonstration, and the others underperform
human demonstration. In this cracking nut example, the “forces” is selected as the essential physical concept
because there are minimum number of samples that violate the “rational choice assumption.”

Imagining tool-uses

We also evaluated the imagined tool-uses in three aspects: human action A, affordance basis BA,
functional basis BF .

The evaluation of human action is based on the classification of action directions, which are “up,”
“down,” “forward,” “backward,” “left” and “right.” The classification accuracy for this problem
over all the experiments is 89.3%. The algorithm can reliably classify the action of cracking a nut
as “down.” But there are some ambiguities in classifying the action of shoveling dirt, because “left”
and “right” are physically similar.

The Fig. 5.11 illustrates three example of imagined affordance basis BA and functional basis BF .
Comparing to human annotations, the algorithm finds very similar positions of affordance basis BA
and functional basis BF respectively. In Table 5.2 we show the 3D distances between the positions
imagined by our algorithm and the positions annotated by human subjects in centimeter.
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Figure 5.10: Recognizing tools for chopping wood. The scatters show tool candidates ranked by our algorithm
(y-axis) with respect to the average ranking by human subjects (x-axis). The three columns show different
testing scenarios, while the three rows represent different levels of tool-use imagined by inference algorithm.

Table 5.2: Errors of imagining tool-use for affordance / functional bases (BA and BF ) . The table shows
the 3D distances between their positions imagined by our algorithm and the positions annotated by human
subjects. The specific positions for sample tool candidates are shown in Fig. 5.11.

3D distance (cm)

algorithm vs. human

chop wood shovel dirt paint wall

tool object stone tool object stone tool object stone

BA - top 1 1.75 3.02 3.19 1.17 2.03 3.28 0.43 2.48 2.86

BA - top 3 1.04 2.17 2.81 0.97 0.52 2.21 0.31 2.32 2.67

BF - top 1 0.48 5.97 3.91 6.98 6.38 0.23 2.35 2.74 2.65

BF - top 3 0.27 5.92 3.95 2.85 3.29 0.31 1.43 2.64 2.71

5.5 Discussions

In this work, we present a new framework for task-oriented object modeling, learning and recogni-
tion.

An object for a task is represented in a spatial, temporal, and causal parse graph including:
i) spatial decomposition of the object and 3D relations with the imagined human pose;
ii) temporal pose sequences of human actions; and
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Figure 5.11: Comparison of human predicted tool-use (a) and algorithm imagined tool-use (b) for shoveling
dirt.

iii) causal effects (physical quantities on the target object) produced by the object and action.
In this inferred representation, only the object is visible, while all other components are imagined
“dark” matters. This framework subsumes other traditional problems, such as:

(a) object recognition based on appearance and geometry; (b) action recognition based on poses;
(c) object manipulation and affordance in robotics. We argue that objects, especially man-made
objects, are designed for various tasks in a broad sense [328, 329, 330, 331], and therefore it is
natural to study them in a task-oriented framework.

In the following, we briefly review related work in the literature of cognitive science, neuro-
science, vision and robotics.

5.5.1 Related work

1) Cognitiove Science and psychology. The perception of tools and tool-uses has been extensively
studied in cognitive science and psychology. Our work is motivated by the astonishing ability of
animal tool-uses [335, 336, 337, 329, 330, 338]. For example, Santos et al . [339] trained two species
of monkeys on a task to choose one of the two canes to reach food under various conditions that
involve physical concepts. Weir et al . [340] reported that New Caledonian crows can bend a piece of
straight wire into a hook and successfully used it to lift a bucket containing food from a vertical pipe.
These discoveries suggest that animals can reason about the functional properties, physical forces
and causal relations of tools using domain general mechanisms. Meanwhile, the history of human
tool designing reflects the history of human intelligence development [341, 342, 343, 344]. One
argument in cognitive science is that an intuitive physics simulation engine may have been wired
in the brain through evolution [90, 345, 93], which is crucial for our capabilities of understanding
objects and scenes.

2) Neuroscience. Studies in neuroscience [346, 25, 26] found in fMRI experiments that cortical
areas in the doral pathway are selectively activated by tools in contrast to faces, indicating a very
different pathway and mechanism for object manipulation from that of object recognition. Therefore
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studying this mechanism will lead us to new directions for computer vision research.
3) Robotics and AI. There is also a large body of work studying tool manipulation in robotics and

AI. Some related work focus on learning affordance parts or functional object detectors, e.g . [347,
348, 349, 350, 351, 352, 353, 354, 355]. They, however, are still learning high level appearance
features, either selected by affordance / functional cues, or through human demonstrations [356],
not to reason the underlying physical concepts.

4) Computer vision. The most related work in computer vision is a recent stream that recognizes
functional objects (e.g ., chairs) [357, 358, 128, 359, 153, 360, 361, 362] and functional scene (e.g .,
bedroom) [54, 121, 53, 130] by fitting imagined human poses. The idea of integrating physical-based
models has been used for object tracking [227, 363] and scene understanding [116, 117] in computer
vision. But our work goes beyond affordance.

5.5.2 Limitation and future work

In this work, we only consider handhold physical objects as tools. We do not consider other tools,
such as, electrical, digital, virtual or mental tools. Our current object model is also limited by
rigid bodies, and can not handle deformable or articulated objects, like scissors, which requires
fine-grained hand pose and motion. All these request richer and finer representations which we will
study in the future work.



Chapter 6

Mirroring and Imitation

A hallmark of machine intelligence is the capability to adapt to new tasks rapidly and “achieve
goals in a wide range of environments” [364]. In comparison, a human can quickly learn new skills
by observing other individuals, expanding their swiftly to adapt to the ever-changing environment.
To emulate the similar learning process, the robotics community has been developing the framework
of Learning from Demonstration (LfD) [356, 365]. This framework aims to have the robot learn
human’s demonstrated skills, manipulation in particular, naturally and quickly.

6.1 Robot Learning from Demonstration: Methods and Challenges

The main approaches for LfD can roughly be divided into three main categories. The first category
of work uses kinesthetic teaching, where human demonstrators physically manipulate the robot to
guide its task performance [366, 367, 368, 369], or uses teleoperation to collect demonstrations [370].
These methods is capable of incorporating forces into the demonstrations for in-contact tasks.
Whereas the disadvantage is that the robot, e.g ., a manipulator, is bulky for humans to administrate
fine manipulation tasks or those require precious trajectories.

Imitation learning is the second category. Work in this category either supervises demonstrations
that directly mimic the demonstrator’s behaviors [371, 372, 373, 374, 375, 376] or uses demonstra-
tions as the initial policy to constrain the search space [377] and usually applies reinforcement
learning to derive a control policy. These latter methods receive considerable attention recently
and have succeeded in robot’s constrained reaching [378], locomotion [379], grasping [380] and soft
hand controlling [381]. To avoid being confined by the human demonstration, [382, 383] uses guided
policy search for robot manipulations. Vision and other sensing techniques are usually used to track
and record demonstrator’s motion. However, policy search methods have not yet demonstrated suc-
cessful applications in very complex tasks.

Finally, inverse reinforcement learning, or inverse optimal control can be classified as the third
category. [384, 385, 386, 387] gains increasing interests in robotics community. Although it alleviates
the need for reward engineering by inferring the reward/objective function from demonstrations,
IRL has not been shown to scale to the same complexity of tasks as direct imitation learning, since
there may exist many optimal policies that can explain a set of given demonstrations [388]. This
challenge is often magnified by task complexity, making it computationally highly expensive [389].

Although these three types of main approaches have their own advantages and many of them
have shown promising results, one common problem in LfD remains unsolved is the “correspondence
problem” [390], i.e., the difference of embodiments between a human and a robot. As the example
illustrated in Fig. 6.1, a human hand with five fingers can firmly grasp a hammer, but a robot

132
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(a) Demonstration (b) Failure by pure imitation

Figure 6.1: (a) Given a successful human demonstration, (b) the robot may fail to accomplish the same
task by imitating the human demonstration due to different embodiments. In this case, a two-finger gripper
cannot firmly hold a hammer while swinging; the hammer slips, and the execution fails. Reprinted, with
permission, from [22].

gripper with the typical two or three fingers might struggle to wield. In this case, a one-to-one
mapping that is usually handcrafted between the human demonstration and the robot execution,
restricting the LfD only to mimic the demonstrator’s low-level motor controls and replicate the
(almost) identical procedure to achieve the goal, results in a failure. A system must reason about
the underlying mechanisms of imitation, rather than simply mimicking the motions of a human
demonstration, to allow the acquired skills to be adapted to new robots or new situations.

6.2 An Introduction to Mirror Neurons

In order to address the above difficulty in LfD for robots, let’s take a step back to see how humans,
or primates, understand and imitate actions.

6.2.1 Mirror Neurons in Monkeys and Humans

Neuroscientists discovered a special type of neurons, which are termed Mirror Neurons, in macaque
monkeys’ rostral part of inferior area 6 (area F5). The neurons fire (discharge) when the monkey
performs a goal-directed action or sees others performing the same action [391]. Within the same
area, there are motor neurons that activate under the presence of visual stimuli while some other
activate for three-dimensional objects, but mirror neurons require the presentation of both the
action (hand movement in particular) and the target object to be activated [392].

There is less direct evidence on mirror neurons in humans until recent brain-imaging techniques,
Functional Magnetic Resonance Imaging (fMRI) in particular, reveal the existence of mirror neurons
or mirror system in humans by observing similar neuron activities when observing or performing
an action in the Broca’s area of the frontal lobe, which is a neural center important for language,
and in the parietal lobe that is related to perception and action [393]. In fact, the mirror system’s
activation appears not only when observing hand-related actions, but mouth and foot actions as
well [392]. The activation also appears for non-human animals with different embodiments, such as
monkeys and dogs [394], and even non-animals, i.e., robots [395, 396].

While mirror neurons were initially regarded as providing an abstraction of actions, later ex-
periments indicate that rather than low-level motor controls, the mirror neurons encode the goal
or the intention of an action [397]. In the monkey side, Umilta et al . introduced normal pliers and
reverse pliers for monkeys to use them to grip an object. While the goal—gripping the object—is
the same, the actions of using the pliers are different. The monkeys needed to close their hand to
operate a normal plier, but to open their hands for a reverse one [398]. The (mirror) neurons in area
F5 discharged when the hands was opening with a normal pliers would discharge when the hands
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was closing with a reverse pliers, or vice versa. The similarity in the temporal discharge pattern
suggested that that mirror neurons code the goal or intention behind actions rather than low-level
motor act.

In the human side, a seminal tea party experiment conducted by Iacoboni et al . reached a similar
conclusion [122]. The human subjects observed three experimental conditions: Context, Action, and
Intention. In the Context condition, there was a “before tea” context where items were properly
arranged and an “after tea” context where those were not. No action is involved in this condition.
Two types of actions, a whole-hand prehension grasp and a precision grip action of the tea cup, were
displayed an equal number of times. The Intention condition included both the grasping actions
and the two scenes used in the Context condition, making the intentions, drinking tea or cleaning
up, less ambiguous compared to the Context condition or the Action condition alone.

A significant signal increase observed in the right inferior frontal cortex in the Intention condition
suggested that mirror neurons are involved in understanding the intentions of others. This study
hints a deeper cognitive process supported by mirror neurons that connects the action observation
and action imitation.

Moreover, the functions of mirror neurons have been studied in various other cognitive processes,
such as affordance, goal or intend prediction, action understanding, theory of mind etc. [394, 399].
They are also believed to support human’s social interactions by allowing humans to feel certain
emotions of each other, such as empathy [400].

Despite the vast amount of work related to mirror neurons, it is still a controversial topic and
questions and doubts are cast to the theory that worth notices. In summary, there are two categories
of questionings. Firstly, some researchers show their reservations on the existence of mirror neurons.
Meanwhile, some argue about what role exactly mirror neurons play in our cognitive processes [401].
Nevertheless, mirror neurons provide a profounding basis of action understanding and imitation.

6.3 Mirroring with Functional Equivalence

Inspired by the mirror neurons, a mirroring approach that extends the current LfD in Robotics,
through the physics-based simulation, is proposed to address the correspondence problem in robot
imitation. Rather than overimitating the motion controls from the demonstration, it is advantageous
for the robot to seek functionally equivalent but possibly visually different actions that can produce
the same effect and achieve the same goal as those in the demonstration. The proposed mirroring
approach emphasizes the intent of the demonstration as changing the target object to desired states
regardless of the embodiment

6.3.1 Force-based Goal-oriented Mirroring

Consider the task of opening medicine bottles that have child-safety locking mechanisms. These
bottles require the user to push or squeeze in various places to unlock the cap. By design, attempts
to open these bottles using a standard procedure will result in failure. Even if the agent visually
observes a successful demonstration, imitation of this procedure will likely omit critical steps in the
procedure. The visual procedure for opening both medicine and traditional bottles are typically
identical.

To achieve this, more explicit modeling knowledge about physical objects and forces is required
as the ability of imitating and replicating contact forces could be a key in imitating manipulation.
However, measuring human manipulation forces is difficult due to the lack of proper instruments
that is accurate and imposes little constrain to natural hand motions. For example, vision-based
manipulation force sensing method [227] is under too many constraints and the results are not
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Figure 6.2: Data collection environment. A tactile glove is utilized to collect hand poses and forces, and the
Vicon MoCap system for relative poses of hand and objects. Reprinted, with permission, from [406].

always reliable. [402] modifies target object to embed force/torque sensors inside. Although this
method produces accurate force measurements, it only affords one grasp type for one object. Other
force sensing devices such as strain gauge, FlexForce [403], or liquid-metal embedded elastomer
sensor [404] can be implemented to hand using glove-based systems. But they can be too rigid
to conform to the contours of the hand, resulting in limitations on natural hand motion during
fine manipulative actions. Recently, [405] introduces Velostat, a soft piezoresistive conductive film
whose resistance changes under pressure, to a IMU-based pose sensing glove to reliably record
manipulation demonstrations with fine-grained force information, as shown in Fig. 6.2. This kind
of demonstration is particularly important for the tasks with visually latent changes, supporting
three characteristics in the mirroring approach compared to the standard LfD:
• Force-based : A low-cost tactile glove is deployed to collect human demonstration with fine-grained

manipulation forces. Beyond visually observable space, these tactile-enabled demonstrations cap-
ture a deeper understanding of the physical world that a robot interacts with, providing an extra
dimension to address the correspondence problem.

• Goal-oriented : A “goal” is defined as the desired state of the target object and is encoded in a
grammar model. The terminal node of the grammar model is the state changes caused by the
forces, independent of the embodiments.

• Mirroring : Different from the classic LfD, a robot does not necessarily mimic every action in
the human demonstration. Instead, the robot reasons about the action to achieve the goal states
based on the learned grammar and the simulated forces.
To validate the proposed approach, this study mirrors the human manipulation actions of open-

ing medicine bottles with a child-safety lock to a real Baxter robot. The challenge in this task lies
in the fact that opening such bottles requires to push or squeeze various parts, which is visually
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Figure 6.3: A robot mirrors human demonstrations with functional equivalence by inferring the action that
produces similar force, resulting in similar changes of the physical states. Q-Learning is applied to associate
types of forces with the categories of the object state changes to produce human-object-interaction (hoi)
units. Reprinted, with permission, from [406].

similar to opening one without a child-safe lock. Fig. 6.3 outlines the mirroring approach with
functional equivalence. Specifically, the forces on the object exerted by the hand in the demonstra-
tion is explicitly modeled with a pose and force sensing tactile glove. The collected distribution
of the forces on the object is compared to a set of the force distributions exerted by the robot
gripper on the same object in a physics-based simulator. Simulated actions with sufficiently small
Kullback-Leibler (KL) divergence with respect to the demonstration are considered functionally
equivalent, thus hinting this action would be the best robot action to accomplish the task.

Representation

The action sequence to execute a task is represented by a structural grammar model Temporal And-
Or Graph (T-AOG) [154] (see Fig. 6.4). A T-AOG is a directed graph which describes a stochastic
context-free grammar (SCFG), encoding both a hierarchical and a compositional representation.
Formally, a T-AOG is defined as a five-tuple G “ pS, V,R, P,Σq. Specifically,
• S is the start symbol that represents an event category (e.g ., opening a bottle).
• V is a set of nodes including non-terminal nodes V NT and terminal nodes V T : V “ V NT Y V T .
• The non-terminal nodes can be divided into And-nodes and Or-nodes: V NT “ V AND Y V OR.

And-nodes V AND represent the compositional relations: a node v is an And-node if the entity
represented by v can be decomposed into multiple parts represented by its child nodes. Or-nodes
V OR indicate the alternative configuration among its child nodes: a node v is an Or-node if the
entity represented by v has multiple mutually exclusive configurations represented by its child
nodes.
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Figure 6.4: Illustration of a T-AOG. The T-AOG is a temporal grammar in which the terminal nodes are
the hoi units. An hoi unit (shown in the grey area) contains a single action ai that transits the state from
the pre-condition si to the post-condition si`1. The fluents function fi represents the changes of the physical
state si on object caused by the forces Fi exerted by the action ai: si`1 “ fipsi, ai;Fiq. Reprinted, with
permission, from [406].

• The terminal nodes V T are the entities that cannot be further decomposed or do not have
different configurations. For a T-AOG, the terminal nodes represent the human-object-interaction
(hoi) units [407]. An hoi unit encodes actions ai that an agent can perform (e.g ., grasp, twist),
the spatiotemporal relations between the object and the agent’s hand, and how the force Fi
produced by such primitive causes the changes of physical states on the object.

• R “ tr : αÑ βu is a set of production rules that represent the top-down sampling process from
a parent node α to its child nodes β.

• P : pprq “ ppβ|αq is the probability associated with each production rule.
• Σ is the language defined by the grammar, i.e., the set of all valid sentences that can be generated

by the grammar.
A parse tree pt is an instance of the T-AOG, where one of the child nodes is selected for each

Or-node. The terminal nodes of a pt form a valid sentence; in this case, terminal nodes are a set
of hoi units consisting of the actions for an agent to execute in a fixed order, as well as the state
changes after performing such an action sequence.

Learning Force and State Associations as hoi

To transfer across different embodiment, we need to know the effect of a particular type of forces
so that the desired action can be planned, requiring to investigate the state changes caused by
the forces. We cast this problem in a reinforcement learning framework to learn a policy that
associates forces and state changes. The state space and the action (force) space from human
demonstrations are discretized and quantized, and an iterative Q-Learning scheme is applied. We
believe the proposed learning framework does not lose generality since one can scale up the process
to continuous state space or action space by using DQN [321] or other advanced policy gradient
methods.
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Categorize Force The pose and force data of human demonstrations were collected using a
tactile glove. The forces exerted by a human hand, together with the poses, are projected onto the
mesh of the object. Formally,

F ot “ gpaht pF
h
t , p

h
t qq, t P t1, 2, . . . , nu (6.1)

where t is the frame index, and n is the total number of frames. g is an implicit projection function
that maps a human action aht , parameterized by the force exerted F ht and the pose pht , to F ot the
force projected on the object mesh.

Each element in the resulting force F ot is a 4-dimensional vector, where the first three dimensions
represent the position of one object surface vertex and the fourth dimension the force magnitude
on this vertex.

K-means clustering [408] is adopted to categorize the force F oi into N types, i.e.,

lk “ cpF ot q, t P t1, 2, . . . , nu, k P t1, . . . , Nu (6.2)

where cp¨q denotes the clustering function and lk is the label of the k-th cluster type. After assigning
labels to each frame, the algorithm aggregates the frames with the same label into a segment and
take the average,

Fk “ avgpF ot q, @t, cpF ot q “ lk. (6.3)

The segments form a discretized action (force) sequence (Fig. 6.5c) to complete the given task.

Quantize State The relative poses can describe the states of a rigid target object under ma-
nipulation actions among object’s parts, e.g ., bottle and lid, multiple Lego blocks, etc. Relative
distance and relative rotation angle between the lid and the bottle, which are derived from their
relative poses, are used as the state space. As shown in Fig. 6.5b, within each segment of the force
(shown in color bars), the algorithm takes the average of the corresponding angle and distance and
normalize their magnitude to unit size,

si “ xdi, θiy P r0, 1s
2,@i P t1, . . . ,Mu (6.4)

where M is the total number of states, and di and θi denotes the relative distance and angle,
respectively.

Associate Force and State as hoi Units by Q-Learning By replacing the actions in Q-
learning with the labels of the force lk, we adopt the tabular Q-Learning that associates the current
state si to a force type using the iterative Q-Learning update rule in a temporal difference fashion,

Qpsi, lkq “ p1´ αq ¨Qpsi, lkq ` α ¨

„

rpsi, lkq ` γ ¨max
k

Qpsi`1, lkq



, (6.5)

where r denotes the reward, Q the Q-function, α the learning rate, and γ the discount factor,
assuming a deterministic system dynamics.

Inference We pick the best action according to the Q-function l˚ “ argmaxkQpsi, lkq. The
association among si, si`1 and corresponding Fk naturally forms an hoi unit (see Fig. 6.4) and will
be used for learning a goal-oriented grammar discussed in the next section.
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Figure 6.5: Force and state associations as hoi units. The manipulation force is clustered into 21 types. (a)
Five examples of force types, in which Type 3 has no force. (c) Given the categorized force and quantized
states based on the forces, (b) the Q-learning algorithm associates a force to a specific state change (A: lid
is twisted; B: initiate contact; C: pull off the lid) shown by the solid lines. The dash lines indicate the forces
that are incompatible to the given fluents functions, represented by the triangles. Reprinted, with permission,
from [406].

Learning Goal-Oriented hoi Grammar

Grammar Induction Each successful demonstration contributes a sequence of hoi units that
encode the types of forces and the state evolvement. A T-AOG G is induced from multiple demon-
strations using a modified version of Automatic Distillation of Structure (ADIOS) algorithm pre-
sented in [45]. The objective function is the posterior probability of the grammar given the training
data X,

ppG|Xq9ppGqppX|Gq “
1

Z
e´α||G||

ź

ptiPX

pppti|Gq, (6.6)

where pti “ phoi1, hoi2, . . . , hoimq P X represents a valid parse graph of hoi units with length m.

Action Sequence Sampling To generate a valid sentence, i.e., a parse tree pt “ phoi0, . . . , hoiKq,
we sample T-AOG G by decomposing all the And-nodes and selecting one branch at each Or-node.
This pt is goal-oriented in the sense that its terminal nodes hoik P pt encode the forces of reaching
sub-goal states that are invariant across embodiments for the given task. Note that this process is
non-Markovian, while the force-state association using Q-Learning is Markovian.
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Figure 6.6: Based on the demonstrations, the force in the same cluster lk produces a force distribution on
the object F ot , and the average is the distribution of the force category Fk. Among the simulated force
responses F simm obtained from a physics-based simulator, the corresponding primitive of the most similar
force, measured by the KL distance, is selected for the robot execution. (a) The forces in the same cluster.
(b) The simulated robot primitives (downward, no contact, contact, and twist) and their force responses. (c)
The force distributions of the same cluster in each frame. (d) The distributions of Fk against each simulated
force distribution F simm , denoted by blue and red, respectively. Reprinted, with permission, from [406].

Simulation

Simulation-based Action Synthesis Discrete robot action primitives are given by a dictionary
Ωar “ ta

r
1, . . ., arMu, M “ 10, parameterized by the change of end-effector poses, including moves

in all six canonical directions, rotations in both clockwise and counter-clockwise directions, and
opening/closing the gripper. The task of opening a medicine bottle can be accomplished by the
combinatorics of the actions. Given a pt, we seek to generate a sequence of robot actions tari , i “
1, . . . ,mu that produce forces sufficient to cause the same changes of states as encoded in the
sampled pt. In this sense, we say the robot action ari is functionally equivalent to the demonstration
action sequence ahi . Additionally, since the goal of the generated action sequences is to achieve the
same effects, such generated action sequences can be different from the observed demonstrations
and will not overimitate the observed ones.

A physics-based simulator (see Fig. 6.6) is introduced to estimate the force exerted by the robot
gripper on the bottle. We denote the force obtained from the simulator as F simm , where m is the
index of the robot primitives, and compare it to the corresponding Fk, the average force exerted
by human demonstrations with label lk. Formally, Fk and F simm are formalized as distributions,

P pFkq “
1

Zk
Fk, and P pF simm q “

1

Zsimm
F simm , (6.7)

where Zk and Zsimm are the normalization factors, obtained by summing over the force magnitudes
on all vertices of the object. The similarity of the two forces can be measured by the KL divergence,
and the robot action is selected by

F sim˚ “ argminmKL
`

P pFkq ‖ P pF simm q
˘

“ argminm
ÿ

v

«

PFkpvq log
PFkpvq

PF simm pvq

ff

,
(6.8)

where v is the vertex index on the object mesh. Once F sim˚ is selected, the robot would choose the
corresponding primitive ar˚ that produces F sim˚ .
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Physics-based Simulation The physics-based simulation needs to be able to capture intricate
frictional contact between the robot gripper and the bottle. The total force applied at each point
located at the surface of the bottle consists of several terms: the normal component of squeezing
force from the gripper, the tangential component of static friction force from the gripper, the
internal elastic force from the rest of the continuous bottle material and gravity.

The key to achieving such a force balance in the simulator is to model the deformation of
the bottle. Various physical constitutive models and stress-strain relationships exist for polymers,
and it is impractical for us to find the exact material parameters through mechanical tension or
compression tests. Thus, we assume the deformation of the bottle is sufficiently far away from the
plastic regime, and adopt a standard hyperelastic model: the Neo-Hookean model [409] to describe
the mechanical stress under deformation

P “ µpF´ F´T q ` λ logpdetpFqqF´T , (6.9)

where F is the deformation gradient tensor encoding the strain at each point, P is the first Piola-
Kirchoff stress tensor describing its elastic mechanical stress, and µ, λ are material parameters
describing the stiffness and incompressibility of the bottle, respectively. The governing equation
describing the force balance of the bottle is given by

∇ ¨P “ f ext, (6.10)

where f ext denotes the total external force on the bottle.
We solve Eq. (6.10) using the Finite Element Method [410]. The input bottle geometry is first

converted from a triangulated surface to a tetrahedralized volume using TetGen [411]. The robot
gripper mesh is converted into a watertight level set represented by OpenVDB [258], which allows
natural treatment of frictional contact under arbitrary kinematic rigid motion. The additional
parameters including friction coefficient, µ, and λ are set empirically. Once the discretized equation
system is solved to convergence, we evaluate the force magnitude at each discrete point of the object
surface mesh and store them in F simm .

6.3.2 Mirroring to Robot without Overimitation

Preliminary

Robot Platform We exercise the proposed framework in a robot platform with a dual-armed
7-DoF Baxter robot mounted on a DataSpeed mobility base. The robot is equipped with a ReFlex
TakkTile gripper on the right wrist and a Robotiq S85 parallel gripper on the left. The entire
system runs on ROS, and the arm motion is planned by MoveIt!.

Dataset The hand pose and force data is collected using an open-sourced tactile glove [405] that
is equipped with i) a network of 15 IMUs to measure the rotations between individual phalanxes,
and ii) 6 customized force sensors using Velostat, a piezoresistive material, to record the force in
two regions (proximal and distal) on each phalange and a 4ˆ4 regions on palm. Fig. 6.2 depicts the
tactile glove and the data collection environment. The relative poses between the wrist of hand and
object parts (i.e., bottle, and lid) are obtained from Vicon. The data of 10 human manipulation
sequences is collected, processed, and visualized using ROS.
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Figure 6.7: (a) The cumulative rewards during training and evaluation. (b) The landscape of the learned Q
table, where yellow indicates high values and blue low. (c) The 21 types of actions (forces) by clustering in
one exemplary demonstration. (d) The 25 discretized states based on the forces (some force types appear
more than once). Reprinted, with permission, from [406].

Learning

Fig. 6.7a-b shows the Q-learning results, with a discount factor 0.99, reward for success `1, reward
for failure ´1, and reward for all others 0. We use ε-greedy exploration with exponential decay to
obtain the state-force associations.

Fig. 6.7a shows the cumulative reward during each training episode in red, and the average
cumulative reward during evaluation in blue. During training, the cumulative reward generally
increases until finding a path that leads to the maximum reward and begins fluctuating. This
fluctuation happens due to the marginal probability of a non-optimal action being chosen at each
step in ε-greedy exploration policy, even though an optimal path has been found. The evaluation
is performed every ten episodes during training with a policy induced by the Q-table. During the
evaluation, the reward monotonically increases slowly at first and jumps to the maximum, due to
the optimal path found during training and the learning signals propagated into the Q-table. The
policy induced from the Q-table converges to the optimum after approximately 900 episodes in
training. The resulting Q-table is shown in Fig. 6.7b.

Robot Execution with Functional Equivalence

A pt is first sampled from the T-AOG induced from the learned policy to obtain a sequence of
force types the robot should imitate in order to cause the same changes of object states. Our
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(a) Force simulation (b) KL divergence for action primitives

Figure 6.8: (a) Simulations of the robot actions’ force responses. (b) The KL divergence for all action
primitives in a pt. In this case, the primitives are a1 move forward, a2 move backward, a3 move left, a4 move
right, a5 move up, a6 move down, a7 rotate clockwise, a8 rotate counter-clockwise, a9 open gripper, and a10
close gripper. The solid red line is the sequence of actions for a robot to execute. Reprinted, with permission,
from [406].

(a) Robot execution to open Bottle 1

(b) Robot execution to open Bottle 2 (c) Robot execution to open Bottle 3

Figure 6.9: Starting from the initial pose, the primitives (in grey) are performed sequentially. The robot
“pushes” by a6 (downward)(see force plot) and opens the medicine bottle by a5 (upward). Reprinted, with
permission, from [406].

physics-based simulation then emulates a set of robot actions to obtain their force responses; some
examples are shown in Fig. 6.8a.

Fig. 6.8b shows an example of a pt consisting of 21 hoi units (x-axis). The force responses of
the ten robot primitives are simulated, and the similarities (y-axis) to the corresponding Fk are
measured in each stage. The primitives with the lowest KL divergence (connected by the red line)
are selected for robot execution.

The execution of a Baxter robot is shown in Fig. 6.9a. It starts from an initial position and
sequentially performs the corresponding primitives indicated in the grey area in the lower right
corner. The a6 downward primitive indeed generates forces which are captured by the force sensor
(top left) in the robot wrist, which demonstrate that the mirroring approach indeed allows the robot
to fulfill the challenging task of opening medicine bottles with a set of actions that are different
from demonstrations.

The result also shows that the similarity between forces can be adequately measured by KL
divergence to determine whether two actions are functionally equivalent. For instance, the primitive
opening the gripper has the largest divergence in most of the cases as it produces no force to the
object, except in F9 when the demonstrator releases the lid after one rotation. The pressing force
critical to our task is also captured and mirrored to robot well (see F2 and F16 where a downward
primitive is planned). Finally, upward primitives are selected to finish the task by pulling the lid.
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6.4 Mirroring and Planning

The demonstrated task of opening medicine bottles shows the efficacy of mirroring, that is under-
standing the goal of an action and the reason, i.e. the force exerted, why the goal is achieved, in
in-hand fine manipulation. In order to extend mirroring to more general manipulation tasks, an
additional step in motion planning is needed.

6.4.1 Motion Planning for Mobile Manipulation

Manipulation is a core capability of both humans and robots, but human manipulation skills differ
from machines in many ways [412]. Machines can nowadays easily outperform humans in some select
tasks with extreme precision and efficiency, whereas human manipulation demonstrates robustness
and adaptability at levels well beyond robots. In particular, humans possess excellent foot-arm
coordination, and their manipulation strategy can be easily adapted to objects with similar under-
lying kinematic structures but with dramatically different appearance and geometric shapes. Such
exceptional coordination and adaptability enable humans to accomplish a variety of manipulation
tasks across a wide range of objects and environments.

These astonishing capabilities possessed by humans, however, are still extremely challenging to
be replicated or implemented in a mobile manipulator due to the following two major difficulties:
(i) How to smoothly coordinate between the mobile manipulator’s locomotion, manipulation, and
manipulated structures or objects? (ii) What is a proper representation that can abstract a physical
structure and facilitate a general manipulation strategy?

Motion planning for a mobile manipulator has been extensively studied in past decades.
Most of the approaches are based on probabilistic sampling, such as PRM [413], RRT [414], and its
variants RRTConnect [415] and RRT‹ [416]. Although recent studies demonstrated the efficacy of
sampling-based methods in high-dimensional motion planning [417, 418, 419], there are still some
serious issues including (i) The generated solutions may violate physical constraints imposed by the
robot hardware. Although some recent variants take simple kinematic models into account [420],
they require additional modeling and computational efforts and are difficult to handle complicated
kinematic chains. (ii) Many sampling-based methods require a pre-defined final pose as a goal
to search the configuration space (except a recent study [421]). Such a procedure prohibits the
algorithm from exploring better robot poses that satisfy the manipulation task.

Trajectory optimization is crucial in robotic motion planning to produce smooth trajectories
by imposing constraints (e.g ., CHOMP [422], STOMP [423], and TrajOpt [424]) based on robot
kinematics models and hardware specifications. Although some algorithms provide promising results
with collision-free trajectories in mobile manipulators [425, 426, 427], these approaches individually
optimize the base and arm (manipulator) trajectory and require an extra step to refine the base-arm
coordination, lacking generalizability.

Although a number of full-body motion planning methods for a mobile manipulator have been
proposed [428, 425, 429, 418], they either individually plan the trajectory of manipulator and mobile
base or only support specific manipulation tasks, requiring additional modeling and computational
efforts.

6.4.2 Virtual Kinematic Chain

Inspired by the virtual mechanism [430], we propose an optimization-based approach to tackle the
aforementioned difficulties in motion planning for a mobile manipulator to interact with articulated
structures and objects. The proposed approach utilizes Virtual Kinematic Chain (VKC), consisting
of two steps: (i) VKC modeling, and (ii) an optimization-based motion planning.
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Virtual mechanisms [431] is not a new idea in robotics; it has been used to chain serial
manipulators [430] and parallel structures [432] via rigid-body objects. However, prior attempts do
not support articulated objects.

Specifically, to build a VKC, the manipulated object needs to be abstracted as a virtual artic-
ulated object, and a virtual transformation between the mobile base and the virtual base link is
augmented by incorporating the locomotion information into the VKC. Finally, a VKC could be
formed by connecting the robot end-effector to an attachable location of the manipulated object.
Once the VKC is formed, the motion planning solver performed on the VKC could be treated as a
single optimization problem, i.e., jointly optimizing both the robot locomotion and manipulation
trajectories according to the desired goal state of the manipulated object without explicitly defining
the final pose of the mobile manipulator.

In short, introducing VKC bridges the mobile manipulator and the manipulated (articulated)
object using virtual serial chains, enabling robots to easily adapt to a variety of manipulation tasks
and objects with a better generalization.

Problem definition

Prior to discussing modeling and motion planning for the VKC, we first define notations for robot
and object models, as well as the formulation of a manipulation task.

In this chapter, the definition of joints and links generally follows the Unified Robot Description
Format (URDF) standard, allowing easy implementation of the kinematic model in Robot Oper-
ating System (ROS); we use a tree for physical properties and kinematic constraints of links and
joints. Fig. 6.10 (b) shows a conceptual model of kinematic chains, and Table 6.1 lists the notations:
• The group Robot refers to a mobile manipulator, which consists of three components: a mobile

base, a robot manipulator, and an end-effector.
• The group Object represents the articulated object, which has a base link and other links anchored

by this base link; a joint in an articulated object could be either prismatic, revolute, or fixed.
Compared to the group Robot, instead of having an end-effector, an object can have multiple
attachable links (e.g ., doorknob, drawer handle). An attachment is defined as a virtual joint,
which represents a local transformation from an attachable link to an end-effector link. Note
that both FR

ee and FO
at do not have to be terminal nodes in a T G, and one attachable link is

capable of having multiple attachments.
• The group Problem Configuration defines the configuration for a manipulation task. A mapping
a
bT between two adjacent link frames Fa and Fb implicitly encodes the joint state, and the joint
type constraints the codomain of the mapping. Hence, we also use a

bT to represents the joint
connecting the parent link a and child link b.
Our modeling algorithm requires the knowledge of T GR, T GO, and at

eeT
O as inputs to construct

a serial chain CV . A serial kinematic chain’s forward kinematics (FK), inverse kinematics (IK), and
Jacobians can be effectively solved by most of the existing kinematic solvers. Thus, the constructed
kinematics model can be easily adapted to various trajectory optimization frameworks; in this work,
we use TrajOpt [433] to optimize the trajectory. The motion planning problem is to find a collision-
free path for CV through the trajectory optimization that satisfies either qG or w

eeTG starting
from qI . We assume the connection established between the end-effector and the attachable link
is invariant during optimization or execution. The objectives of a manipulation task is implicitly
encoded by qG or w

eeTG; for instance, the Goal of grasping a door handle could be set as w
eeTG =

w
dhT

O dh
eeTO. We also define a set of symbolic Actions, which bridges symbolic task sequences with

limited Goal information for motion planning in a manipulation task.
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Table 6.1: Notation for constructing VKCs.

Group Notation Description

R
ob

ot
T GR A tree represents the robot kinematic model
FR
b Robot base link’s frame; the root of CR

FR
ee Robot end-effector link’s frame

CR Ă T GR, a kinematic chain from FR
b to FR

ee

FR
i Frame of link i in the kinematic chain CR

O
b

je
ct

T GO A tree represents the object kinematic model

FO
b Object base link’s frame; the root of T GO

FO
at Object attachable link’s frame

CO Ă T GO, a kinematic chain from FO
b to FO

at

FO
i Frame of link i in the kinematic chain CO

O
th

er
s

CVn A serial VKC with n DoF
q P Rn, the state of VKC in joint space
g P Rk (k ď n), the joint goal state
a
bT A homogeneous transformation from Fa to Fb
w
eeTg The end-effector’s goal pose in world frame

Figure 6.10: Overview of the proposed motion planner using VKC. (a) Perceiving and abstracting the under-
lying kinematics of the manipulated object, wherein (b) a VKC is constructed, yellow boxes denote where
the virtual mechanism is formed. FV

b is the virtual base frame. FR
b and FR

ee are the robot base frame and
the end-effector frame, respectively. FO

b and FO
at are the manipulated object base frame and the attachable

frame, respectively. Two augmented virtual connections are established: one between FV
b and FR

b to reflect
the pose changes of the mobile base to the world, and another between FR

ee and FO
at to transfer effects of

the manipulator to the manipulated object. (c) presents the motion planning procedure. A trajectory initial-
ization, which utilizes A‹ algorithm and inverse kinematics, is adapted before the trajectory optimization,
which produces the final optimized motion trajectory.

VKC Modeling

In this section, we discuss the proposed modeling and motion planning methods for VKC. We
assume that the underlying kinematics of the manipulated object are already available; Figure
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(a) Original structure
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Figure 6.11: The construction process of VKC. The green diamond denotes the root frame, the yellow triangle
denotes a robot end-effector frame or an object attachable frame as a terminal frame, and the blue circles
denote other frames.

illustrates an example of a constructed VKC in which both robot and object kinematics is incor-
porated, such that trajectories of robot locomotion and manipulation could be jointly optimized as
a single optimization problem.

The objective of the modeling is to construct a virtual serial kinematic chain CV by composing
the robot and the object kinematics model.

Original Structure As highlighted in Fig. 6.11a, two trees represent the original kinematic
chains of the robot CR and the articulated object CO, respectively.

Kinematic Inversion To insert a virtual joint (i.e., an attachment) between the robot’s end-
effector frame FR

ee and the articulated object’s attachable frame FO
at, one has to invert the kinematic

relationship of the articulated object CO. Note such an inversion is not as simple as taking an inverse
of the transformation between two adjacent links, since the joint frame might be falsely aligned to
the new child frame, resulting in a wrong kinematics model.

Consider an articulated object with a terminal link t and a root/base link b fixed to the world
frame w with a world joint w

b T. A mapping b
tT represents the joint connecting the base and the

terminal links. Then the joint frame in the world can be derived as w
t T “ w

b T b
tT. In an inverted

model, b becomes terminal link, and the new joint frame in the world w
b Tinv has to be identical to

w
t T to ensure the same kinematics relation remains as prior to the inversion. Hence, the new joint
t
bTinv within articulated object should be:

w
b Tinv “

w
t T, wt T, tbTinv “

w
t T, tbTinv “

w
t T´1 w

t T “ I4. (6.11)

A general formulation of kinematic chains with multiple links could be easily extended and derived
from the above example with two links:

i
i´1Tinv “

i`1
i T, (6.12)

where i ´ 1 represents the parent link of link i, and i ` 1 represents the child link of link i along
the kinematic chain before the inversion.

VKC Construction with Virtual Mobile Base After inverting the object model CO, a virtual
kinematic chain can be constructed by adding a virtual joint between FOinv

b and FR
ee. The virtual

base is further added to link b to enable a joint optimization of the locomotion and manipulation.
It simply adds two perpendicular prismatic virtual joints to imitate a planar motion between the
mobile base and the ground, while ensuring the virtual kinematic chain remains serial.
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6.4.3 Optimization-based Motion Planning

Optimization Framework

Given an environment with obstacles, the motion planning of a mobile manipulator using VKC
could be regarded as finding a collision-free trajectory with the newly constructed VKC, solvable
by trajectory optimization that minimizes the given objective functions. To simplify the problem,
we only consider all the feasible state reachable by VKCs; i.e., we do not consider manipulating
trivially underactuated articulated objects, such as a double pendulum. This assumption is generally
reasonable for a mobile manipulator since the constrained mechanisms of human-made indoor
environments are designed to be fully-actuated. We also assume holonomic constraints for the
robot mobile base (i.e., an omnidirectional mobile base).

The optimization problem for a mobile manipulation task [433] using VKC can be formally
expressed as:

minimize
q1:T

T´1
ÿ

t“1

||W
1{2
vel pqt`1 ´ qtq||

2
2

`

T´1
ÿ

t“2

||W 1{2
acc pqt`1 ´ 2qt ´ qt´1q||

2
2

(6.13)

subject to hchainpqtq “ 0,@t “ 1, 2, . . . , T (6.14)

qmin ď qt ď qmax,@t “ 1, 2, . . . , T (6.15)

||:qt||8 ď ξacc,@t “ 2, 3, . . . , T ´ 1 (6.16)

||ftaskpqT q ´ g||22 ď ξgoal, ||ffkpqT q ´
w
eeTg||

2
2 ď ξgoal (6.17)

Nlink
ÿ

i“1

Nobj
ÿ

j“1

|distsafe ´ fdistpLi, Ojq|
` ď ξdist (6.18)

Nlink
ÿ

i“1

Nlink
ÿ

j“1

|distsafe ´ fdistpLi, Ljq|
` ď ξdist . (6.19)

Objective Eq. (6.13) is the objective function, where we penalize the overall velocities of every
joint with the approximation 9qt « qt`1 ´ qt and overall acceleration of every joint with the ap-
proximation :qt « qt´1 ´ 2qt ` qt`1. Wvel and Wacc are diagonal weight matrices for each joint,
respectively. || ¨ ||2 denotes the l2 norm, and q1:T represents the trajectory sequence tq1, q2, . . . , qT u,
where qt denotes the VKC state at the tth time step.

Constraints Eq. (6.14) is an equality constraint that specifies the kinematics of the VKC, which
includes the forward kinematics of the VKC, as well as other physical constraints of the manipulated
object; e.g ., the base link of door is fixed to the ground: wb T

O
1:T ´

w
b T

O
1 “ 0.

Eq. (6.15) is an inequality constraint that defines joint limits, in which qmin and qmax specify
the lower and upper bound of every joint, respectively.

Eq. (6.16) is an inequality constraint that bounds the joint acceleration by ξacc in order to
obtain a feasible trajectory that can be executed without saturation. || ¨ ||8 denotes the infinity
norm.

The first equation in Eq. (6.17) bounds the squared l2 norm between the final state in the
goal space ftaskpqT q and the goal state g with a tolerance ξgoal. The second equation in Eq. (6.17)
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bounds the squared l2 norm between the final end-effector pose ffkpqT q and desired end-effector
pose w

eeTg via an inequality constraint in SEp3q. Note that these two constraints do not need to be
specified in every task. The function ftaskp¨q is a task-dependent function that maps the joint space
of a VKC to the goal space as the goal space could be different from task to task. For example, in a
door opening task, ftaskp¨q will map the joint space of a VKC to the joint of the door revolute axis.
Hence, we can use an angle θ to describe the task goal (i.e., the desired pose of the door), instead of
explicitly specifying the final pose of every joint in the VKC. In this way, the end-effector’s and the
mobile base’s paths are implicitly optimized in the joint space, together with obstacle avoidance
and trajectory smoothing. It is also straightforward to add additional task constraints to the very
same optimization problem, depending on other requirements.

Eq. (6.18) and Eq. (6.19) are inequality constraints that check link-object collisions and link-
link collisions, respectively, where Nlink and Nobj are the number of links and the number of
objects, respectively. distsafe is a pre-define safety distance, and fdistp¨q is a function that calculates
the signed distance [433] between i-th link Li and j-th object Oj . The function | ¨ |` is defined
as |x|` “ maxpx, 0q. The inequality constraints Eq. (6.18) and Eq. (6.19) make the preceding
optimization problem highly non-convex and cannot be solved by a general convex solver. To
address this issue, we adopt the algorithm proposed by Shulman et al . [433] to solve the optimization
problem by approximating the non-convex problem to a sequence of convex problems and utilizing
a sequential convex optimization method to solve them.

In addition to the space constraints, we also incorporate:
• Manipulability, which could be easily evaluated by the Jacobian of the end-effector Jee for a serial

chain: w “
a

detpJeeJTeeq [425, 434].
• Stability, achieved by adopting the center of mass position as inequality constraints; see [432, 428].

Trajectory Initialization

Trajectory optimization could easily get trapped in local minima using pure gradient descent ap-
proaches; a properly initialized trajectory would significantly improve the generated trajectory. In
particular, in an indoor environment with cluttered obstacles, a mobile manipulator often gets
stuck when obstacles block the path to the target. To alleviate this issue without sacrificing plan-
ning time, we adopt a native A‹ algorithm to search a feasible path around the obstacles for the
mobile base to traverse the space. In some tasks where the final pose of the mobile base is not
specified, an initial guess of final base position for trajectory initialization could be obtained by
solving the inverse kinematics of CV numerically with given joint goal state g and/or end-effector
goal pose w

eeTg.
This experiment demonstrates how the aforementioned motion planning framework is applied

on a mobile manipulator to approach and open a door, where the locomotion and manipulation
are modeled using VKC. We also evaluate the performance of our A‹-based trajectory initialization
method by comparing the success rate and computation time with two trajectory initialization
methods as baselines:
• Stationary: The trajectory q1:T is initialized by waypoints qt that are identical to the initial

pose qinit.
• Interpolated: The trajectory q1:T is initialized by waypoints that are linearly interpolated

between initial and goal pose.
Fig. 6.12c-Fig. 6.12f show four scenarios for evaluations. The task is for the mobile manipulator

to navigate from the shaded yellow region (bottom) to the door (top) and pull to open it. The sce-
narios range from having no obstacle, one obstacle in the center, five randomly generated obstacles,
and four randomly generated obstacles with an additional obstacle purposely placed next to the



CHAPTER 6. MIRRORING AND IMITATION 150

VKC Stationary Interpolated
0

25

50

75

100
Su

cc
es

s R
at

e 
(%

) Scenario 1
Scenario 2
Scenario 3
Scenario 4

(a) Success Rate
Scenario 1 Scenario 2 Scenario 3 Scenario 4

0

2

4

Ti
m

e 
(s

)

VKC Stationary Interpolated

(b) Optimization Time

(c) Scenario 1 (d) Scenario 2 (e) Scenario 3 (f) Scenario 4

Figure 6.12: Quantitative results in motion planning using VKC modeling. (a) The success rates in generating
a feasible plan using A‹-based approach (Ours), Stationary, and Interpolated trajectory initialization meth-
ods. (b) The violin plots [435] (a hybrid of a box plot and a kernel density plot) of the optimization time for
different methods, wherein the white dot represents the median, the thick gray bar in the center represents
the interquartile range, and the thin gray line represents the rest of the distribution, except for points that
are determined to be “outliers.” (c)–(f) The experimental scenarios with an increasing complexity, where the
initial condition was highlighted in yellow.

door to block the mobile manipulator. These scenarios are in increasing complexity and difficulty
for generating a feasible trajectory.

The experiment runs 100 times for 100 different initial robot pose uniformly sampled within
the shaded region for each of the four scenarios; Fig. 6.12a shows the success rate. A successfully
optimized trajectory has to be a converged result without violating any constraints (e.g ., collisions).

The proposed VKC-based method has the highest success rates among all four scenarios. Specif-
ically, it achieves above 95% for the simpler three scenarios. In the fourth one, most of the failures
are due to sharp turns near the obstacle. In comparison, we find that the mobile manipulator to be
commonly trapped into a local minimal surrounded by obstacles using the Stationary trajectory
initialization method, resulting in an almost 0% success rate in the scenarios expect the one with
no obstacle. Although the initial waypoints could drive the mobile manipulator out of such a local
minimal using the Interpolated trajectory initialization method, it is very typical [436] that the
mobile manipulator would prefer to go through thin and long obstacles despite the imposed penal-
ties. Although the Interpolated method performs better than the Stationary method, it can barely
succeed in scenario 2 and 3 with about 8% success rates. The proposed method significantly out-
performs two baselines; it is the only method that can successfully solve scenario 4, which requires
excellent arm-base coordination in pulling to open the door.

Fig. 6.12b further quantitatively compares the optimization times of the three trajectory initial-
ization methods among the successful trials. The time needed (if any) is comparable for all cases,
indicating the proposed method can be scaled up to more challenging mobile manipulation tasks.

6.4.4 Symbolic Task Predicates

Using high-level predicates, we develop an interface to specify manipulating goals. These predicates
are tabulated in Table 6.2 with descriptions of how VKC are constructed to satisfy the goals;
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Table 6.2: Predicates, robot actions, and VKC modifications.

Predicates Description VKC Modification

Goto (gb) Move base to position gb -

Pick (O,watT
O)

Pick object O at
location w

atT
O

Connect O and end-
effector via a virtual joint

Place (O,gO)
Place the object O in

the pose of gO

Break virtual connection
between O and end-effector

Use (Oa, Ob,
w
atT

Ob) Use Oa manipulates Ob
Connect Oa and Ob via a

virtual joint at w
atT

Ob

(a) Open cabinet:Place (b) Fetch ball:Pick (c) Place ball:Place (d) Grasp handle:Pick (e) Close cabinet:Place
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(f) Cost over iterations of each action

Figure 6.13: Motion planning results using VKC modeling in a simulated environment. (a)–(e) Different
predicate actions. (f) The cost over optimization iterations of each action, in which total costs (blue lines)
are effectively optimized, and joint velocities and accelerations (red lines) are bounded at the same time.

they allow a mobile manipulator to accomplish more complex tasks by properly sequencing the
predicates. Once the VKCs are constructed according to the specified predicates, corresponding
optimization problems are formulated and solved automatically without the need for manual designs
or modifications of intermediate steps.

Regardless of the number of predicates involved in a task, they all share the same objective
(Eq. (6.13)) in the optimization problems, and at most two constraints (Eq. (6.14) and Eq. (6.17))
are altered. In particular, Eq. (6.14) is updated based on the newly constructed VKC to satisfy
kinematics constraints, and Eq. (6.17) is updated with a different task function ftask. For examples,
Goto specifies the desired coordination of the mobile base, Pick specifies the desired pose of the
robot end-effector, and Place specifies the final pose of the manipulated object.

Fig. 6.13 qualitatively shows the motion planning results using VKCs. The mobile manipulator
needs to: (a) open the door of a cabinet, (b) fetch a ball under the table, (c) pick up the ball and
place it on a shelf of the cabinet, (d) grasp the handle of the cabinet, and (e) close the cabinet
door. This task requires the motion planner to deliver proper locomotion and manipulation with
excellent arm-base coordination, demonstrating the efficacy and practicality of the proposed VKC
modeling method.



Chapter 7

Utility

7.1 Learning Human Utility from Demonstration

7.1.1 Introduction

Explicitly programming service robots to accomplish new tasks in uncontrolled environments is
time-consuming, error-prone, and sometimes even infeasible. In Learning from Demonstration
(LfD), many statistical models have been proposed that maximize the likelihood of observations.
For example, Bayesian formulations assume a prior model of the goal, and use Bayes’ Theorem to
explain the relationship between the posterior and likelihood. These Bayesian formulations learn
a model of the demonstrated task most consistent with training data. Such approaches are often
referred to as inductive learning.

In contrast, robot autonomy was originally studied as a rule-based deductive learning system.
There is a paradigm shift in applying inductive models to deduction based inference. In this work, we
explore a middle-ground, where deductive rules are learned through statistical techniques. Specif-
ically, we teach a robot how to fold shirts through human demonstrations, and have it reproduce
the skill under both different articles of clothing and different sets of available actions. Our experi-
mental results show good performance on a two-armed industrial robot following causal chains that
maximize a learned latent utility function. Most importantly, the robot’s decisions are interpretable,
facilitating immediate natural language description of plans. Human preferences are modeled by a
latent utility function over the states of the world. To rank preferences, we pursue relevant fluents
of a task, and then learn a utility function based on these fluents. For example, Fig. 7.1 shows the
utility landscape for a cloth-folding task, obtained through 45 visual demonstrations.

Utility learning equios autonomous agents, such as service robots with a high-level understand-
ing of goals, as well as the ability to adapt that understanding to new situations. By studying a
utility function to rank states of the world, we steer away from imitation as a measure of suc-
cess, thereby bypassing the complications of the correspondence problem. Shukla et al . proposed
framework simultaneously learns both interpretable features as well as the utility function from
few human demonstrations to model non-Markovian behavior. Moreover, our model can explain its
motivations and how those motivation translate into actions. In particular, we parse videos if shirt-
folding demonstrations to develop a preference model that is capable of generalizing its learned
features and utility function across different situations.

The utility landscape shows a global perspective of candidate goal states. To close the loop with
autonomous behavior, we further design a dynamics equation to connect high-level reasoning to
low-level motion control. The primary contributions of our work include:
• A utility value driven planning framework for non-Markovian tasks.

152
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Figure 7.1: The utility landscape identifies desired states. This one, in particular, is trained from 45 cloth-
folding video demonstrations. For visualization purposes, we reduce the state-space to two dimensions
through multidimensional scaling (MDS). The canyons in this landscape represent wrinkled clothes, whereas
the peaks represent well-folded clothes. Given this learned utility function, a robot chooses from an available
set of actions to craft a motion trajectory that maximizes its utility.

• Learning an interpretable utility ranking model to explain the goal which is independent of
system dynamics

• Derive a dynamics equation that uncouples the utility of a situation from the available set of
actions.

• Teaching a robot to fold t-shirts, having it generalize to arbitrary articles of clothing.

7.1.2 Model

Definition 1. Environment: The world (or environment) is defined by a generative composition
model of objects, actions, and changes in conditions. Specifically, we use the stochastic context free
And-Or graph (AOG).

The atomic (terminal) units of this composition grammar are tuples of the form pFstart, ur1:ts, Fendq,
where Fstart and Fend are pre- and post-fluents of a sequence of interactions ur1:ts. Concretely, the
sequence of interactions ur1:ts is implemented by spatial and temporal features of human-object
interactions (4D HOI).

Definition 2. State: A state is a configuration of the believed model of the world. In our case, a
state is a parse-graph (pg) of the And-Or graph, representing a selection of parameters (θOR) for
each Or-node. The set of all parse-graphs is denoted Ωpg.

Definition 3. Fluent: A fluent is a condition of a state that can change over time. It is represented
as a real-valued function on the state (indexed by i P N): fi : Ωpg ÝÑ R.

Definition 4. Fluent-vector: A fluent-vector F is a column-vector of fluents: F = pf1, f2, ..., fkqT

Definition 5. Goal: The goal of a task is characterized by a fluent-change ∆F . The purpose of
learning the utility function is to identify reasonable goals.

Utility Model

We assume human preferences are derived from a utilitarian model, in which a latent utility function
assigns a real-number to each configuration of the world. For example, if a state pg1 has a higher
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Figure 7.2: (a) The 12 curves represent the negative utility function corresponding to each fluent. The
functions are negated to draw parallels with the concept of potential energy. Red marks indicate fluent
values of pg0, which the learned model appears to avoid, and the green marks indicate fluent values of the
goal pg˚, which the learned model appears to favor. Notice how the y-symmetry potential energy decreases
as the cloth becomes more and more symmetric. By tracing the change in utilities of each individual fluent,
the robot can more clearly explain why it favors one state over another. (b) The ranking pursuit algorithm
extracts fluents greedily to minimize ranking violations.As shown in the chart, the top 3 most important
fluents for the task of cloth-folding are height, width,and y-symmetry.

utility than another state pg2, then the corresponding ranking is denoted pg1 ą pg2, implying the
utility of pg1 is greater than the utility of pg2.

Each video demonstration contains a sequence of n states pg0, pg1, ..., pgn, which offers
`

n
2

˘

=
n(n - 1)/2 possible ordered pairs (ranking constraints). Given some ranking constraints, we define
an energy function by how consistent a utility function is with the constraints.

The energy function described above is used to design its corresponding Gibbs distribution.
In the case of Zhu and Mumford [437], a maximum entropy model reproduces the marginal dis-
tributions of fluents. Instead of matching statistics of observations, our work attempts to model
human preferences. We instead use a maximum margin formulation, and select relevant fluents by
minimizing the ranking violations of the model. The specific details of this preference model is
described below

Minimum Violations

Let D “ tf p1q, f p2q, ...u be a dictionary of fluents, each with a latent utility function λ : R ÝÑ R.
Using a sparse coding model, the utility of a parse-graph pg is estimated by a small subset of relevant
fluents F “ tf p1q, f p2q, ..., f pKqu Ă D. Denote Λ “ λp1qpq, λp2qpq, ..., λpKqpq as the corresponding set
of utility functions for each fluent in F. For example, 12 utility functions learned from human
preferences are shown in Fig. 7.2, approximated by piecewise linear functions. The total utility
function is thus

Uppg; Λ, F q “
K
ÿ

α“1

λαpfαppgqq (7.1)
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Of all selection of parameters (Λ) and fluent-vectors (F) that satisfy the ranking constraints,
we choose the model with minimum ranking violations. In order to learn each utility function in
Λ, we treat the space of fluents as a set of alternatives. Let R denote the set of rankings over the
alternatives. Each human demonstration is seen as a ranking σi P R over the alternatives. We say
a ąσi b if person i prefers alternative a to alternative b. The collection of a person’s rankings is
called their preference profile, denoted ~σ.

Each video v provides a preference profile ~σv. For example, we assume at least the following
ranking: pg˚ ąσv pg

0, where pg0 is the initial state and pg˚ is the final state. The learned utility
functions try to satisfy Uppg˚q ą Uppg0q.

U is treated as a ranking score: higher values correspond to more favorable states. We want
to model the goal of a task using rankings obtained from visual demonstrations. The goal model,
or preference model, of a parse-graph pg takes the Gibbs distribution of the form, pppg; Λ, F q “
1
Z e

Uppg;Λ,F q, where Uppg; Λ, F q is the total utility function that minimizes ranking violations:

min
K
ÿ

α“1

ż

x
λ
2pαqdx` C

ÿ

v

ξv

s.t.
ÿ

α

pλαpfαppg˚v qq ´ λ
αpfαppg0

vqqq ą 1´ ξv,

ξv ě 0

(7.2)

Here, ξv is a non-negative slack variable analogous to margin maximization. C is a hyper-parameter
that balances the violations against smoothness of the utility functions Of all utility functions, we
select the one which minimizes the ranking violations. The next section explains how to select the
optimal subset of fluents.

Ranking pursuit

The empirical rankings of states pg˚ ą pg0 in the observations must match the predicted ranking.
We start with an empty set of fluents F = , and select from the elements of D that result in the
least number of ranking violations.

This process continues greedily until the amount of violations can no longer be substantially
reduced. Fig. 7.2 shows empirical results of pursuing relevant fluents for the cloth-folding task.
The dictionary of initial fluents may be hand-designed or automatically learned through statistical
means, such as from hidden layers of a convolutional neural network.

Ranking Sparsity

The number of ranking pairs we can extract from the training dataset is not immediately obvious.
For example, each video demonstration supplies ordered pairs of states that we can use to learn a
utility function. A sequence of n states ppg0, pg1, ..., pgnq allows

`

n
2

˘

= n(n - 1)/2 ordered pairs.
On one end of the spectrum, which we call sparse ranking, we know at the very least that

pgn ą pg0 for each demonstration. This is a safe bet since each video demonstration is assumed to
successfully accomplish the goal. However, the utility model throws out useful information when
ignoring the intermediate states.

On the other end, in dense ranking, all
`

n
2

˘

are used. Despite using all information available,
this approach may be prone to introducing many ranking violations.

Fig. 7.3 visualizes performance of both approaches as we increment the number of available
video demonstrations.
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Figure 7.3: The sparse and dense ranking models are evaluated by how quickly they converge and how
strongly they match human preferences. The x-axis on each plot indicates the number of unique videos
shown to the learning algorithm. The y-axis indicates two alternatives (1 vs. -1) for 7 decisions (A, B, C,
D, E, F, and G) of varying difficulty. The horizontal bar-charts below each plot show comparisons between
human and robot preferences. As more videos are made available, both models improve performance in
convergence as well as alignment to human preferences (from 330 survey results).

In recent years, there has been growing interest in studying object affordance in computer vision
and graphics. As many object classes, especially man-made objects and scene layouts, are designed
primarily to serve human purposes, the latest studies on object affordance include reasoning about
geometry and function, thereby achieving better generalizations to unseen instances than conven-
tional appearance-based machine learning approaches. In particular, Grabner et al . [128] designed
an “affordance detector” for chairs by fitting typical human sitting poses to 3D objects.

Zhu et al . propose to go beyond visible geometric compatibility to infer, through physics-based
simulation, the forces/pressures on various body parts (hip, back, head, neck, arm, leg, etc.) as
people interact with objects. By observing people’s choices in videos—for example, in selecting a
specific chair in which to sit among the many chairs available in a scene (Fig. 7.4)—it can learn the
comfort intervals of the pressures on body parts as well as human preferences in distributing these
pressures among body parts. Thus, our system is able to “feel,” in numerical terms, discomfort
when the forces/pressures on body parts exceed comfort intervals. Zhu et al . argue that this is an
important step in representing human utilities—the pleasure and satisfaction defined in economics
and ethics (e.g ., by the philosopher Jeremy Benthem) that drives human activities at all levels. In
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Figure 7.4: Examples of sitting activities in (a) an office and (b) a meeting room. In addition to geometry
and appearance, people also consider other important factors including comfortability, reaching cost, and
social goals when choosing a chair. The histograms indicate human preferences for different candidate chairs.

our work, human utilities explain why people choose one chair over others in a scene and how they
adjust their poses to sit more comfortably, providing a deeper and finer-grained account not only
of object affordance but also of people’s behaviors observed in videos.

In addition to comfort intervals for body pressures, our notion of human utilities also takes into
consideration: (i) the tasks observed in a scene—for example, students conversing with a professor
in an office (Fig. 7.4 (a)) or participating in a teleconference in a lab (Fig. 7.4 (b))—where people
must attend to other objects and humans, and (ii) the space constraints in a planned motion—
e.g ., the cost to reach a chair at a distance. In a full-blown application, this work demonstrate
that human utilities can be used to analyze human activities, such as in the context of robot task
planning.

7.1.3 Related Work

Modeling Affordance: The concept of affordance was first introduced by Gibson [438].
Hermans et al . [439] and Fritz et al . [440] predicted action maps for autonomous robots. Later,
researchers incorporated affordance cues in shape recognition by observing people interacting with
3D scenes [281, 280, 153]. Adding geometric constraints, several researchers computed alignments
of a small set of discrete poses [128, 121, 282]. By searching a continuous pose parameter space of
shapes, Kim et al . [362] obtained accurate alignments between shapes and human skeletons. More
recently, Savva et al . [441] predicted regions in 3D scenes where actions may take place. Applications
that use affordance in scene labeling and object placement are reported in [442, 443, 130]. A closely
related topic is to infer the stability and the supporting relations in a scene [129, 117, 257].

Inferring Forces from Videos: For pose tracking, Brubaker et al . [224, 225, 226] estimate
contact forces and internal joint torques using a mass-spring system. More recently, Zhu et al .
and Pham et al . [222, 227] use numerical differentiation methods to estimate hand manipulation
forces. These methods are either limited to rigid body problems or employ oversimplified volumetric
human models inadequate in simulating detailed human interactions with arbitrary 3D objects in
scenes. In computer graphics, soft body simulation has been used to jointly track human hands and
calculate contact forces from videos [229, 228].
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Contributions

This work makes five major contributions:
• It incorporate physics-based, soft body simulations to infer the invisible physical quantities—

e.g ., forces and pressures—during human-object interactions. To our knowledge, this is the first
work to adopt state-of-the-art, physically accurate simulations to scene understanding. A major
advantage of our method is its robustness in inferring both the forces and pressures acting on
the entire human body as our model, which is comprised of more than 2,000 vertices, deforms in
a realistic manner.

• Given a static scene acquired by RGB-D sensors, our proposed framework reasons about the
relevant physics in order to synthesize creative, physically stable ways of sitting on objects.

• By incorporating a conventional robotics path planner, our proposed framework can generalize
a static sitting pose to extend over a dynamic moving sequence.

• From human demonstrations, our system learns to generate the force histograms of each human
body part, which essentially defines human utilities, such as comfortability, in terms of the force
acting on each body part.

• We propose a method to robustly generate volumetric human models from the widely-used stick-
man models acquired using Kinect sensors [363], and introduce a pipeline to reconstruct watertight
3D scenes with well-defined interior and exterior regions, which are critical to the success of
physics-based scene understanding using advanced simulations.

Overview

The remainder of this chapter is organized as follows: In Section 7.1.4, we introduce our rep-
resentation, which incorporates physical quantities into the spatiotemporal spaces of interest. In
Section 7.1.5, we describe the pipeline for calculating the relevant physical quantities, which makes
use of the Finite Element Method (FEM). In Section 7.1.6, we formulate the problem as a ranking
task, and introduce a learning and inference algorithm under the assumption of rational choice.
Section 7.1.7 demonstrates that our proposed framework can be easily generalized to challenging
new situations. Section 7.1.8 concludes the chapter by discussing limitations and future work.

7.1.4 Representation

Spatial Entities and Relations in 3D Spaces

We represent sitting behaviors and associated relations in a parse graph pg, which includes (i)
spatial entities—objects and human poses extracted from 3D scenes—and (ii) spatial relations—
object-object and human-object relations.

Spatial Entities: For each frame of the input video, the parse graph pg is first decomposed
into a static scene and a human pose. The static scene is further decomposed into a set of 3D
objects, including chairs (Fig. 7.5 (b)). In this work, we consider only human poses related to
sitting. We collect typical sitting poses using a Kinect sensor, and align and cluster them into 7
average poses (Fig. 7.5 (a)). For each average pose, we first convert the Kinect stick-man models
(Fig. 7.6 (a)) into tetrahedralized human models (Fig. 7.6 (b)). These are then discretized into 14
pre-defined human body parts (Fig. 7.6 (c)) for simulations, as shown in Fig. 7.6 (d).

Spatial Relations: Pairs of objects extracted from 3D scenes form object-object relations,
and each object and human pose pair forms a human-object relation. Fig. 7.7 (d)(e) show an
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Figure 7.5: (a) We collect a set of human poses and cluster them into 7 average poses. (b) Various chairs
extracted from scanned scenes. (c) Each human pose is decomposed into 14 body parts. When a human
interacts with a chair, we infer the forces on each body part using FEM simulations. (d) Examples illustrating
human preferences; green indicates a comfortable sitting activity, red an uncomfortable one.

example of spatial relations. For the purposes of this work, we define these two spatial relations
as spatial features φsppgq that encode the relative spatial distances and orientations. At a higher
level, human-object relations also encode visual attention and social goals.

Physical Quantities of Human Utilities

To date, researchers have mostly generated affordance maps by evaluating the geometric compat-
ibility between people and objects [362, 443, 280, 130, 441, 153]. We employ a more meaningful
and quantifiable metric—forces (including pressures) as physical quantities φpppgq produced during
human-object interactions. The forces acting on each body part essentially determines the comfort-
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Figure 7.6: The stick-man model (a) captured using a Kinect is converted into a tetrahedralized human
model (b) and then segmented into 14 body parts (c). Using FEM simulation the physical quantities φpppgq
are estimated at each vertex of the FEM mesh; the forces at each vertex are visualized in (d).

Figure 7.7: Data pre-processing. (a) Given a reconstructed 3D scene, (b) we project it down onto a planar
map, and (c) segment 3D objects from the scene. (d) visualizes 3D object positions (green dots), human head
position (blue dot), and orientation (blue line). (e) Spatial features φsppgq are defined as human-object
(red lines) and object-object (green lines) relative distances and orientations. (f) Temporal features φtppgq
are defined as the plan cost from a given initial position to a goal position. (g)(h) Two solutions generated
by the PRM planner using graphs with different numbers of nodes (more nodes yield finer-grained plans at
higher cost).

ability of a person interacting with the scene. People tend to choose more comfortable chairs that
will apparently provide better distributions of supporting forces at each body part (Fig. 7.5 (d)).

Deploying our physically simulated volumetric human models in the reconstructed scenes, we
can estimate fine-grained external forces at each vertex of the human model, as shown in Fig. 7.6
(d). In this work, we use the FEM to compute forces. The force acting on each body part can
be estimated by summing up vertex-wise force contributions. A major advantage of using physical
concepts is their ability to generalize to new situations.

Human Utilities in Time

To model the human utility, a plan cost φtppgq is incorporated into our proposed framework. This
is defined as a body pose sequence from a given initial state to a goal state, which encodes people’s
intentions and task planning through time. Compared to prior work, adding plan cost extends the
solution space from a static human pose to dynamic pose sequences.
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Figure 7.8: (a) From a reconstructed 3D indoor scene [444, 441], (b) we uniformly sample vertices in the input
mesh with Poisson disk sampling [450], then convert them into a watertight mesh [451, 258] with well-defined
interior and exterior regions. Differences (c) between the input mesh and the converted watertight mesh.
By adding a ground geometry, we obtain a detailed, watertight reconstruction (d) of the 3D scene, which is
inputted to the simulation.

To simplify the problem, we use the Probabilistic Roadmap (PRM) planner [413] to calculate
the plan cost. Viewed from above, we project the 3D scene to create a planar map, and use a 2D
PRM to calculate the plan cost. However, our proposed framework does not preclude the use of
more sophisticated planning methods in 3D space.

7.1.5 Estimating the Forces in 3D Scenes

Dataset of 3D Scenes and Human Models

Our dataset includes reconstructed watertight 3D scenes, 3D objects (including chairs) extracted
from the scenes, tracked human skeletons and volumetric human poses. The skeletons and volu-
metric human poses are registered in the reconstructed scenes.

The most distinguishing feature of our dataset relative to previous ones (e.g ., [444, 445, 446,
441]) is the watertight property of our reconstructed scenes. This is crucial for physics-based sim-
ulation methods such as the FEM. Furthermore, our dataset includes much larger variations of
chair-shaped objects and human poses, as shown in Fig. 7.5 (a)(b), as well as more challenging and
cluttered scenes.

Reconstructing Watertight Scenes

Reconstructing Closed-loop Scenes: Reconstruction methods that use purely geometric
registration [271, 447, 448, 449] suffer from aliasing of fine geometric details and an inability to
disambiguate different locations based on local geometry. Such problems are compounded when
attempting to register loop closure fragments with low overlap. In our work, we reconstruct 3D
scenes with global optimization based on line processes [444], resulting in detailed reconstructions
with loop closures, as shown in Fig. 7.8 (a).

Converting to Watertight Scenes: Collision detection and resolution in the simulation
requires a watertight scene mesh. We first use Poisson disk sampling [450] to generate uniformly
distributed vertices from the input triangle mesh, as illustrated in Fig. 7.8 (b). Each vertex is then
replaced with a fixed-radius sphere level set [258]. Subsequently, the Constructive Solid Geometry
(CSG) union operation is applied to this level set and a ground level set to produce a complete
scene with a filled-in floor. Finally, the Marching Cubes algorithm [451] is applied to the level set
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in order to generate the watertight surface, as shown in Fig. 7.8 (d). The resulting scene has the
well-defined interior and exterior regions required by the simulation.

Modeling Volumetric Human Pose

Skeleton Alignment and Clustering: The resting poses of human skeletons acquired using
the Kinect are aligned by solving the absolute orientation problem using Horn’s quaternion-based
method [452]; i.e., finding the optimal rotation and translation that maps one collection of vertices
to another in a least squares sense:

min
ÿ

i

||RAp:, iq ` t´Bp:, iq||2, (7.3)

where A and B are a 3 ˆ N matrices whose columns comprise the coordinates of the N source
vertices and N target vertices, respectively. Presently, we have N “ 3 (left shoulder, right shoulder,
and spine base) for skeleton alignment. The K-means clustering algorithm [453, 454, 455] is then
applied to cluster the resting poses into 7 categories, as shown in Fig. 7.5 (a).

Skeleton Skinning: Human skeleton data comprise joints, segments, and their orientations.
For simplicity, an analytic geometric primitive is assigned to each body part. The primitives include
ellipsoids (including spheres), hexahedra, and cylinders. The parameters of the primitives are chosen
such that they best fit the body parts. A high-resolution level set is then applied to wrap around
the union of all the primitives [258]; its zero isocontour approximates the skin [451].

Volumetric Discretization: Although the Marching Cubes algorithm suffices to extract a
triangulated skin mesh from the level set, our simulation requires a full discretization of the volume
bounded by the skin. To achieve this, we embed the skin level set into a body-centered cubic
tetrahedral lattice as in [456]. This results in a tetrahedralized human shape geometry as shown in
Fig. 7.6 (b).

Simulating Human Interactions With Scenes

As stated earlier, we chose the FEM to simulate human tissue dynamics. Our simulation requires
only reconstructed watertight scenes and volumetric human poses as inputs. The outputs of the
simulation are the relevant physical quantities φpppgq; e.g ., forces and pressures.

Elasticity: The human body is modeled as an elastic material. The total elastic potential
energy is defined as

ΦEpxq “

ż

Ω
ΨEpxqdx «

ÿ

e

V 0
e ΨEpFpxqq, (7.4)

where Ω is the simulation domain defined by the tetrahedral body mesh, x denotes the deformed
vertex positions, and V 0

e is the initial undeformed volume of tetrahedral element e. The hyperelastic
energy density function ΨE is defined in terms of the deformation gradient F “ Bx

BX , where X denotes
the undeformed vertex positions. We use the fixed corotated elasticity model [457] for ΨE due to
its robustness in handling large deformations.
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Figure 7.9: (a)Given an initial human pose in a 3D scene subject to gravity, (b) without adequate damping,
the human body is too energetic and produces unnaturally bouncy motion. (c) With proper damping, the
simulation converges to a physically stable rest pose in a small number of timesteps.

Contact Forces: To model contact forces, we need to penalize penetrations of the human
body mesh into the scene mesh. This requires a differentiable volumetric description of the scene
geometry. With watertight scenes, the level set reconstruction is performed by directly computing
signed distances from level set vertices to the mesh surface. In each simulation timestep, all human
mesh vertices are checked against the scene level set. If a penetration is detected for vertex i, a
collision energy ΦCpxiq that penalizes the penetration distance in the normal direction is assigned
to the corresponding vertex

ΦCpxiq “
1

2
kcpxi ´ Ppxiqq2, (7.5)

where kc is a penalty stiffness constant and Ppxiq projects xi onto the closest point on the level set
zero isocontour along its normal direction. To prevent free sliding along the collision geometry, we
further introduce a friction force that slightly damps the tangential velocity for vertices in collision.

Dynamics Integration: Backward Euler time integration is used to solve the momentum
equation. From time n to n` 1, the nonlinear system to solve is

M
vn`1 ´ vn

∆t
“ fpxn`1,vn`1q `Mg, (7.6)

fpxn`1,vn`1q “ fEpxn`1q ` fCpxn`1q ` fDpvn`1q, (7.7)

xn`1 ´ xn “ vn`1∆t. (7.8)

Here M is the mass matrix, x denotes position, v denotes velocity, fE “ ´BΦ
E

Bx is the elastic force,

fC “ ´BΦ
C

Bx is the contact force, g “ 9.8m{s is gravity, and fD “ ´νv is an additional force to
dampen the velocities, where ν is the damping coefficient. Fig. 7.9 (b) shows that without the
damping force, the deformable human body model is too energetic and may produce unnaturally
bouncy motion. While there exist more accurate viscoelastic material models of human tissue,
our simple damping force is easy to implement and achieves similar behaviors for the simulation
results. We solve the above nonlinear system for positions xn`1 and velocities vn`1 using Newton’s
method [458].

Simulation Outputs: When the simulation comes to rest, v “ 0 and the damping forces
vanish. The elastic, contact, and gravity forces sum to zero everywhere over the mesh. As the output
of the simulation, we export the computed contact forces acting on the skin surface.
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Table 7.1: Physical simulation parameters

Timestep: Density: Young’s modulus: Poisson’s ratio:
1ˆ 10´3s 1000kg{m3 0.15kPa 0.3

Collision stiffness: Friction coeff: Damping coeff: Gravity:
1ˆ 104kg{s2 1ˆ 10´3 50kg{s 9.81m{s2

7.1.6 Learning and Inferring Human Utilities

Extracting Features

We craft features φppgq of three types: (i) spatial features φsppgq encoding spatial relations, (ii)
temporal features φtppgq associated with plan cost, and (iii) physical quantities φpppgq produced
during human interactions with scenes.

Data pre-processing is illustrated in Fig. 7.7 (a)-(c). Given a reconstructed watertight scene,
we remove the ground plane by setting a 0.05 m depth threshold and projecting it down onto a
planar map. 3D objects in the scene are first segmented into primitives [274] and then grouped
into object segments as in [118, 116]. Some manual labeling and processing is needed for certain
cluttered scenes. Finally, a semantic label is manually assigned to each object; e.g ., a desk with a
monitor, a door, etc.

Spatial features φsppgq are defined as human-object / object-object relative distances and
orientations as shown in Fig. 7.7 (d)(e). For each object, the geometric center is obtained by
averaging over all the vertices. The human head position and orientation is acquired with the
Kinect.

Temporal features φtppgq are defined as the plan cost from a given initial position to a goal
position. To simplify the problem, we project the 3D scene down onto a planar map. We build a
binary obstacle map where the free spaces devoid of objects have unit costs, whereas the spaces
occupied by objects have infinite costs. We use a 2D PRM planner to calculate the costs using 2D
human positions and head orientations. Thus the planner constructs a probabilistic roadmap to
approximate the possible motions. Finally, the optimal path is obtained using Dijkstra’s shortest
path algorithm [459]. Fig. 7.7 (f)–(h) show two solutions using different numbers of nodes in the
planner graph.

Physical quantities φpppgq produced by people interacting with scenes are computed using
the FEM. Currently, we consider only the forces and pressures acting on 14 body parts of the
tetrahedralized human model, as shown in Fig. 7.5 (c). The net force on each body part is obtained
by summing up the forces at all its vertices. The net force divided by the number of contributing
vertices yields the local pressure. Fig. 7.6 (d) illustrates a force heatmap for sitting.

Learning Human Utilities

The goal in the learning phase is to find the proper coefficient vector ω of the feature space φppgq
that best separates the positive examples of people interacting with the scenes from the negative
examples.
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Rational Choice Assumption: We assume that in interacting with a 3D scene, the observed
person makes near-optimal choices to minimize the cost of certain tasks. This is known as rational
choice theory [460, 461, 462, 463]. More concretely, the person tries to optimize one or more of
the following factors: (i) the human-object and object-object orientations and distances defined as
φsppgq, (ii) the plan cost from the current position to a goal position φtppgq, and (iii) the physical
quantities φpppgq that quantify the comfortability of interactions with the scenes.

In accordance with rational choice theory, for an observed person choosing an object (e.g ., an
armchair) on which to sit, their choice pg‹ is assumed to be optimal; hence, this is regarded a
positive example. If we imagine the same person making random choices tpgiu by randomly sitting
on other objects (e.g ., the ground), the rational choice assumption implies that the costs of the
imagined configurations tpgiu should be higher; hence, these should be regarded negative examples.

Let us consider a simplified scenario as an example: Suppose the ground-truth factors that best
explain the observed demonstration are that the object is comfortable to sit on and that it faces the
blackboard. Then, other objects in the imagined configurations should fall into one of the following
three categories: they (i) may be more comfortable, but have less desirable orientations relative to
the blackboard, or (ii) may have better orientations with the blackboard, but be less comfortable,
or (iii) may be less comfortable and have worse orientations.

To summarize, under the rational choice assumption, we consider the observed rational per-
son interacting with the scenes pg‹ a positive example, and the imagined random configurations
tpgiu as negative examples. However, the random generated configurations tpgiu may be similar
or even identical to the observed optimal configuration pg‹. To avoid this problem, we remove
random configurations that are too similar to observed configurations before applying the learning
algorithm.

Ranking function: Based on the rational choice assumption, it is natural to formulate the
learning phase as a ranking problem [332]—the observed rational person interaction pg‹ should have
lower cost than any imagined random configurations tpgiu with respect to the correct coefficient
vector ω of φppgq, which includes spatial relations φsppgq, plan cost φtppgq, and physical quantities
φpppgq. Each coefficient ωi reflects the importance of its corresponding feature. The ranking function
is defined as

Rppgq “ xω,φppgqy. (7.9)

Learning the ranking function is equivalent to finding the coefficient vector ω such that the
maximum number of the following inequalities are satisfied:

xω,φppg‹qy ą xω,φppgiqy, @i P t1, 2, ¨ ¨ ¨ , nu, (7.10)

which corresponds to the rational choice assumption that the observed person’s choice is near-
optimal.

To approximate the solution to the above NP-hard problem [464], we introduce non-negative
slack variables ξi [259]:

min
1

2
xω,ωy ` λ

n
ÿ

i

ξ2
i , @i P t1, ¨ ¨ ¨ , nu (7.11)

s.t. ξi ě 0, xω,φppg‹qy ´ xω,φppgiqy ą 1´ ξ2
i , (7.12)

where λ is the trade-off parameter between maximizing the margin and satisfying the pairwise
relative constraints.
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Figure 7.10: In the learning phase, based on rational choice theory, we assume that the observed demon-
stration is optimal, and therefore regard it a positive example. (a) In this example, a person is sitting on
an armchair facing a desk with a monitor. The learning algorithm then imagines different configurations
tpgiu in the solution space by initializing with different human poses Pa, (b) translations Tb, and (c) orien-
tations Oc. The imagined randomly generated configurations tpgiu are regarded negative examples. In the
inference phase, the inference algorithm performs the same sampling process (b)(c), and finds the optimal
configuration pg‹ with the highest score.

Inferring the Optimal Affordance

Given a static scene, the goal in the inference phase is to find, among all the imagined configurations
tpgiu in the solution space, the best configuration pg‹ that receives the highest score:

pg‹ “ arg max
pgi

xω,φppgiqy. (7.13)

Sampling the Solution Space

Without observing a human interacting with the scenes, the inference algorithm must sample
the solution space by imagining different configurations tpgiu. The same sampling process is also
required in the learning phase to generate negative examples.

We first quantize the human poses into the 7 categories shown in Fig. 7.5 (a). The imagined
configurations of the human model are initialized with different poses Pa, translations Tb, and
orientations Oc, as shown in Fig. 7.10 (b)(c). The tuple pPa, Tb, Ocq specifies a unique human
configuration. Given such a tuple, the simulation will impose gravity and the simulated human
model will reach its rest state. The methods described in Section 7.1.6 are then used to extract the
features φppgiq.

In the learning phase, the φppgiq are then used to learn the ranking function (Eq. (7.9)). In the
inference phase, the extracted features are then evaluated by Eq. (7.13). The configuration with
the highest score is taken as the optimal configuration pg‹.

7.1.7 Experiments

Learning Human Utilities From Demos

A set of demonstrations of people sitting in the scene were collected using RGB-D sensors, as
shown in Fig. 7.10 (a). The observed demonstrations were then used as positive training examples.
For each 3D scene, we further generated over 4,000 different configurations pgi by enumerating
all poses and randomly sampling different initial human translations and rotations in the solution
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Figure 7.11: (a) The final force histograms of 6 (out of 14) body parts. The x axis indicates the magnitudes
of the forces, the y axis their frequencies and potential energy. Histogram areas reflect the number of cases
with non-zero forces. (b) The average forces of each body part normalized and remapped to a T pose.

space, as shown in Fig. 7.10 (b)(c). The synthesized configurations that are similar to the human
demonstrations were pruned. The remaining configurations were used as negative examples. The
learning algorithm (Eq. (7.9)) learned the coefficient vector ω of the ranking function under three
different settings: (i) physical quantities φpppgq, (ii) with additional spatial relations φsppgq, and
(iii) with all features φpppgq, φsppgq, and φtppgq.

Fig. 7.11 (a) shows the final force histograms of 6 (out of 14) body parts. Unsurprisingly when
sitting, forces act on the hip in almost all cases, upper legs and lower arms also tend to be subject
to relatively large magnitude forces, upper arms and heads are much less likely to interact with
the scene, and the feet contact the scene in many cases, but with overall small force magnitudes.
The heat map of the average forces acting on each human body part over all the collected human
sitting activities is shown in Fig. 7.11 (b).

Inferring Optimal Affordance in Static Scenes

Next, we tested the learned models on our dataset as well as on prior 3D datasets [441, 444] in
three different scenarios: (i) canonical scenarios with chair-shaped objects, (ii) cluttered scenarios
with severe object overlaps, and (iii) novel scenarios extremely different from the training data.

The first testing was done in the same scene as the training. Fig. 7.12 shows examples of the
top ranked human poses. Although using physical quantities φpppgq produced physically plausible
sitting poses (Fig. 7.12 (a)), some of the results do not look like sitting poses (e.g ., lying poses and
upside-down poses). Such diverse results are caused by the lack of spatial and temporal constraints.

Including the spatial features φsppgq, the relative orientations and distances between the human
model and objects in the scene, improved the results, as shown in Fig. 7.12 (b). Intuitively, the top
poses become more natural because they share similar human attentions and social goals to those
in the observed demonstrations. For the case shown in Fig. 7.12, the relative orientation between
the human model and the desk with monitor prunes the configurations for which the human poses
are not facing towards the monitor. The laying poses and upside-down poses are also pruned.

Integrating the temporal features φtppgq also takes into consideration the plan cost, which
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Figure 7.12: (a) The top 7 human poses using physical quantities φpppgq. The algorithm seeks physically
comfortable sitting poses, resulting in casual sitting styles; e.g ., lying on the desk. (b) Improved results
after adding spatial features φsppgq to restrict the human-object relative orientations and distances. Further
including temporal features φtppgq yields the most natural poses (c). The yellow bounding box indicates
the door, the initial position for the path planner. Samples generated near the 3D chair labeled with a
red bounding box do not produce high scores as forces apply on the arms of the person in the observed
demonstration (Fig. 7.10 (a)). The lack of chair arms leads to low scores.

prunes the poses with large plan cost differences compared to the observed person demonstrations.
Note that the plan cost used in temporal features enables our system to output a dynamic moving
sequence, which extends the static sitting poses in previous work.

Additional results including canonical, cluttered, and novel scenarios from our dataset and other
datasets [441, 446, 444, 465] are shown in Fig. 7.13.

Evaluations: We asked 4 subjects to rank the highest-scored sitting poses. Fig. 7.14 plots
the correlations between their rankings and our system’s output.

7.1.8 Discussion and Future Work

The current stream of studies on object affordance [281, 280, 153, 128, 121, 282, 362, 441, 222]
have attracted increasing interest on geometry-based methods, which offer more generalization
power than the prevailing appearance-based machine learning approach. We have taken a step
further by inferring the invisible physical quantities and learning human utilities based on rational
human behaviors and choices observed in videos. Physics-based simulation is more general than
geometric compatibility, as suggested by the various “lazy/casual seated poses” that are typically
not observed in public videos. We argue that human utilities provide a deeper and finer-grained
account for object affordance as well as for human behaviors. Incorporating spatial context features,
temporal plan costs, and physical quantities computed during simulated human-object interactions,
we demonstrated that our framework is general enough to handle novel cases using models trained
from canonical cases.

Our current work has several limitations that we will address in future research: First, we have
assumed a rigid scene. We shall consider various material properties of objects and allow two-way
causal interactions between the objects and human models. This promises to enable deeper scene
understanding with the help of more sophisticated hierarchical task planners. Second, currently we
model the anatomically complex human body simply as a homogeneous elastodynamic material.
We believe that a more realistic biomechanical human model with articulated bones actuated by
muscles surrounded by other soft tissues (see, e.g ., [466, 467]) could enable our framework to
yield more refined solutions. Optimal motor controllers could also be employed within the human
simulation to support fine-grained motor planning, thus going beyond task planning, although this
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Figure 7.13: Top 3 poses in (a)(b) canonical scenarios, (c) cluttered scenarios, and (d)(e) novel scenarios. All
the features φppgq are used in (a) and (b). Both physical quantities φpppgq and plan costs φtppgq are used
in (c)–(e). The initial position for the path planner is indicated by the yellow bounding box.

will increase computational complexity.
By solving these problems, we will be a step closer to consolidating several different research

streams and associated methods in vision, graphics, cognition, and robotics.
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Figure 7.14: Correlations of the ranking by human subjects (x-axis) and our system’s output (y-axis). The
closer the plotted points fall to the diagonal lines the better our proposed method matches the performance
of the human subjects. Plots (a)–(e) correspond to Fig. 7.13 (a)–(e). Plot (f) corresponds to Fig. 7.12 (c).



Chapter 8

Nonverbal Communication: Attention,
Gaze, Pointing, and Coattention

8.1 Nonverbal Behavior

What is the role of nonverbal behavior in everyday life? Other than verbal cues, nonverbal behavior
seems to provide an indirect means of knowing more about other people. The information gleaned
from nonverbal behavior is more representative of “true” characteristics, attitudes, and feelings than
that offered verbally; most people assume nonverbal behavior to be spontaneous and sincere than
verbal behavior [468]. Much of what social psychologists think about nonverbal behavior derives
from a proposal made more than a century ago by Charles Darwin. Darwin argues that we have
such nonverbal behaviors primarily because they are the vestiges of serviceable associated habits,
i.e., behaviors that had specific and direct functions earlier in our evolutionary history [469, 470].
Over the course of evolution, such behaviors have acquired communicative value, i.e., they provide
others with external evidence of an individual’s internal state, and persisted even though they no
longer serve the original purposes [471].

The functions that nonverbal behaviors serve could be interpersonal or intrapersonal. The in-
terpersonal functions involve information such behaviors convey to others, regardless of whether
they are employed intentionally or serve as the basis of an inference the listener makes about the
speaker [469]. The intrapersonal functions involve noncommunicative purposes the behaviors serve.

How do they contribute to our understanding of the speaker’s message? Some evidence that
gestures can convey nonsemantic information, and it is not too difficult to think of circumstances
in which such information could be useful. Here, the study of speech and gestures overlaps with the
study of person perception and attribution processes, because gestures, in their cultural and social
context, may enter into the process by which we draw conclusions about people—their backgrounds,
their personalities, their motives and intentions, their moods and emotions, etc. Further, since the
significance of gestures can be ambiguous, it is likely that our beliefs and expectations about the
speaker-gesturer will affect the meanings and consequences we attribute to the gestures we observe.

Another way of pursuing this question is to ask how gesturing affects the way listeners process
verbal information. Do gestures help engage a listener’s attention? Do they activate imagistic or
motoric representations in the listener’s mind? Do they become incorporated into representations
that are invoked by the listener when the conversation is recalled? One hypothesis is that gestures
facilitate the processes by which listeners construct mental models of the events and situations
described in an arrative. Communication has been defined as the process by which representations
that exist in one person’s mind come to exist in another’s [472].

171



CHAPTER 8. NONVERBAL COMMUNICATION: ATTENTION, GAZE, POINTING, AND COATTENTION172

On a second construal, the question “What do conversational hand gestures tell us?” concerns
the intrapersonal functions of gesture—here, the role they play in speech production. It might be
paraphrased “How does gesturing affect us when we speak? The “us” in this interpretation is the
speaker, and the about what has to do with the ideas the speaker is trying to articulate in speech.
Our response to this question is that gestures are an intrinsic part of the process that produces
speech, and that they aid in the process of lexical access, especially when the words refer to concepts
that are represented in spatial or motoric terms. They “tell us” about the concepts underlying our
communicative intentions that we seek to express verbally. In this way, conversational gestures may
indirectly serve the function conventionally attributed to them. That is, they may indeed enhance
the communicativeness of speech, not by conveying information that is apprehended visually by
the addressee, but by helping the speaker formulate speech that more adequately conveys the
communicative intention.

Considering the functions of conversational gestures reminds us that although linguistic rep-
resentations derive from propositional representations of experience, not all mental representation
is propositional. Spatial knowledge and motoric knowledge may have their own representational
formats, and some components of emotional experience seem to be represented somatically. These
representations (perhaps along with others) will be accessed when we recall and think about these
experiences. However, when we try to convey such experiences linguistically, we must create new rep-
resentations of them, and there is some evidence that so doing can change how we think about them.
For example, describing a face makes it more difficult to recognize that face subsequently [473],
and this “verbal overshadowing” effect, as it has been termed, is not limited to representations of
visual stimuli [474, 475, 476]. Linguistic representations may contain information that was not part
of the original representations, or omit information that was. It is possible that gestures affect the
internal representation and experience of the conceptual content of the speech they accompany,
much as facial expressions are believed to affect the experience of emotion.

8.1.1 cooperative communication

Tourists manage to survive and interact effectively in many situations in foreign cultures, in which
no one shares their conventional language, precisely by relying on such naturally meaningful forms
of gestural communication.

The central claim in Tomasello’s book “Origins of human communication” is that to understand
how humans communicate with one another using a language and how this competence might have
arisen in evolution, we must first understand how humans communicate with one another using
natural gestures. The first uniquely human forms of communication were pointing and pantomim-
ing. The social-cognitive and social-motivational infrastructure that enabled these new forms of
communication then acted as a kind of psychological platform on which the various systems of con-
ventional linguistic communication (all 6,000 of them) could be built. Pointing and pantomiming
were thus the critical transition points in the evolution of human communication, already embody-
ing most of the uniquely human forms of social cognition and motivation required for the later
creation of conventional languages.

The problem is that, compared with conventional human languages (including conventionalized
sign languages), natural gestures would seem to be very weak communicative devices, as they carry
much less information “in” the communicative signal itself.

Suppose that you and I are walking to the library, and out of the blue I point for you in the
direction of some bicycles leaning against the library wall. Your reaction will very likely be “Huh?”
as you have no idea which aspect of the situation I am indicating or why I am doing so, since,
by itself, pointing means nothing. But if some days earlier you broke up with your boyfriend in a
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particularly nasty way, and we both know this mutually, and one of the bicycles is his, which we
also both know mutually, then the exact same pointing gesture in the exact same physical situation
might mean something very complex like “Your boyfriend’s already at the library (so perhaps we
should skip it).” On the other hand, if one of the bicycles is the one that we both know mutually
was stolen from you recently, then the exact same pointing gesture will mean something completely
different. Or perhaps we have been wondering together if the library is open at this late hour, and
I am indicating the presence of many bicycles outside as a sign that it is.

And so our question is: how can something as simple as a protruding finger communicate in such
complex ways, and do so in such different ways on different occasions? Any imaginable answer to
this question will have to rely heavily upon cognitive skills of what is sometimes called mindreading,
or intention-reading. Thus, to interpret a pointing gesture one must be able to determine: what
is his intention in directing my attention in this way? But to make this determination with any
confidence requires, in the prototypical instance, some kind of joint attention or shared experience
between us (Wittgenstein’s [1953] forms of life; Bruner’s [1983] joint attentional formats; Clark’s
[1996] common conceptual ground).

For example, if I am your friend from out of town and there is no way I could be familiar with
your ex-boyfriend’s bicycle, then you will not assume that I am indicating it for you. This is true
even if, by some miracle, I do indeed know that this is his bicycle, but you do not know that I know
this. In general, for smooth communication it is not enough that you and I each know separately
and privately that this is his bicycle (and even that the other knows this); rather, this fact must
be mutually known common ground between us. And in the case in which it is common ground
between us that this is his bicycle, but not that the two of you have just broken up (even if we each
know this privately), then you will probably think that I am indicating your boyfriend’s bicycle
as a way of encouraging our entrance into the library, not discouraging it. The ability to create
common conceptual ground—joint attention, shared experience, common cultural knowledge is an
absolutely critical dimension of all human communication, including linguistic communication with
all of its he’s, she’s, and it’s.

The other remarkable aspect of this mundane example of human pointing, from an evolutionary
perspective, is its prosocial motivation. I am informing you of your ex-boyfriend’s likely presence
or the location of your stolen bicycle simply because I think you would want to know these things.
Communicating information helpfully in this way is extremely rare in the animal kingdom, even
in our closest primate relatives (in chapter 2 we will deal with examples such as warning cries and
food calls). Thus, when a whimpering chimpanzee child is searching for her mother, it is almost
certain that all of the other chimpanzees in the immediate area know this. But if some nearby
female knows where the mother is, she will not tell the searching child, even though she is perfectly
capable of extending her arm in a kind of pointing gesture. She will not tell the child because her
communicative motives simply do not include informing others of things helpfully.

In contrast, human communicative motives are so fundamentally cooperative that not only do
we inform others of things helpfully, but one of the major ways we request things from others is
simply to make our desire known in the expectation that they will volunteer help. Thus, I may
request a drink of water by simply stating that I want one (informing you of my desire), knowing
that, in most instances, your tendency to be helpful (and our mutual knowledge of this) turns this
act of informing into what is effectively a full-blown request.

Human communication is thus a fundamentally cooperative enterprise, operating most naturally
and smoothly within the context of (1) mutually assumed common conceptual ground, and (2)
mutually assumed cooperative communicative motives. The fundamentally cooperative nature of
human communication is, of course, the basic insight of Grice (1957, 1975) [477, 478].

It turns out that human cooperation is unique in the animal kingdom in many ways, both
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Figure 8.1: communication architecture proposed by Tomasselo [140]

structurally and motivationally
1) Human cooperative communication emerged first in evolution (and emerges first in ontogeny)

in the natural, spontaneous gestures of pointing and pantomiming. 2) Human cooperative commu-
nication rests crucially on a psychological infrastructure of shared intentionality, which originated
evolutionarily in support of collaborative activities, and which comprises most importantly: social-
cognitive skills for creating with others.

Specifically, human cooperation is structured by what some modern philosophers of action call
shared intentionality or “we” intentionality [479, 480, 481]. In general, shared intentionality is what
is necessary for engaging in uniquely human forms of collaborative activity in which a plural subject
“we” is involved: joint goals, joint intentions, mutual knowledge, shared beliefs—all in the context
of various cooperative motives.

The proposal is thus that human cooperative communication—whether using “natural” gestures
or “arbitrary” conventions—is one instance, albeit a special instance, of uniquely human cooperative
activity relying on shared intentionality [482]. The skills and motivations of shared intentionality
thus constitute what we may call the cooperative infrastructure of human communication.

Fig. 8.1 depicts all of the different components of the cooperation model of human communica-
tion, and something of their interrelations. Beginning in the top left and following the arrows, very
sketchily: I as communicator have many goals and values that I pursue in my life: my individual
goals. For whatever reason, I feel that you can help me on this occasion with one or more of them,
by helping me or accepting my offer of information (which I want to make for my own reasons)
or sharing attitudes with me: my social intention. The best way for me to get your help, or to
help you, or to share with you in this situation is through communication, and so I decide to make
mutually manifest to us (in our current joint attentional frame) a communicative act; this is my
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communicative intention (perhaps indicated by “for you” signals such as eye contact or with some
expression of motive). Given my signal of a communicative intention, I draw your attention to some
referential situation in the external world—my referential intention—which is designed (along with
some expression of motive) to lead you to infer my social intention via processes of cooperative
reasoning, since you are naturally motivated to find out why I want to communicate with you
(based on mutual assumptions or norms of cooperation). You thus first attempt to identify my
referent, typically within the space of our common ground, and from there attempt to infer my
underlying social intention, also typically by relating it to our common ground. Then, assuming
you have comprehended my social intention, you decide whether or not to cooperate as expected.

8.2 Attention and Gaze

Attention is the behavioral and cognitive process of selectively concentrating on a discrete aspect
of information while ignoring other perceivable information, which has also been described as the
allocation of limited cognitive processing resources. Human attention could be driven by internal
goals or external stimulation. Goal-driven attention is referred to as top-down or endogenous atten-
tion, whereas stimulus-driven attention is referred to as bottom-up or exogenous attention [483].
Allocating attention over short time periods can be referred to as phasic orienting, while main-
taining attention over longer time periods is referred to as sustained attention, or vigilance [484].
Endogenous and exogenous attention systems interact and compete over short time periods to guide
behavior.

We don’t indistinguishably perceive all the stimuli around us since our ability to attend to the
things around us is limited in terms of both capacity and duration. Actually, human attention acts
somewhat like a spotlight, highlighting the details that we need to focus on and casting irrelevant
information to the sidelines of our perception. For example, in a party full of all kinds of noises,
you find yourself still able to tune out the irrelevant sounds and focus on the amusing story that
your dinner partner shares, which is a good example of the so-called selective attention. Selective
attention is the process of focusing on a particular object in the environment for a certain period
of time. Human need selective attention to tune out unimportant details and focus on what really
matters to save our precious and limited cognitive resource.

In fact, we see much less than we think. Inattentional blindness is a perceptual phenomenon
discovered by psychologists that can support selective attention. A best-known study, called Invis-
ible Gorilla Test [485], demonstrates inattentional blindness vividly, which is shown in Fig. 8.2. In
the experiment, subjects are asked to watch a video where a group of students wearing white or
black T-shirts pass a basketball among themselves. Subjects are asked to count the number of times
the players wearing white T-shirts pass the ball. And researchers find that subjects often fail to
notice a person in a gorilla suit who appears in the center of the video scene. Another experiment
also illustrates people’s blindness to change, in which an experimenter held a map and asked a
random pedestrian for direction. While the pedestrian was looking at the map, they replaced the
experimenter with a different one. Nearly 50 percent of the pedestrians failed to notice that they
were talking to a different person [486].

In the domain of computer vision, efforts have been made in modelling the mechanism of human
attention, especially the bottom-up attentional mechanism. There are two kinds of models to mimic
the bottom-up saliency mechanism. One way is based on the spatial contrast analysis and the other
way is based on the frequency domain analysis. Social attention is one special form of attention
that involves the allocation of limited processing resources in a social context. Previous studies
on social attention often regard how attention is directed towards socially relevant stimuli such as
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Figure 8.2: The Invisible Gorilla Test. © 2020 Simons, Daniel J. Reprinted, with permission, from Ref. [485].

faces and gaze directions of other individuals. Social attention operates at two polarizing states:
attending-to-others and attending-to-self, which mark the two ends of an otherwise continuum
spectrum of social attention. For a given behavioral context, the mechanisms underlying these two
polarities might interact and compete with each other in order to determine a saliency map of social
attention that guides human behaviors. An imbalanced competition between these two behavioral
and cognitive processes will cause cognitive disorders and neurological symptoms such as autism
spectrum disorders and Williams syndrome.

Gaze is an important cue for human attention in social interaction. Gaze direction provides a
number of potential social cues which may be utilized by an individual to learn about the external
(other individuals, objects, events, etc.) or internal (emotional and intentional) states. But gaze is
not the only cue that is used to determine the focus of another individual’s direction of attention.
The whole head, in particular the orientation in which it is directed is a sufficient indicator of
attention direction. In some cases, the eyes are not visible and the only cue available for processing
is the head direction. If the head is occluded or in shadow, the orientation of the body provides
a sufficient cue for communication, as shown in Fig. 8.3. If all cues are available for processing, a
hierarchy of importance exists whereby the eyes provide more important cues than the head, and
the head is more important cue than the body. Determining the direction of another individual’s
attention is easier to establish from larger visual cues, such as the head. However, the eyes present
a more precise indicator of where another is looking, though they are much smaller than the
head. An evidence is that humans have a larger extent of white sclera either side of the dark
central iris compared to other non-human primates. This ratio may be one of the factors which has
allowed humans to use the orientation of other individual’s eyes for learning about objects in the
environment in referential active communication [487].

As people speak, their gaze periodically fluctuates toward and away from their conversational
partner. Some investigators have interpreted gaze directed at a conversational partner as an ex-
pression of intimacy or closeness [488, 489, 490, 491]. However, Butterworth [492] argues that gaze
direction is affected by two complex tasks speakers must manage concurrently: planning speech,
and monitoring the listener for visible indications of comprehension, confusion, agreement, interest,
etc. [493, 494]. When the cognitive demands of speech planning are great, Butterworth argues,
speakers avert gaze to reduce visual information input, and, when those demands moderate, they
redirect their gaze toward the listener, especially at places where feedback would be useful. Such
communicative effects could involve two rather different mechanisms. In the first place, many non-
verbal behaviors are to some extent under the individual’s control, and can be produced voluntarily.
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Figure 8.3: Different indicators for attention direction. © 2020 N.J. Emery. Reprinted, with permission, from
Ref. [487]

For example, although a smile may be a normal accompaniment of an affectively positive internal
state, it can at least to some degree be produced at will. Social norms, called “display rules,” dictate
that one exhibit at least a moderately pleased expression on certain social occasions. In the second
place, nonverbal behaviors that serve noncommunicative functions can provide information about
the noncommunicative functions they serve. For example, an excessive amount of gaze aversion
may lead a listener to infer that the speaker is having difficulty formulating the message.

8.3 Gaze Communication

Gaze communication is the most primitive form of human communication, whose underlying social-
cognitive and social-motivational infrastructure acted as a psychological platform on which various
linguistic systems could be built [140]. Although verbal communication has become the primary
form in social interaction, gaze communication still plays an important role in conveying hidden
mental state and augmenting verbal communication [495, 470]. Evidence from psychology suggests
that eyes are a cognitively special stimulus, with unique “hard-wired” pathways in the brain ded-
icated to their interpretation and humans have the unique ability to infer others’ intentions from
eye gazes [487]. To understand human-human communication in the social scene better, we not
only need natural language processing (NLP), but also require a systematical study of human gaze
communication mechanisms.

Over the past decades, lots of research [496, 497, 498, 499] on the types and effects of social
gazes have been done in cognitive psychology and neuroscience communities. Typical eye gaze types
include Mutual gaze, Gaze aversions, Referential gaze, Gaze following, Joint attention [495, 487].

Mutual gaze occurs when two agents have eye contact or look into eyes of each other. It is
the strongest mode of establishing a communicative link between human agents. Mutual gaze can
capture attention, initialize a conversation, maintain engagement and expresses feelings of trust
and extroversion.

Gaze aversion happens when gaze of one agent is shifted away from another in order to avoid
mutual gaze. Averted gaze expresses distrust, introversion, fear, and can also modulate intimacy,
communicate thoughtfulness or signal cognitive effort such as looking away before responding to a
question.

Referential gaze happens when one agent trys to use gaze to induce another agent’s attention
to a certain stimuli. Referential gaze shows intents to share or request something.
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Gaze following occurs when one agent perceives gaze from another and follows to contact
with the stimuli the other is attending to. In the visual domain, this involves perceiving the social
partner’s gaze, translating between his/her reference frame and our own by replicating or simulating
the other’s viewpoint, and extending our attention to include the other’s putative visual focus. The
ability to follow gaze is prerequisite to the ability to jointly attend and infer another’s intentions
and goals from his/her bodily behavior [500].

Eye gaze cues influence human attention within a tenth of a second. Attention is allocated in
the direction of gaze despite the fact that the gaze cues had no predictive value and were thus irrel-
evant. Actually, human follow gaze even when explicitly informed that cues are counterpredictive
of target location. Gaze following, which requires only those cognitive resources that arise within
a few hundred milliseconds of stimulus onset, might be a fully modular behavior: fast, simple, re-
flexive, and once triggered, unalternable. To accurately follow gaze, we interpret another’s bodily
orientation in spatial relation to our own. This rich understanding of others’ bodies and of three-
dimensional visual space permits us to take their perspective, following their gaze geometrically to
objects outside our immediate visual field [500].

Most animals appear to understand others’ gaze as a vector within a rich, three-dimensional
environment. Like humans, many animals appear to have expectations about what they should see
when they follow another’s gaze: if they find nothing, they do a double check. And both human
and nonhuman animals modulate their gaze following behavior based on context. Gaze following
can synchronize attentional shifts toward a common stimulus. Thus, gaze following plays pivotal
role in achieving joint attention [500].

Joint Attention appears when two agents have the same intention to share attention on a
common stimuli and both know that they are sharing attention with each other. Joint attention
consists of several phases, including mutual gaze to establish communication channel, referential
gaze to draw attention to a stimuli, following gaze to check the referred stimuli, and mutual gaze
again to confirm the joint attention. Joint attention is located at the intersection of a complex
set of capacities that serve our cognitive, emotional, and action-oriented relations with others. It
involves social cognition, our ability to understand others, what they intend, and what their actions
mean. Thus, joint attention is a significant first step for individuals to represent others’ minds
and develop Theory of Mind (ToM). Only when we have joint attention can we start to consider
and understand others’ perspective, attention and even intention. Also, without joint attention,
different individuals cannot truly communicate and update their common mind. Infants need to
learn to form joint attention with others to enter a more deeply social world of interconnecting
attitudes and experiences.

What is joint attention? Are we in joint attention when I see you looking at something and I
follow your gaze and turn to look at it too? When we go to see a film, are we in joint attention with
all the other audience members? Although joint attention is crucially important in human social
life, as a field we have not yet come to a full agreement on what exactly joint attention is.

Some researchers also call it shared attention in some literatures. Some researchers assume that
shared attention and joint attention are different. For example, Fig. 8.4 shows a kind of definition of
joint attention and a categorization of different types of gaze interaction patterns. Many situations
that typically have been thought of as joint attention situations can actually involve individual,
parallel attention rather than truly joint, shared attention. Or we could say that these joint attention
situations have different degree of sharedness. Nevertheless, there are two important criteria for true
joint attention: 1) the motivation to share attention in the first place and 2) that the participants
know together that they are sharing attention [500].

If two individuals happen to look at the same object simultaneously, they are not in joint
attention but just parallel individual attention. If an individual follow the other’s gaze to look at
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Figure 8.4: One kind of categorization of different gaze interaction patterns. © 2000 N.J. Emery. Reprinted,
with permission, from Ref. [487].

the object, it’s still not joint attention since they don’t have the mutual knowledge of each other’s
attention. Only when they share their attention through some communication channel, such as a
mutual gaze or voice, can we say that they have true joint attention. Fig. 8.5 (a) indicates the
classic joint attention triangle. When two individuals get into joint attention, they not only know
the object individually, but also know the other individual’s attention on the same object, and even
more, they know that the other individual knows that they know, and so on... The two minds are
just like two mirrors reflecting each other infinitely. See Fig. 8.5 (b). But this recursive mind reading
approach to model joint attention seems to have problem because 1) the processing demands are just
too high and humans don’t achieve mutual knowledge in this infinitely recursive way and 2) the two
individuals are not truly joint together. It is basically two individual, solitary, parallel perspectives
that never meet in the middle. There has to be some concept like “we-attention” to model true
joint attention. And the sharing of attention in true joint attention involves communication, which
may be something as simple as a meaningful look [500].

There are roughly two kinds of joint attention, “top-down” and “bottom-up”, as shown in
Fig. 8.6 [500]. In the top-down situation, the person who wishes to initiate joint attention actively
directs the other person’s attention to something. In this situation, three types of communicative
looks are usually involved. The first type of look is an initiation look by the initiator to the recipient,
which serves to get the recipient’s attention. This look is an “invitation to interact” and opens
the channel of communication between the two partners. It signals the initiator’s communicative
intention. The second type of communicative look is a reference look toward the object or event that
the initiator wants to call attention to. It signals the initiator’s referential intention and is usually
accompanied by a gesture like a pointing or nodding towards the object. These two looks thus serve
to open the joint attentional interaction and establish the topic or referent of it. The third type of
look in the top-down joint attention situation is the sharing look. If the initiation look serves to
open the joint attentional triangle, the sharing look serves to close it. Whereas the initiation look is
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Figure 8.5: Depictions of different approaches to joint attention. © 1999 Seemann, Axel (ed.). Reprinted,
with permission, from Ref. [500].

Figure 8.6: Two kinds of joint attention, “top-down” and “bottom-up.” © 1999 Seemann, Axel (ed.).
Reprinted, with permission, from Ref. [500].

relatively one-sided, the sharing look is bidirectional, with both partners participating equally. This
look is what turns parallel or recursive or not-yet-shared attention into truly joint, shared attention.
In the bottom-up joint attention situation, in contrast, the referent draws attention to itself because
of its saliency. In this situation, the referent is given by the context so no referential look (or gesture)
is needed. Typically, only one communicative look is needed in the bottom-up situation: the sharing
look to the partner, although the sharing look might be slightly more complicated in this situation
than in the top-down situation because some initial communicative intent must also be contained in
this look, since the channel of communication is being opened at the same moment as the “triangle”
is being closed with the sharing look.

Communication makes things public and thus creates commitments and obligations. Once two
individuals get into joint attention, they can not deny it anymore.
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checking the mug's status

checking the book's status

locating the dispenser

Figure 8.7: Human attention and intentions in a 3D scene. © 2017 Ping Wei et al . Reprinted, with permission,
from Ref. [501]

8.4 Inferring Human Attention by Learning Latent Intentions

Inferring 3D human attention at scene scale is a challenging problem. First, in 3D space, human
attention has weak observable features but huge degrees of freedom. As Fig. 8.7 shows, at the scale
of daily-activity scenes, it is hard to obtain effective features of eyes or faces that are directly related
to the human attention. Moreover, the human activity sequence data captured by RGB-D sensors
are noisy. Different human activities present various poses, motions, and views, which makes it hard
to precisely estimating the attention across different activities.

Human attention is related to human intentions [24]. The attention driven by different intentions
presents different observation features and motion patterns. Land et al . [24] divided the roles of
human fixations into four categories: locating objects, directing hands, guiding an object to approach
another, and checking an object’s status. As Fig. 8.7 shows, when the person’s intention is to locate
the dispenser, his attention sweeps from the table to the dispenser; while fetching water from the
dispenser, his intention is to check if the mug is full and his attention steadily focuses on the mug.

The driving rules of intentions acting on attention can be independent of activity categories.
For example, in Fig. 8.7, the attention driven by the intention checking status always presents
as steadily focusing, even in different activities. This phenomenon makes it possible to infer the
attention with the same rules across different activities. However, these driving rules are hidden
and should be learned from data.

Ping Wei et al . proposes a probabilistic method to infer 3D human attention by jointly model-
ing attention, intentions, and their interactions. The attention and intention are represented with
features extracted from human skeletons and scene voxels. Human intentions are taken as latent
variables which guide the motions and forms of human attention. Conversely, the human attention
reveals the intention features. Attention inference is modeled as a joint optimization with latent
human intentions.

They adopt an EM-based approach to learn the model parameters and mine the latent inten-
tions. Given an RGB-D video with human skeletons captured by the Kinect camera, a joint-state
dynamic programming algorithm is utilized to jointly infer the latent intention, the 3D attention
direction, and the attention voxel in each video frame.
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(a) (c)(b) (d)

Figure 8.8: Attention and intention representation. (a) The attention direction and voxel. (b) Scene point
clouds and voxels. (c) The voxel height and distance. (d) The voxel features. © 2017 Ping Wei et al .
Reprinted, with permission, from Ref. [501].

8.4.1 Attention and Intention Representation

Each video frame includes RGB-D data and a 3D human skeleton, which are recorded by a Kinect
camera. The 3D human skeleton is a collection of 3D location coordinates of the body joints, as
shown in Fig. 8.8 (a). The scene point clouds defined by the scene depth data are converted into
voxels, as shown in Fig. 8.8 (b). A voxel is a cube in 3D point clouds and it is like a pixel in 2D
images. They define attention and intention features based on the 3D human skeletons and the
scene voxels.

Attention

In 3D space, human attention includes two attributes: the direction and the voxel, as shown in
Fig. 8.8 (a). The attention direction is a 3D vector with unit length which describes the sight line
direction from the human head to what is looked at. In the attention direction, the voxel at which
the sight line intersects with the scene point clouds is the attention voxel.

In daily activities, the directions of human body parts imply the attention directions. For
example, when a human is manipulating an object with the hands, the directions from the head to
the hands strongly signal the attention direction. They define the observation features of attention
directions with eight directions extracted from human skeletons, such as the normal vector of the
head and shoulder plane, the directions from the head to the hands, etc.

To normalize the data, all human skeletons are aligned to a reference skeleton with similarity
transformation. The eight observation directions are defined on the aligned skeletons. The encap-
sulation of the eight normalized direction vectors is the observation feature of the attention.

Intention

In their work, intentions are discrete latent variables and describe the human attention motivation.
The observation feature of an intention is the encapsulation of the attention feature and the voxel
feature. The attention feature is defined in previous section. It characterizes the attention direction
patterns in intentions.

The voxel feature is defined with the attention voxel and its neighbouring voxels, as shown in
Fig. 8.8 (c) and Fig. 8.8 (d). The voxel feature is composed of the height part and the distance
part. Around the attention voxel, they define a Nx ˆ Ny ˆ Nz cubic grid of voxels, where Nx,
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Figure 8.9: Joint probabilistic model of human attention and latent intentions. © 2017 Ping Wei et al .
Reprinted, with permission, from Ref. [501].

Ny, and Nz are voxel numbers along the axis X, Y , and Z, respectively. The height feature is a
Nx ˆ Ny ˆ Nz-dimensional vector whose entries correspond to the Nx ˆ Ny ˆ Nz voxels in the
cubic grid. The value of each entry is the height of the corresponding voxel relative to the floor.
The distance feature is defined in a similar way but the vector entry value is the distance from the
voxel to the human head.

The height feature reflects the spatial configuration of the attention voxels. The distance feature
characterizes the human-scene interaction.

8.4.2 Model

Let X “ px1, ...,xτ q be a video sequence of length τ . Each video frame xt includes a 3D human
skeleton and the scene voxels. Given X, the goal is to infer the attention direction and the attention
voxel in each video frame. Let Y “ py1, ...,yτ q be the attention direction sequence, where yt denotes
the attention direction in frame xt.

In each frame, they introduce a latent variable lt to represent the latent intention. l “ pl1, ..., lτ q
denotes the intention sequence of all the frames in X.

They use a probabilistic model to jointly represent X, l, Y, and their relations in time and 3D
space, as shown in Fig. 8.9. The joint probability is

ppX, l,Y|θq “ ppl1q
τ
ź

t“1

ppψpxtq|lt,ytq
τ
ź

t“2

pplt|lt´1q

¨ ppy1|l1q
τ
ź

t“1

ppφpxtq|yt, ltq
τ
ź

t“2

ppyt|yt´1, lt, lt´1q.

(8.1)

θ is the set of model parameters. ψpxtq and φpxtq are the intention and attention features,
respectively, extracted from frame xt as defined in Section 8.4.1. They are abbreviated as ψt and φt
below. ppψt|lt,ytq represents the intention identification and ppφt|yt, ltq is the attention observation
probability.

pplt|lt´1q and ppyt|yt´1, lt, lt´1q describe transition relations of intentions and attention in two
successive frames, respectively. ppl1q and ppy1|l1q characterize the initial states of the intention and
the attention, respectively.

As Fig. 8.9 shows, the model is a joint representation of the intention and the attention. The
intentions guide not only the attention observations but also the attention transitions. Conversely,
the intention observation features depend on the voxels observed by the human.
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The model is similar but different from the switching dynamic models [502, 503]. In the model,
the latent variables of attention and intentions have different observation features.

Attention Model

They model human attention under the framework of the linear dynamic system (LDS) [504].
Different from the conventional LDS, they introduce an additional layer of latent variables to
control the observation and motion patterns.

Initial attention y1 is modeled as:

y1 “ µl1 ` u,

u „ N p0,Vl1q,
(8.2)

where µl1 is the prior value of y1 conditioned on intention l1. u is the noise which follows Gaussian
distribution with mean 0 and covariance Vl1 . The initial attention probability is

ppy1|l1q “ N py1|µl1 ,Vl1q. (8.3)

Attention observation describes the generation relation of the attention and the observation,
which is formulated as:

φt “ Cltyt ` v,

v „ N p0,Σltq,
(8.4)

where v is the noise which follows Gaussian distribution with mean 0 and covariance Σlt . The
generation matrix Clt is governed by the intention lt, which reflects the intention constraints on
the attention observations. The attention observation probability is

ppφt|yt, ltq “ N pφt|Cltyt,Σltq. (8.5)

Attention transition describes the temporal relations between attention in successive frames,
which is formulated as

yt “ Alt´1,ltyt´1 `w,

w „ N p0,Γlt´1,ltq,
(8.6)

where w is the noise which follows Gaussian distribution with mean 0 and covariance Γlt´1,lt .
The transition matrix Alt´1,lt is related to the intentions in successive frames, which reflects the
intention constraints on the attention motions. The transition probability model is

ppyt|yt´1, lt, lt´1q “ N pyt|Alt´1,ltyt´1,Γlt´1,ltq. (8.7)

Intention Model

Intention model is composed of three parts: initial intention, intention identification, and intention
transition.

Initial intention describes the prior knowledge about the intention in the first frame. It is
formulated as:

ppl1 “ iq “ λi, (8.8)

where λ is a discrete probability vector, and its ith entry λi represents the probability of the ith
intention category.
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Figure 8.10: Joint-state dynamic programming. (a) Seed voxels in a video. The warmer colors indicate more
recent time. (b) Candidate voxels. (c) Inference on a sequence, where two intention states are used to illustrate
the algorithm. © 2017 Ping Wei et al . Reprinted, with permission, from Ref. [501].

Intention identification is formulated as

ppψt|lt,ytq9pplt|ψt,yt,ωq. (8.9)

pplt|ψt,yt,ωq is the posterior probability and ω is the parameter of a linear classifier. The classifier
is trained with Support Vector Machine and the scores output by the classifier are converted to
probabilities [505].

The intention observation is dependent on the attention voxels related to the attention direction
yt, which reflects the joint relations between the intentions and the attention.

Intention transition describes the relations of intentions in two successive frames, which is
represented as

pplt “ j|lt´1 “ iq “ Λij , (8.10)

where Λ is the transition matrix. The entry Λij in the ith row and jth column is the probability
of the transition from the ith intention category to the j intention category.

8.4.3 Inference

Given an RGB-D video X, they aim to infer the 3D human attention in each video frame, which is
formulated as

Y˚ “ arg max ppY|X,θq, (8.11)

where
ppY|X,θq “

ÿ

l
ppl,Y|X,θq. (8.12)

Dynamic programming is one of the most widely-used algorithms to interpret temporal se-
quences [506]. However, the attention and intentions are correlated, which means the conventional
dynamic programming is inapplicable in the task.

They adopted a joint-state dynamic programming method to solve Eq. (8.11). The general
procedures of the algorithm include: 1) in each video frame, a seed voxel is proposed, as shown
in Fig. 8.10 (a); 2) the seed voxel generates candidate attention voxels in a cube around the
seed, as shown in Fig. 8.10 (b); 3) the candidate voxels and all intentions are combined to form
joint states; a joint state includes an attention voxel (direction) and an intention; 4) the dynamic
programming [506] is performed on these joint states to produce the attention voxels (directions)
and the latent intentions, as shown in Fig. 8.10 (c).

In each frame, they use attention features extracted from human skeletons to propose possi-
ble attention directions, which intersect with the scene to produce the seed voxels. Around the
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seed voxel, they define a cube containing M neighbouring voxels as candidate attention voxels.
Connecting the human head and these candidate voxels generates a set of candidate directions

Yt “ typ1qt , ...,y
pMq
t u. In each frame, the joint state space is formed with Yt and all possible inten-

tions.

8.4.4 Learning

Let θ “ tµi,Vi,Ci,Σi,Aij ,Γij ,ω,λ,Λu be all the parameters of the model. The subscripts
i, j indicate parameters of different intentions. Given N videos and their attention sequences
tpX1,Y1q, ..., pXN ,YN qu, the goal is to learn θ from the N samples by maximizing the likelihood
function,

θ˚ “ arg max
N
ÿ

n“1

ln ppXn,Yn|θq, (8.13)

where
ppXn,Yn|θq “

ÿ

ln

ppXn, ln,Yn|θq. (8.14)

ln is the latent intention sequence of the nth video sample.
Inspired by the general EM algorithm, they optimize Eq. (8.13) with the following steps.

1) Initialize ln for each training sequence pn “ 1, ..., Nq and compute corresponding θold with
Eq. (8.16).

2) Compute the optimal latent intention sequence ln
˚

for each training sequence pn “ 1, ..., Nq,

ln
˚

“ arg max ppln|Xn,Yn,θoldq. (8.15)

3) Compute new parameter θnew by optimizing

θnew “ arg max
ÿN

n“1
ln ppXn, ln

˚

,Yn|θq (8.16)

4) If the convergence condition is met, stop and output the results; else set θold “ θnew and return
to step 2).
In step 1), they use k-means to cluster the intention features and produce the initial inten-

tion labels. In step 2), they compute the optimal latent intention sequence ln
˚

with the dynamic
programming. In step 3), Eq. (8.16) is optimized by computing derivatives of the log likelihood
function with respect to the parameters.

8.5 Jointly Inferring Human Attention and Intentions in Complex
Tasks

Given an RGB-D video where a human performs a task, they want to answer three questions
simultaneously: 1) where the human is looking-attention prediction; 2) why the human is looking
there-intention prediction; and 3) what task the human is performing-task recognition. Wei et al .
proposed a hierarchical model of human-attention-object (HAO) to represent tasks, intentions, and
attention under a unified framework and to jointly infer human attention, intentions, and tasks
from videos, as shown in Fig. 8.11.

A task is a complex goal-driven human activity and performing a task is a process of eye-hand
coordination [508], as the task mop floor shown in Fig. 8.12. Human attention describes where
a human is looking. It includes the attributes of 3D location, 3D direction, and 2D location, as
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Figure 8.11: Human-attention-object (HAO) graph. The image patch under the attention node is the atten-
tion area where the human looks. © 2018 Ping Wei et al . Reprinted, with permission, from Ref. [507].

Figure 8.12: Human attention and intention in the task mop floor. While mopping the floor, the person is
looking at the floor and his intention is checking if the floor has been cleaned or not. © 2018 Ping Wei et
al . Reprinted, with permission, from Ref. [507].

shown in Fig. 8.12. A task is represented as sequential intentions which transition to each other.
An intention is composed of the human pose, attention, and objects.

As the saying goes, “eyes are the windows to the soul.” Human attention and intentions are
closely related to each other in a task. By perceiving where a human is looking, they can infer
the human’s intentions. For example, in the task make coffee shown in Fig. 8.13, while fetching
water from the dispenser, the person’s attention focuses on the mug and his intention is to check
the mug’s state (full or not). On the other hand, human intentions drive human attention, which
makes attention present different characteristics in different intentions. For example, in Fig. 8.13,
when the person’s intention is to check the mug’s state, his attention focuses on the mug; when the
person’s intention is to locate the mug, his attention rapidly moves on the desk.

Eye or face features are often used to estimate human gazes. However, in large-scale daily-
activity scenes, it is hard to obtain usable eye or face features due to low resolution. In this case,
human body feature is an alternative to infer gazes.

8.5.1 Model

Fig. 8.11 illustrates the proposed HAO model. The graph contains four layers which correspond to
the task, intentions, attention-bridged human body and objects, and the video, respectively.

A task is divided into several intentions in time domain. As shown in Fig. 8.11, the task make
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Figure 8.13: Four basic types of intentions when humans perform tasks. © 2018 Ping Wei et al . Reprinted,
with permission, from Ref. [507].

coffee is composed of eight sequential intentions, such as locate coffee jar, guide mug to approach
dispenser, check state of mug, etc. These intentions can transition to each other.

Intentions are revealed by cues of human bodies, human attention, and objects. Therefore,
an intention is decomposed into the human pose, the human attention, and the intention-related
objects, as shown in Fig. 8.11. The human attention bridges the human body and the objects.

Representation and Formulation

They use RGB-D videos recorded by motion capture technology like Kinect as inputs. Each frame
includes an RGB image, a depth image, and a 3D human skeleton composed of 3D joint locations.

Let I “ tIt|t “ 1, ..., τu be an input RGB-D video with length τ . It is the RGB-D frame at time
t.

H “ tpht,xtq|t “ 1, ..., τu is the human pose feature sequence. ht and xt are the appearance
and geometric features extracted from the 3D skeleton at time t, respectively.

S is the task label of the input video. L “ tlt|t “ 1, ..., τu is the human intention sequence of
the video, where lt is the intention label of the frame at time t.

Y “ tyt|t “ 1, ..., τu is the human attention sequence. yt is the 3D attention direction in the
t-th frame. It is defined as a unit 3D vector starting from the human head. The intersection point
of the 3D attention direction and the scene point cloud is the 3D attention location. With depth
data, the 3D attention point is projected onto the image to form the 2D attention location.

In the t-th RGB frame, they define a square image patch centered at the 2D attention point
to extract the attention appearance feature at. This image patch is like a central area where the
human is looking, as shown in Fig. 8.11.

In the t-th frame, suppose ot “ po
1
t , ..., o

m
t q is a bounding box collection of m intention-related

objects, such as mug and coffee jar in the intention guide coffee jar to approach mug. These bounding
boxes are proposed by the Faster R-CNN object detectors. With depth values of the RGB-D data,
the 2D centers of object bounding boxes are projected onto the 3D space to form the objects’ 3D
locations zt “ pz

1
t , ..., z

m
t q.

The energy that the input video is labeled with the task S, the intention L, and the attention
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Y is defined as

EpY,L, S|I,Hq “
τ
ÿ

t“1

Φpht,at,ot, ltq

loooooooooomoooooooooon

feature matching

`

τ
ÿ

t“1

Ψpxt,yt, zt, ltq

loooooooooomoooooooooon

HAO geometric relation

`

τ
ÿ

t“2

Γpyt´1,yt, lt´1, ltq

looooooooooooomooooooooooooon

attention and intention transition

.

(8.17)

Φp¨q is the feature matching energy; Ψp¨q describes the relations among the human body, attention,
and objects; Γp¨q represents the temporal transitions of attention and intention. Since the relation
between a task and its intentions is a hard constraint, they omit S in the right side of Eq. (8.17).

Feature Matching of HAO

The feature matching term is written as

Φpht,at,ot, ltq “ φ1pht, ltq ` φ2pat, ltq ` φ3pot, ltq (8.18)

Human pose matching φ1pht, ltq describes the compatibility of the pose feature ht and the
intention lt. With the 3D skeleton, they compute the differences between each joint and other joints,
and concatenate the difference vector of each joint to form ht. Using pose features of all intention
classes, they train a classifier with logistic regression for pose classification. The probability output
by the classifier is used as pplt|htq. The energy is

φ1pht, ltq “ ´ log pplt|htq. (8.19)

Attention feature matching φ2pat, ltq describes the compatibility between the attention
feature at and the intention lt. They train a CNN classifier with the VGG16 model on the square
attention patch samples. The score output from the network is used as the attention patch labeling
probability pplt|atq. Fig. 8.14 shows two examples of the probability maps. The attention matching
energy is

φ2pat, ltq “ ´ log pplt|atq. (8.20)

Object matching represents the compatibility between the object features in the video frame
and the object classes related to the intention. po1

t , ..., o
m
t q is the object bounding boxes related to

the intention lt. They fine-tune Faster R-CNN models on the training data to detect objects in
each frame. The score output from the Faster R-CNN detector is used as an object’s probability
ppoitq. The energy of all related objects in the frame is

φ3pot, ltq “ ´
1

m

ÿm

i“1
log ppoitq. (8.21)

Geometric Relations of HAO

The human attention bridges the human body and the objects. The geometric relation term
Ψpxt,yt, zt, ltq describes the location and direction constraint of the human pose, attention, and
objects. It is written as

Ψpxt,yt, zt, ltq “ ψ1pxt,yt, ltq ` ψ2pzt,yt, ltq (8.22)
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Figure 8.14: Attention map. Each map pixel value is the probability that the human looks at the pixel with
the intention shown below. © 2018 Ping Wei et al . Reprinted, with permission, from Ref. [507].

Human pose and attention relation ψ1pxt,yt, ltq describes the constraint between the 3D
attention direction and the human pose. In daily-activity scenes, the body part directions imply
the attention directions. For example, when a human manipulates objects with hands, the direction
from the head to the hands implies the attention direction.

They adopt a similar method to the work [501] to model the pose and attention relations. Eleven
3D vectors are extracted from the 3D human skeleton, such as the normal vector of the head and
shoulder plane, the direction from the head to the hands, etc. These 3D vectors are concatenated
as the attention direction feature xt.

They train a regression model from the attention direction feature to the 3D attention direction
with a 3-layer fully-connected neural network f . For an attention feature xt, the network f estimates
a hypothesized 3D attention direction fpxtq.

The relation between the human attention direction yt and fpxtq is defined as

yt “ fpxtq `wlt ,

wlt „ N pµlt ,Σltq,
(8.23)

where wlt is a noise variable following Gaussian distribution N pµlt ,Σltq. The geometric energy is
written as

ψ1pxt,yt, ltq “ ´ logN pyt|fpxtq ` µlt ,Σltq. (8.24)

The intention lt in µlt and Σlt suggests different geometric relations in different intentions,
which reflects the constraints of intentions on attention.

Attention and object relation ψ2pzt,yt, ltq describes the constraint between the human
attention location and the object locations in 3D space. The attention location is closely related
to the object location, but not necessarily the same. For example, in the intention locate mug, the
attention location shifts from the nearby areas to the mug.

Suppose ỹt is the 3D attention location. It is the intersection point of the 3D attention direction
yt and the scene point cloud. The relation between the attention location ỹt and the object bounding
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box oit is formulated as

zit “ ỹt ` vlt,õit ,

vlt,õit „ N pλlt,õit ,Λlt,õit
q,

(8.25)

where õit is the object class label of the box oit. zit is the object’s 3D location. vlt,õit is a noise variable

following Gaussian distribution N pλlt,õit ,Λlt,õit
q. The subscripts lt, õ

i
t in λlt,õit and Λlt,õit

suggests that
the attention-object relations are different for different intentions and object classes.

The relation energy of multiple objects in the frame is

ψ2pzt,yt, ltq “ ´
1

m

m
ÿ

i“1

logN pzt|ỹt ` λlt,õit ,Λlt,õit
q. (8.26)

Temporal Transition of Attention and Intention

Γpyt´1,yt, lt´1, ltq represents the transitions of attention and intention in time domain. It is written
as

Γpyt´1,yt, lt´1, ltq “ γ1pyt´1,ytq ` γ2plt´1, ltq. (8.27)

Attention transition γ1pyt´1,ytq describes the temporal relations between attention direc-
tions in two successive frames. It is formulated as a linear dynamic system [509, 501]:

yt “ Qlt´1,ltyt´1 ` ult´1,lt ,

ult´1,lt „ N p0,Υlt´1,ltq,
(8.28)

where Qlt´1,lt is the transition matrix. ult´1,lt is a noise variable following Gaussian distribution
N p0,Υlt´1,ltq. The attention transition energy is

γ1pyt´1,ytq “ ´ logN pyt|Qlt´1,ltyt´1,Υlt´1,ltq. (8.29)

Qlt´1,lt and Υlt´1,lt are both related to the intentions lt´1 and lt, which reflects the fact that
the motion patterns of human attention are constrained by human intentions.

Intention transition γ2plt´1, ltq represents the transition relations between different inten-
tions. They model the transition as a Markov process. pplt “ j|lt´1 “ iq “ dij is the transition
probability between two intentions in successive frames. The transition energy is defined as

γ2plt´1 “ i, lt “ jq “ ´ log pplt “ j|lt´1 “ iq. (8.30)

8.5.2 Inference

Given an input RGB-D video I with 3D human skeletons H, they aim to jointly output: 1) the
human intention in each frame; 2) the 3D attention direction in each frame; and 3) the task label
of the video. This problem is formulated as

pY,L, Sq˚ “ arg min EpY,L, S|I,Hq. (8.31)

They use an algorithm similar to beam search [510] to solve Eq. (8.31), as shown in Fig. 8.15.
It includes three procedures.
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Figure 8.15: Inference algorithm. For clarity, only parts of the proposed object boxes and attention points
are visualized. © 2018 Ping Wei et al . Reprinted, with permission, from Ref. [507].

1) Proposing hypothesized attention points. The possible attention points on RGB images
are proposed according to human poses. As introduced in Section 8.5.1, with the pose feature xt, a
hypothesized 3D attention direction fpxtq is computed with the network f . A 3D attention point
derived from fpxtq is projected onto the image plane to form a 2D location. Around this location,
they propose a group of possible 2D attention points, as shown in Fig. 8.15. The point range and
step are empirically defined. Each 2D point is attached a probability vector of all possible intentions
computing with the attention matching model in Eq. (8.20).

2) Proposing hypothesized objects. They use Faster R-CNN to detect all possible objects
related to all the tasks and intentions in each frame, as shown in Fig. 8.15. Each detected box has
the probabilities of all object classes.

3) Graph-guided optimization. With the hypothesized attention points and objects, the
goal is to select optimal attention points, objects, intentions, and the task label in each video frame
to minimize EpY,L, S|I,Hq.

From training samples, they construct HAO graphs for each task category. These graphs specify
the intentions, related objects, the geometric and temporal relations. Let It be the video clip from
time 1 to t. The graph-guided optimization is summarized as follows:

i) In frame It, all possible combinations of attention points, object bounding boxes, and intention
labels for each task category are generated according to the HAO graph structure. Each of such
combination is taken as one hypothesized joint label of frame It.

ii) The union of one joint label of It and one joint label sequence of the past video It´1 forms
a hypothesized joint label sequence of the video It. The energy of the hypothesized joint label
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Figure 8.16: Shared attention is everywhere in our daily life. Shared attention is a crucial first step
towards social interaction, the primary basis of social intelligence and a precursor of Theory of Mind [512]
© 2018 Lifeng Fan et al . Reprinted, with permission, from Ref. [513]. .

sequence is computed with Eq. (8.17). At time t, all hypothesized joint label sequences are sorted
according to their energies. The J joint label sequences with lowest energies are kept and others
are pruned.

iii) The step i) and step ii) are iterated frame by frame until the video ends. The joint label
sequence with the lowest energy is the output result, which includes the task label, human attention
and intentions for each frame.

8.6 Shared Attention

Shared attention is defined as the attention focus shared by two or more individuals on one object
or human [487]. Shared attention differs from joint attention in a subtle way and in the literature
the two terms are used interchangeably [487]. Shared attention is everywhere in daily life and they
can observe it every now and then in almost all social interactions. Imagine in a party, usually
humans can easily recognize a group of people with shared attention and what exactly is the shared
attention in the group at present. They can join the group and form shared attention with them
naturally and instantly. However, patients with autism may feel it difficult to interact with people
around them since they lack the ability to build shared attention with others [511]. Fig. 8.16 shows
some examples of shared attention in social scenes and how shared attention shifts temporally as
well as who are currently involved in the shared attention.

In order to be clarified with the concept of shared attention, they formulate the problem as
follows: shared attention is the gaze focus shared by two or more individuals on one object or
human; given a video clip, the task is to detect which frames contain shared attention and where is
the shared attention in those frames. To tackle this problem,they collect a new dataset VideoCoAtt
and build a deep spatial-temporal neural network with four modules: gaze estimation module, region
proposal module, spatial detection module and temporal optimization module. The intuitions for
building such a deep neural network architecture are as follows:

1) Firstly, gaze direction, which can be utilized to learn external environment state and inter-
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nal mental state, is a key feature for shared attention detection. The strongest and most direct
indication of human gaze direction is the closeup image patch of human head. They need to detect
human heads in videos and predict gaze directions for each detected head.

2) Secondly, gaze direction is of course important, but still not the whole story. Shared attention
is more than gaze intersection. According to their definition, there must be an object or human body
part as the carrier of shared attention, which means the shared attention detection task is object-
driven. Thus, bounding box proposals of object or human body parts, such as laptop, human face,
etc. is another key feature for the task. They didn’t use saliency models (like [514, 515]) because
shared attention is more influenced by social group interaction instead of visual importance, and
people engaged in shared attention are not free-viewing and may not look at the most salient object
in the environment. They use a generic object proposal generation method to generate all potential
bounding boxes independent of the categories.

3) Shared attention may last for a while before termination. Temporal information is a good
constraint to make the detection results more accurate and robust. The input to the model is just a
video clip without any other additional annotation, and the output is a shared attention heatmap
for each video frame and the final shared attention prediction results can also be inferred based on
the shared attention heatmap.

8.6.1 Model Architecture

Shared attention usually locates at the objects or human body parts gazed by two or more people
simultaneously. Obviously, human gaze and target objects in the context environment are essential
for inferring shared attention in social scene videos. Thus the shared attention detection model
comprises of four modules:

1) the gaze estimation module that extracts individual gaze directions to generate a gaze
heatmap for the whole scene;

2) the region proposal module that extracts region proposals from the context environment;
3) the spatial detection module that combines the gaze heatmap and the region proposal map

to detect shared attention in spatial space; and
4) the temporal optimization module that utilizes inter-frame correlation to optimize the pre-

dicted shared attention heatmap in temporal space. An illustration of the whole model architecture
is presented in Fig. 8.17.

Gaze and Region Proposal Modules

Gaze Estimation Module. Suppose for an input frame It in a video sequence tItut“1,...,T , the
head detector outputs a set of head locations qt,i “ px

min
t,i , ymint,i , xmaxt,i , ymaxt,i q, i = 1, 2, . . . , n, where n

could be zero when no head is detected in frame It (see the red rectangles in Fig. 8.18 (a) and (c)).
The corresponding closeup image patch for head location qt,i is cropped out from It and denoted as
wht,i, i “ 1, 2, . . . , n. They then use a batch of neural network layers Ψp¨q to regress a gaze direction

dt,i P r´1, 1s2 (yellow arrows in Fig. 8.18 (a) and (c)) for the input image patch wht,i:

dt,i fi pd
x
t,i, d

y
t,iq “ Ψpwht,iq. (8.32)

They use a Gaussian distribution to model the variation of a gaze ray with respect to the
predicted primary gaze direction dt,i, and the probability distribution is

P pθt,i|dt,iq9
1

σ
expt´

θ2
t,i

2σ2
u, (8.33)
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Figure 8.17: Illustration of the model architecture. The gaze estimation module and the region proposal
module extract two key features of individuals and the scene context from raw input videos. The subsequent
spatial detection module integrates the outputs from the two base modules to perform shared attention
detection on a single frame. The temporal optimization module utilizes temporal constraints to optimize the
predicted shared attention heatmap. © 2018 Lifeng Fan et al . Reprinted, with permission, from Ref. [513].

(a) (b) (c) (d) (e)

Figure 8.18: Illustration of gaze heatmap Hg
t generation procedure. With detected head position

qt,i (red rectangles in (a)(c)) and corresponding predicted gaze direction dt,i (yellow arrows in (a)(c)), they
first generate individual gaze heatmap Hg

t,i in (b) and (d), and then get the final gaze heatmap Hg
t in (e)

via sum-pooling all the gaze heatmaps in (d). © 2018 Lifeng Fan et al . Reprinted, with permission, from
Ref. [513].

where θt,i is the angle between a gaze ray and the predicted primary gaze direction dt,i. With
detected head position qt,i and corresponding predicted gaze direction dt,i, they compute θt,i for
each grid in the image and then use Eq. (8.33) to get the probability for this grid to be gazed at
by head qt,i. After a gaze heatmap Hg

t,i (see Fig. 8.18 (b) and (d)) for each head position qt,i is
prepared, they generate the final gaze heatmap Hg

t (Fig. 8.18 (e)) of size M ˆN via Sum-Pooling
tHg

t,iui:

Hg
t “

ÿn

i“1
Hg
t,i “

ÿn

i“1
φpΨpwht,iq, qt,iq, (8.34)

where φp¨q indicates the gaze heatmap generator based on Eq. (8.33). More illustrations about the
gaze heatmap generation procedure are shown in Fig. 8.18.

Region Proposal Module. To exploit context information, they use a region proposal module
Zp¨q to generate a binary region proposal map Hr

t of size M ˆN for input image It:

Hr
t “ ZpItq (8.35)

This module is implemented by Structured Edge Detector (SED) [516] to get region bounding boxes
tbt,i, i “ 1, 2, . . . ,mu for each frame It and then setting all the pixel values within the bbx proposals
to 1 and all other pixel values outside to 0.



CHAPTER 8. NONVERBAL COMMUNICATION: ATTENTION, GAZE, POINTING, AND COATTENTION196

Figure 8.19: Illustration of inference process. Given (a) proposal bounding boxes and (b) shared attention
heatmap, they first compute the score for each bounding box by accumulating all the confidence values inside
the bounding box. (c) Then they select the bounding boxes with score higher than a certain threshold. (d)
NMS is applied for generating final shared attention prediction. © 2018 Lifeng Fan et al . Reprinted, with
permission, from Ref. [513].

Spatio-temporal Shared Attention Network

The output feature maps of the gaze estimation module and the region proposal module are then fed
to the subsequent spatial detection module and temporal optimization module for shared attention
detection.

Spatial Detection Module. Shared attention detection is firstly conducted in a frame-by-
frame style. They apply a spatial detection module F p¨q that consists of several convolutional layers
to combine the gaze heatmap Hg

t and region proposal map Hr
t for intra-frame shared attention

detection:
H̃t “ F pHg

t , H
r
t q, (8.36)

where H̃t indicates the intermediate shared attention heatmap output from the spatial detection
module.

Temporal Optimization Module. To further exploit the temporal inter-frame constraints in
videos, they add a temporal optimization module LSTMp¨q that consists of several convolutional
Long Short-Term Memory (convLSTM) network [517] layers to optimize the output shared attention
heatmap H̃t:

tĤtut “ LSTMptH̃tutq, (8.37)

where Ĥt denotes the eventual shared attention heatmap.

Learning and Inference

For the loss function, they apply the Mean Squared Error (MSE) between the predicted shared
attention heatmap Ĥt and the ground truth shared attention binary map Ht:

LpĤt, Htq “
1

M ¨N
‖ Ĥt ´Ht ‖2, (8.38)

where both Ĥt and Ht are of size M ˆN .
The inference is possible given the predicted shared attention heatmap Ĥt, based on which

they can compute the cumulative score for each region proposal bounding box bt,i. They only
keep those proposal bounding boxes with a score higher than a threshold. Then they conduct a
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Non-Maximum Suppression (NMS) [518] and treat the remaining bounding boxes as final shared
attention prediction for frame It. See Fig. 8.19 for more detailed illustration.

Since there may be no shared attention or more than one shared attention in a scene, the
model is designed to support multimodal predictions instead of regressing a single shared attention
location.

8.6.2 Result Visualization and Analysis

Fig. 8.20 exhibits an internal visualization of shared attention detection results by the full model on
some example frames. The Gaze Heatmap roughly features the attention of each individual in the
social scene and is not enough to accurately feature shared attention. The Region Proposal Map
gives some potential shared attention proposals and provides the important spatial constraints.
Single-frame Detection combines the Gaze Heatmap and the Region Proposal Map to generate a
preliminary shared attention heatmap, which still has too much noises. After the Temporal Op-
timization by convLSTM, the shared attention heatmap is much clearer and can provide more
accurate shared attention distribution information. The final column in Fig. 8.20 compares the
eventual shared attention prediction results (depicted in red rectangles) with the ground truth
shared attention annotations (depicted in green rectangles). As shown, there are good predictions
that can exactly locate the shared attention in the social scenes, like the prediction in the first
example. However, there are also some false alarms existing. For example, The scene in the last row
actually has only one shared attention, but the model gives two predictions located near the two
human faces. This is an interesting failure example since whether the third person on the right side
is looking at the person on the left side or the person in the middle is somehow ambiguous for the
model to distinguish. That’s why the shared attention heatmap gets two peaks for this example.
But similar situation in the fifth scene is successfully solved by the model. Although they get some
reasonable results in the experiments, they are still far from completely solving this problem.

8.7 Understanding Human Gaze Communication

Eye gaze is closely tied to what people are thinking and doing [519]. Gaze communication, as a major
form of non-verbal communication, allows people to communicate with one another at the most
basic level regardless of their familiarity with the prevailing verbal language system. Such social eye
gaze functions thus transcend cultural differences, forming a kind of universal language [520]. During
conversations, eye gaze can be used to convey information, regulate social intimacy, manage turn-
taking, and convey social or emotional states. People also utilize eye gaze as approaches to determine
objects around them, i.e., human look at objects before naming or manipulating them [521]. People
are also good at identifying the target of their partner’s referential gaze and use this information to
predict what their partner is going to say [522]. In a nutshell, gaze communication is omnipresent
and multifunctional [520].

Fan et al . studied human gaze communication understanding by spatio-temporal graph reason-
ing [523]. With previous efforts and established terminologies, they distinguish daily social gaze
communications of the atomic-level into six classes: Single, Mutual, Avert, Refer, Follow, Share, as
shown in the left part of Fig. 8.21. The above atomic-level gazes capture the most general, core
and fine-grained gaze communication patterns in human social interactions. They further study the
long-term, coarse-grained gaze communications events with temporal compositions of the above
six atomic-level gaze communication patterns and generalize into totally five gaze communication
events, i.e., Non-communicative, Mutual Gaze, Gaze Aversion, Gaze Following and Joint Atten-
tion, as illustrated in the right part of Fig. 8.21. Recognizing and understanding atomic-level gaze
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Figure 8.20: Shared attention detection results on example frames. With the input video frames,
they show the outputs of the gaze estimation module and the region proposal module in the second and
third columns. The Single-frame Detection column shows the shared attention heatmap H̃t trained on a
single frame. The Temporal Optimization column shows the eventually optimized shared attention heatmap
Ĥt. The final prediction results (red rectangles) and the ground truth annotations (green rectangles) are
presented in the last column. © 2018 Lifeng Fan et al . Reprinted, with permission, from Ref. [513].

communication patterns are necessary and significant first-step for comprehensively understanding
human gaze behaviors. To facilitate the research of gaze communication understanding in computer
vision community, Fan et al . propose a large-scale social video dataset named VACATION (Video
gAze CommunicATION). It contains 300 videos with 77,891 frames and complete annotations of
human face and object bounding boxes, human attention, gaze communication type in atomic- and
event-level. The video sequences in the dataset are elaborately collected to cover rich realistic social
scenes, different cultures, and diverse appearances of actors/actresses, providing a solid foundation
for human gaze behavior study. See Fig. 8.22.

8.7.1 Model Architecture

With the well established dataset, the task is defined as follows. Given a third-person social video
sequence with the bounding boxes of human faces and objects, they aim to infer the social gazes for
all the persons, build spatio-temporal attention graph and predict gaze communication relations
for this video sequence in both atomic-level and event-level.

With this structured task that requires a comprehensive modeling of human-human and human-
scene interactions in both spatial and temporal space, Fan et al . propose a novel spatio-temporal
reasoning graph network for atomic-level gaze communication detection as well as an event network
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Figure 8.21: Fan et al . [523] study human gaze communication dynamics in two hierarchical levels: atomic-
level and event-level. Atomic-level gaze communication describes the fine-grained structures in human gaze
interactions, i.e., single, mutual, avert, refer, follow and share (as shown in left part). Event-level gaze
communication refers to high-level, complex social communication events, including Non-communicative,
Mutual Gaze, Gaze Aversion, Gaze Following and Joint Attention. Each gaze communication event is a
temporal composition of some atomic-level gaze communications (as shown in right part). © 2019 Lifeng
Fan et al . Reprinted, with permission, from Ref. [523].

Figure 8.22: Example annotations of the VACATION dataset, showing that the dataset covers rich gaze
communication behaviors, diverse general social scenes, different cultures, etc. It also provides rich anno-
tations, i.e., human faces, gaze communication structures and labels. Human faces and related objects are
marked by boxes with the same color of corresponding communication labels. White lines link entities with
gaze relations in a temporal sequence and white arrows indicate gaze directions in the current frame. There
may exist various number of agents, many different gaze communication types and complex communica-
tion relations in one frame, resulting in a highly-challenging and structured task. © 2019 Lifeng Fan et al .
Reprinted, with permission, from Ref. [523].

with encoder-decoder structure for event-level gaze communication understanding. The reasoning
model learns the relations among social entities and iteratively propagates information over a social
graph. The event network utilizes the encoder-decoder structure to eliminate the noise in social
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Figure 8.23: Detailed architecture of the proposed spatio-temporal reasoning model for gaze
communication understanding. © 2019 Lifeng Fan et al . Reprinted, with permission, from Ref. [523].

gaze communications and learns the temporal coherent for each event to classify event-level gaze
communication.
Social Graph. They first define a social graph as a complete graph G“pV, Eq, where nodes v PV
take unique values from t1, ¨ ¨ ¨ , |V|u, representing the entities (i.e., scene, human) in social scenes,
and edges e“ pv, wq P E , representing all the possible human-human gaze interactions or human-
scene relations. pv, wq indicates a directed edge vÑw. There is a special node sPV represents the
social scene, and the other nodes Vzs are humans.

For node v, its node representation/embedding is denoted by a V -dimension vector: xv P RV .
Similarly, the edge representation (or edge embedding) for edge e “ pv, wq is denoted by an E-
dimension vector: xv,w P RE . Each human node v P Vzs has an output state lv P L that takes a
value from a set of atomic social gaze labels L“tsingle, mutual, avert, refer, follow, shareu. They
further define an adjacency matrix AP r0, 1s|V|ˆ|V| to represent the communication structure over
the complete social graph G, where each element av,w represents the connectivity from node v to
w.

Different from most previous graph neural networks that only focus on inferring graph- or node-
level labels, the model aims to learn the graph structure A and the visual labels tlvuvPVzs of all the
human nodes Vzs simultaneously.

To this end, the spatio-temporal reasoning model is designed to have two steps. First, in spatial
domain, there is a message passing step that iteratively learns gaze communication structures A and
propagates information over A to update node representations. Second, an LSTM is incorporated
into the model for more robust node representation learning by considering temporal dynamics. A
more detailed model architecture is schematically depicted in Fig. 8.23. In the following, the above
two steps of the model will be described in detail.
Message Passing based Spatial Reasoning. Inspired by previous graph neural networks [524,
525, 526], the message passing step is designed to have three phases, an edge update phase, a graph
structure update phase, and a node update phase.

The whole message passing process runs for N iterations for iteratively propagating information.
In n-th iteration step, the model first perform the edge update phase that updates edge repre-

sentations ynv,w by collecting information from connected nodes:

ypnqv,w “ fEpxy
pń 1q
v ,ypń 1q

w ,xv,wyq, (8.39)
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where y
pń 1q
v indicates the node representation of v in pn´1q-th step, and x¨, ¨y denotes concatenation

of vectors. fE represents an edge update function fE : R2V`E Ñ RE , which is implemented by a
neural network.

After that, the graph structure update phase updates the adjacency matrix A to infer the

current social graph structure, according to the updated edge representations y
pnq
v,w:

apnqv,w “ σpfApy
pnq
v,wqq, (8.40)

where the connectivity matrix Apnq “ ra
pnq
v,wsv,w encodes current visual communication structures,

fA is a connectivity readout network fA : RE Ñ R that maps an edge representation into the
connectivity weight, and σ denotes nonlinear activation function.

Finally, the node update phase update node representations y
pnq
v via considering all the incoming

edge information weighted by the corresponding connectivity:

ypnqv “ fV px
ÿ

w
apnqv,wypnqv,w,xvyq, (8.41)

where fV represents a node update network fV :RV ÈÑRV.
The above functions fp¨q are all learned differentiable functions. In above message passing pro-

cess, social communication structures are inferred in the graph structure update phase (Eq. (8.40)),
where the relations between each social entities are learned through updated edge representations
(Eq. (8.39)). Then, the information is propagated through the learned social graph structure and
the hidden state of each node is updated based on its history and incoming messages from its
neighborhoods (Eq. (8.41)). If we know whether there exist interactions between nodes (human,
object), i.e., given the groundtruth of A, we can learn A in an explicit manner, which is similar to
the graph parsing network [525]. Otherwise, the adjacent matrix A can be viewed as an attention
or gating mechanism that automatically weights the messages and can be learned in an implicit
manner; this shares a similar spirit to graph attention network [527].
Recurrent Network based Temporal Reasoning. Since the task is defined on a spatio-
temporal domain, temporal dynamics should be considered for more comprehensive reasoning. With
the updated human node representations tyv P RV uvPVzs from the message passing based spatial
reasoning model, LSTM is further applied to each node for temporal reasoning. More specifically,
the temporal reasoning step has two phases: a temporal message passing phase and a readout phase.
They denote by ytv the feature of a human node v P Vzs at time t, which is obtained after N -iteration
spatial message passing. In the temporal message passing phrase, the information is propagated
over the temporal axis using LSTM:

htv “ fLSTMpy
t
v|h

t́ 1
v q, (8.42)

where fLSTM : RV Ñ RV is an LSTM based temporal reasoning function that updates the node
representation using temporal information. ytv is used as the input of the LSTM at time t, and htv
indicates the corresponding hidden-state output via considering previous information ht´1

v .
Then, in the readout phase, for each human node v, a corresponding gaze label l̂tv PL is predicted

from the final node representation htv:
l̂tv “ fRph

t
vq, (8.43)

where fR :RV ÑL maps the node feature into the label space L, which is implemented by a classifier
network.
Event Network. The event network is designed with an encoder-decoder structure to learn the
correlation of the atomic gazes and classify the event-level gaze communication for each video
sequence. To reduce the large variance of video length, they pre-process the input atomic gaze
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Figure 8.24: Qualitative results of atomic-level gaze communication prediction. Correctly inferred labels are
shown in black while error examples are shown in red. © 2019 Lifeng Fan et al . Reprinted, with permission,
from Ref. [523].

sequence into two vectors: i) the transition vector that records each transition from one category of
atomic gaze to another, and ii) the frequency vector that computes the frequency of each atomic
type. The encoder individually encodes the transition vector and frequency vector into two em-
bedded vectors. The decoder decodes the concatenation of these two embedded vectors and make
final event label prediction. Since the atomic gaze communications are noisy within communicative
activities, the encoder-decoder structure will try to eliminate the noise and improve the prediction
performance. The encoder and decoder are both implemented by fully-connected layers.

Here is a short summary of the whole spatio-temporal reasoning process. As shown in Fig. 8.23,
with an input social video (a), for each frame, an initial complete graph G (b) is built to represent the
gaze communication entities (i.e., humans, and social scene) by nodes and their relations by edges.
During the spatial reasoning step (c), edge representations are firstly updated using Eq. (8.39) (note
the changed edge color compared to (b)). Then, in the graph structure update phase, the graph
structure is inferred through updating the connectivities between each node pairs using Eq. (8.40)
(note the changed edge thickness compared to (b)). In the node update phase, node embeddings are
updated using Eq. (8.41) (note the changed node color compared to (b)). Iterating above processes
leads to efficient message propagation in spatial domain. After several spatial message passing
iterations, the enhanced node feature is fed into a LSTM based temporal reasoning module, to
capture the temporal dynamics (Eq. (8.42)) and predict final atomic gaze communication labels
(Eq. (8.43)). Then the event network is applied to reason about event-level labels based on previous
inferred atomic-level label compositions for a long sequence in a larger time scale.

8.7.2 Result Visualization and Analysis

Fig. 8.24 shows some test result example visualizations by the full model for the atomic-level
gaze communication classification task. The predicted communication structures are shown with
bounding boxes and arrows. The full model can correctly recognize different atomic-level gaze
communication type (shown in black) with effective spatial-temporal graph reasoning. Some error
examples are also exhibited (shown in red).



Figure 9.1: Illustration of the cognitive science experiment discussed: (Left) Observers immediately report
seeing a walking pattern even without the outline contour of a person; (Right) Observers recognize the goal
of each shape in a Heider-Simmel display.

Chapter 9

Intentionality

9.1 Introduction

Understanding human activities is one of the most fundamental problems in artificial intelligence
and computer vision. As the most readily available learning source, there has been great effort put
into video analysis in the computer vision field. However, there are more profound reasons why we
have to look to the origin of human activity understanding. With studies and analyses of human
motion perception rooted in the field of neuroscience [528]; Johansson’s seminal work on visual
perception of biological motion [529] first paved the way for the mathematical modeling of human
action and automatic recognition. Notably, using a dot-representation of human motions instead
of using pixel-based input, Johansson adopted a method to produce proximal patterns (i.e., the
moving light display experiment), which demonstrated that human perception of activities does not
tightly couple with pixel-based features; human subjects can still perceive the semantics of activities
from sparse representations of motions. Similarly, in the classic Heider-Simmel display [530], human
subjects can directly and irresistibly perceive a story-like description of the observed motions just
upon viewing simple shapes roaming around a space. These experiments set up a cornerstone for
studying the underlying intents, rather than the superficial behaviour, that matters when we observe
motions [531].

In fact, cognitive studies [123] also have shown that humans have a strong inclination to interpret
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Figure 9.2: A map of research directions and applications related to understanding and reasoning with intents
considered. Courtesy of Sukthankar [535]

events as a series of goals driven by the intentions of agents. As discovered by Gergely et al . [532],
infants as young as 12 months old have the ability to inference about actions using a rationality
principle: the assumption that intentional actions bring about the most efficient and economical
path in order to achieve a goal. They further proposed the teleological stance theory [533], which
states that infants are endowed with an interpretational system that allows teleogical reasoning and
inference over actions depending on goals. Such a teleological stance has inspired various models
for intent estimation as an inverse planning problem [124, 534].

In addition to perceptible goal achievements, intents often include other hidden status of agents
(humans and animals), such as drinking water because of being “thirsty,” “hungry” or “tired.”
Such transient status are similar to, but more complex than, the fluents of objects, and come with
the following characteristics: (i) They are hierarchically organized in a sequence of goal status
and are the main factors driving actions and events in a scene. (ii) They are oftentimes “dark,”
that is, not represented by pixels. (iii) Unlike the instant change of fluents in response to actions,
intents are often formed across long spatial-temporal ranges. With the hope of truly understanding
human behaviors and the pressing need for sophisticated and efficient autonomous agents, these
characteristics add new challenges to research and have already boomed a large field covering topics
in computer vision as well as artificial intelligence, see in Fig. 9.2.

In this chapter, we discuss on the topic of teleological reasoning and intent in both modeling and
related applications. We provide a formulation for representing this process using Spatial-Temporal-
Causal And-Or Graphs (STC-AOG) in Section 9.2. Next we use goal inference and action prediction
as two typical teleological reasoning tasks to illustrate how we integrate properties about intents
into real-world scenes in Section 9.3 and Section 9.4. We conclude the chapter with a discussion on
possible future directions on this field.
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9.2 Formulating Intents with STC-AoG

Understanding an event typically requires four types of knowledge need to be captured by a knowl-
edge representation system: (i) spatial knowledge that expresses the physical configuration of the
environment when performing the task; (ii) temporal knowledge which reveals the series of human
actions in the process of the task, (iii) causal knowledge that conveys the status change of an
object in each dynamic human action and (iv) theory of mind representations for modeling oth-
ers’ beliefs under social scenarios. Spatial knowledge empower the ability of spatial reasoning for
getting better estimation about one’s current status, while temporal and causal knowledge work
together in deriving how things will behave and why things behaved like they did. Here we put less
effort on the multi-agent social scenarios to make the problem clearer. To capture the first three
types of knowledge required in understanding event and inferring latent intent, we here represent
knowledge of the physical environment, consisting of objects, scenes, actions by a joint stochastic
spatial, temporal, and causal And-Or Graph (STC-AoG).

The And-Or Graph (AoG) is defined as a 3-tuple G “ pV,R, P q, where V “ V ANDYV ORYV T

consists of a disjoint set of And-nodes, Or-nodes, and Terminal nodes respectively. And-nodes
represents decomposition (conjunction) of an entity into its constituent parts. Or-nodes represents
alternative ways of decomposition and Terminal nodes represents grounding basic entities which
serve as a basis for describing a scene or event. R represents a set of relations between Or-nodes
or sub-graphs, each of which represents a generating process from a parent node to its children
nodes. Given this definition, a parse graph is an instance of G where each Or-node decides one of
its children.

On top of the basic AoG structure, we can define three different types of AoG for describing
events. First, we represent spatial concepts through a stochastic Spatial And-Or Graph (S-AoG),
where nodes in the S-AoG represent visual information of varying levels of abstraction over basic
object entities. An And-node in this case signifies physical compositionality whereas an Or-node
describes structural variation. Next, the hierarchical nature of actions leads us to represent actions
by a stochastic Temporal And-Or Graph (T-AoG), where And-nodes correspond to a sequence
of actions with the semantic of a macro action, Or-nodes correspond to alternative actions for
completing the same macro action, Terminal-nodes are the basic action primitives we are concerned
with. Finally, a Causal And-Or Graph (C-AoG) for encapsulating causality, where each cauasl node
is a fluent change operator, transforming an input fluent to an output fluent by using an action
from the T-AoG. In this way, we can easily represent an event like “make a hot meal” as a joint
spatial, temporal, causal parse graph as shown in Fig. 9.3.

With the above definition given a clear specification on how each aspect of an event is formulated,
we here clarify on how such a STC-AoG representation is used for representing intents and goals. As
we can notice from the formulation, each parse graph of this joint AoG corresponds to a complete
event. At some point before the event is finished, we can decompose a STC-pg into three different
areas as shown in Fig. 9.4. We observe a sub-parse graph oftentimes when observing events that
haven’t ended yet. Given the knowledge about the full event, we will have three different type of
sub-parse graphs over the full one. First, we have the current situation defined in a partial parse
graph pg0:t describing the spatial-temporal changes of the event during time interval r0, ts. This
part of the sub-parse graph show explanations on how events evolved during time r0, ts, which also
correspond to the prior observations (or history) at current observation time point t. Next, we
have the following partial parse graph to the current action period in rt, t`Ds, which correspond
to nodes in orange and triangle in red. This sub parse graph pgt:t`D represents what the event is
currently evolving as and is oftentimes related to people’s attention when working on a specific
task. Finally, intents and plans are covered in the pgt:t`T , which gives possible future actions and
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Figure 9.3: An STC-pg for representing the event of “make hot meal.” From bottom to top, temporal nodes
describe human action patterns at different level of resolution where macro actions are decomposed into
action primitives. Spatial nodes describe the status of meat (e.g ., being salted or not) and causal nodes
describe the transition of spatial entity status after applying actions. These three types of nodes jointly
describe scene changes over time caused by human action effects and planning which serve as a in-depth
representation of the event.

Figure 9.4: In this figure And-nodes are represented with center-colored nodes and Or-nodes are represented
by center-white nodes. Connections between And-node to other nodes are in solid line and dotted line
represent connection between Or-node to its predecessors. Parse graphs representing past are colored in
blue, the partial parse that currently is being processed on is colored in orange and future parses are shaded
in green.

goal states with the constraints provided by the full STC-AoG structure.
A perhaps more intuitive illustration of the decomposition of an STC-pg comes from taking
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different perspectives. An human-performed event, when standing in the shoes of the performer, is
actually represented by a sequence of desired states and corresponding actions for achieving this
states. With the hierarchical nature in planning and perceptual organization, the corresponding
STC-pg actually describes the detailed attribute values of scene, action during each step of the
planning for this egocentric planner. Given this into consideration, when taking from an allocentric
perspective and interpreting others’ intents and goals, what we try to obtain is actually this ground-
truth STC-pg that can summarize the planner’s goals and actions. In contrast to egocentric agents
who possess the ground-truth STC-pg, we need to estimate and select the most probable STC-
pg from a set of possible parse graphs we are knowledgeable of that best explains the current
observation. To this end, intent recognition and goal/action prediction is transformed into finding
the best partial parse given the current observation over the STC-AoG that captures all knowledge
of possible events. We skip the technical details about optimal parsing or partial parsing here as
we have described algorithms and details in the second volume of the book. Next, we get into more
details on two common applications of recognizing intents and goals, goal prediction and action
prediction.

9.3 Inferring the Intentionality and Goals of Agents

As we mentioned in Section 9.2, intents and goals could be properly represented by a STC-pg.
However, there are several critical issues with obtaining this structure, especially from an allocentric
view when inferring others’ intents and goals. This reflects to the second property we discussed about
intents in Section 9.1. Intents are “dark,” in the sense that it sometimes can not be represented by
pixel. Take the example shown in Fig. 9.5, when a person heads to a food truck in the courtyard,
there are extra efforts needed in obtaining the STC-pg which covers internal status of the person
being hungry. Such a gap between planner’s representation of events and observer’s causes trouble
for obtaining the full STC-AoG, as well as retrieving the most probable STC-pgs when inferring
others’ intents.

This problem is not entirely unsolvable and leads to the definition of functional objects. To
a certain degree, much of human understanding depends on the ability to comprehend causality,
this induces the concept of functional objects that bind the actions and potential effects to the
objects themselves, e.g ., a chair is bind with sitting and relaxing. Other examples as shown in
Fig. 9.6 include food truck (solving hunger), trashcan (throwing trash), or vending machine (solving
thirst), etc. With the prior knowledge of this functional objects, we can solve the “dark” problem
by correlating the goals and intents to the actual actions or states that agents want to achieve to
interactions with functional objects. In this sense, we will only need the knowledge of food truck sell
foods that solves hunger to interpret the event of one person approaching to it without observing
the fact that he/she is hungry at the moment.

Additionally, we can make simple and proper inference with only functional objects and trajec-
tories of agents even without the detailed STC-AoG representation. As studied by Xie et al . [92],
people in pulic spaces are expected to intentionally take shortest paths (subject to obstacles) to-
ward certain functional objects (e.g ., vending machine, picnic table, trash-can, etc.) where they
can satisfy certain needs (e.g ., quench thirst). Colored trajectories in Fig. 9.6 show several tra-
jectories of people. If you would notice, trajectories are naturally attracted to functional objects
like food truck or vending machine, while being repelled from obstacles like foul odor or grassland.
Without a detailed description of the plan of the agents (in STC-AoG form), we can already use
such attracting/repelling properties for a rough estimation of goal recognition under the rationality
principle.
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Figure 9.5: Example of human trajectories taken at UCLA courtyard. Courtesy of (Xie, 2018) [92].

Figure 9.6: An example video where people driven by latent needs move toward functional objects. (Right)
A top down visualization of prediction results of: (a) Inferring and localizing the person’s goal destination;
(b) Predicting a person’s full trajectory (red); (c) Estimating the force field affecting the person (the blue
arrows, where their thickness indicates the force magnitude; the black arrows represent another visualization
of the same field.); and (d) Estimating the constraint map of non-walkable areas and obstacles in the scene
(the “holes” in the field of blue arrows and the field of black arrows). Courtesy of (Xie, 2018) [92].

Such an idea was formulated by Xie et al . as a scene representation consists of layers of attraction
propulsion fields based on objects’ functionality and influence on human activities. They referred to
these objects as “dark matter” because they are distinguishable from other objects primarily by the
functionality to attract or repel people, not by their appearance. This definition comes by analogy
to cosmology, where existence and properties of dark matter are hypothesized and inferred from its
gravitational effects on visible matter. Table 9.1 lists examples functional objects they concerned
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with that exert attraction and repulsion forces on people’s trajectories. Under this scenario, intent
and goal recognition are reflected by models’ capability of inferring goal destinations, estimating
the force fields affecting the person and predicting the person’s full trajectory.

Examples of “dark matter” Human need

Vending machine / Food truck / Table Hunger

Water fountain / Vending machine Thirst

ATM / Bank Money

Chair / Table / Bench / Grass Rest

News stand / Ad billboard Information

Trash can Hygiene

Bush / Tree Shade from the sun

Table 9.1: Examples of human needs and objects that can satisfy these needs in the context of a public space.
These functional objects appear as “dark matter” attracting people to approach them, or repelling people
to stay away from them.

Agent-based Lagrangian Mechanics

We briefly discuss about the modeling of this “dark matter” formulation using force fields and
least action principle in the Langragian Mechanics framework. At the scale of large scenes such as
courtyard, people can be considered as “particles” whose shapes and dimensions are neglected, and
their motion dynamics can be modeled within the framework of Lagrangian mechanics (LM) [536].
LM studies the motion of a particle with mass, m, at positions xptq “ pxptq, yptqq and velocity,
9xptq, in time t, in a force field ~F pxptqq affecting the motion of the particle. Particle motion in
generalized coordinates system is determined by the Lagrangian function, Lpx, 9x, tq, defined as the
kinetic energy of the entire physical system, 1

2m 9xptq2, minus its potential energy, ´
ş

x
~F pxptqq ~dxptq,

Lpx, 9x, tq “
1

2
m 9xptq2 `

ż

x

~F pxptqq ~dxptq. (9.1)

Action in such a physical system is defined as the time integral of the Lagrangian of trajectory x
from t1 to t2:

şt2
t1
Lpx, 9x, tqdt. LM postulates that a particle’s trajectory, Γpt1, t2q “ rxpt1q, ...,xpt2qs,

is governed by the principle of Least Action in a generalized coordinate system:

Γpt1, t2q “ arg min
x

ż t2

t1

Lpx, 9x, tqdt. (9.2)

Since the classical LM is not directly applicable to the trajectory analysis domain, we can simplt
extend it into Agent-based Lagrangian mechanics (ALM) by letting the physical system consists
of a set of force sources. The first extension enables the particles to become agents with free will
to select a particular force source from the set which can drive their motion. The second extension
endows the agents with knowledge about the layout map of the physical system. Consequently,
by the principle of Least Action, the agents can globally optimize their shortest paths toward
the selected force source, subject to the known layout of obstacles. These two extensions can be
formalized as follows.

Let i-th agent choose j-th source from the set of sources. Then, i’s action, i.e., the trajectory
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Figure 9.7: Visualizations of the force field for the scene from Fig. 9.6. (left) In LM, particles are driven by
a sum of all forces; the figure shows the resulting fields generated by only two sources. (right) In ALM, each

agent selects a single force ~Fjpxq to drive its motion; the figure shows that forces at all locations in the scene
point toward the top left of the scene where the source is located. The white regions represent our estimates
of obstacles. Repulsion forces are short ranged, with magnitudes too small to show here. Courtesy of Xie [92]

could be obtained by

Γijpt1, t2q

“ arg min
x

ż t2

t1

”1

2
m 9xptq2`

ż

x

~Fijpxptqq ~dxptq
ı

dt,

s.t. xpt1q “ xi, xpt2q “ xj .

(9.3)

Here we use the notation ~Fijpxq to denote the net force coming from an attracting/repelling
sources. In order to solve this optimization problem, certain approximation need to be applied. In
the domain of public spaces, the agents cannot increase their speed without limit. Hence, every
agent’s speed is upper bounded by some maximum speed. Also, it is reasonable to expect that
accelerations or decelerations of people along their trajectories in a public space span negligibly
short time intervals. Consequently, the first term in Eq. (9.3) is assumed to depend on a constant
velocity of the agent, and thus does not affect estimation of Γijpt1, t2q. For simplicity, we can
also assume that agents make only discrete displacements over a lattice of scene locations Λ (e.g.,
representing centers of superpixels occupied by the ground surface in the scene), i.e., ~dxptq “ ~∆x.
The second assumption is that the agent is reasonable and always moves along the direction of
~Fijpxq at every location. We can therefore transfrom Eq. (9.3) into:

Γijpt1, t2q “ arg minΓĂΛ

ÿ

xPΓ

|~Fijpxq ¨ ~∆x|,

s.t. xpt1q “ xi, xpt2q “ xj .
(9.4)

A globally optimal solution of (Eq. (9.4)) can be found with the Dijkstra algorithm. The end
location of the predicted Γijpt1, t2q corresponds to the location of source j. It follows that estimating
human trajectories can readily be used for estimating the functional map of the scene. To better
model agents’ trajectories we can consider three types of agents’ behaviors as described in [534]
in addition to force fields. “single” which indicates agents’ intents on reaching one specific goal,
“sequential” which indicates agents’ intents to achieve several goals along the trajectory and “change
of intent” when an agent may give up on the initial goal before reaching it, and switch to another
goal.

Under the assumption that we have access to noisy trajectories of agents, observed over a given
time interval in the video, Γ1 “ Γ1p0, t0q “ tΓ

1
ip0, t0q : i “ 1, ...,Mu. Given these observations, we

define latent trajectories of agents for any time interval, pt1, t2q, including those in the future (i.e.
unobserved intervals), Γ “ Γpt1, t2q “ tΓipt1, t2q : i “ 1, ...,Mu. Each trajectory Γi is specified by
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accounting for one of the three possible behaviors of the agent. Following the principle of Least
Action, as specified in Section 9.3, an optimal trajectory Γijpt1, t2q “ rxpt1q “ xi, . . . ,xpt2q “ xjs

of ai at location xi moving toward sj at location xj minimizes the energy
ř

xPΓij
|~Fijpxq ¨ ~∆x|. The

agent’s behavior can thus be formulated as

Γi “
ÿ

j

Γij “ arg min
ΓĂΛ

ÿ

j

ÿ

xPΓ

|~Fijpxq ¨ ~∆x|, (9.5)

where the summation over j uses: (i) only one source for “single” intent (i.e., Γi “ Γij when
rij “ 1), (ii) two sources for “change of intent,” and (iii) maximally n sources for “sequential”
behavior. Note that for the “sequential” behavior the minimization in (Eq. (9.5)) is constrained
such that the trajectory must sequentially pass through locations xj of all sources sj pursued by
the agent.

Probabilistic Inference with MCMC

Using these definitions, we can infer the force field of function map M as well as agents’ behaviour
types Z by probabilistic inference over the joint posterior distribution over W “ tM,Zu:

P pW |Γ, Iq9P pW |IqP pΓ|W q “ P pW |Iq
M
ź

i“1

P pΓi|W q, (9.6)

where the terms are decomposed into prior estimation of the force fields and the likelihood of tra-
jectories given the function map. We skip the probabilistic formulation of the probability P pW |Iq
which is discussed detailedly in [92]. The likelihood of trajectory Γi comes in a natural form from
energy-based models where the energy that ai must spend moving along the trajectory and prob-
ability can be formulated as:

P pΓi|W q9e
´λ

ř

j,xPΓij
|~Fijpxq¨ ~∆x|

, (9.7)

where λ ą 0. The likelihood in (Eq. (9.7)) models that when agent i is far away from a potential
source, the total energy needed to cover that trajectory is bound to be large, and consequently
uncertainty about agent i’s trajectory is large. Conversely, as agent i gets closer to a force field
source, uncertainty about the trajectory reduces.

Under this probabilistic formulation, given observations tI,Γu, we can estimate the overall
status over interval p0, t0q through the data-driven MCMC [537, 538] approach. In essence, each
step of the MCMC proposes a new solution Wnew. The decision to discard the current solution, W ,
and accept Wnew is made based on the acceptance rate,

α “ minp1,
QpWÑWnewq

QpWnew ÑW q

P pWnew|Γ, Iq

P pW |Γ, Iq
q. (9.8)

If α is larger than a threshold uniformly sampled from r0, 1s, the jump to wnew is accepted. The
posterior distribution of P pW |Γ, Iq is specified as above. Initial states of the MCMC algorithm is
designed to be states that will not lose generality in the sampling process. New proposals Wnew

are generated based on initial states W , please refer to [92] for more details. We show an example
of step-wise result for models’ estimation during the MCMC sampling process in Fig. 9.8. We also
shown an comparison of hyperparameter selection for λ which governs the uncertainty in likelihood
modeling in Fig. 9.9.
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Figure 9.8: Top view of the scene from Fig. 9.6 with the overlaid illustration of the MCMC inference. The rows
show the progression of proposals of the function map in raster scan (the white regions indicate obstacles),
and trajectory estimates of agent i with goal on the right which gradually shifts to the location at the
top-left of the scene during MCMC process, and finds two equally likely trajectories for this goal. Courtsey
of Xie [92].

Figure 9.9: Top view of the scene from Fig. 9.6 with the overlaid trajectory predictions of a person who
starts at the top-left of the scene, and wants to reach the dark matter in the middle-right of the scene (the
food truck). A magnitude of difference in parameters λ “ 0.2 (on the left) and λ “ 1 (on the right) used to
compute likelihood P pΓij |W q gives similar trajectory predictions. The predictions are getting more certain
as the person comes closer to the goal. Warmer colors represent higher likelihood. Courtsey of Xie [92].

9.4 Predicting Human Intents in Daily activities

Compared to agents’ trajectories, understanding daily active humans naturally requires more deli-
cate reasoning due to its non-Markovian property and rich contexts between human and environ-
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Figure 9.10: What is he going to do? (a)(b) Input RGB-D video frames. (c) Activity prediction: human action
with interacting objects, and object affordances (how the agent will perform the task). The red skeleton is
the current observation. The magenta, green and blue skeletons and interacting objects are possible future
states.

ments. As we previously discussed in Section 9.2, an event is decompositional spanning spatial,
temporal and causal aspects. In this section, we dig deeper into how such a STC-AoG could be
formulated and provide examples on how inference could be done over such representations.

The most proper correspondence to STC-AoG in algorithmic structures is Stochastic Context-
Free Grammars (SCFG). Here we leave the detailed definition of SCFG to Book II as it is not our
main focus. Such a grammar model need to capture features including human actions, objects, and
their affordances. Down to earth, the problem of learning activities and inferring goals become the
problem of learning grammar models from demonstration sequences and finding the best partial
parse graphs. Common tasks related to intent recognition are transformed in a similar way. Recall in
Fig. 9.4, attention prediction becomes the problem of finding the objects that the current sub-parse
graph is at, future action prediction becomes finding the most probable next-action token given the
current parsing results. Depending on the fineness of study, one can add on to these rough topics by
making finer level inferences like predicting gaze direction, foot step location as well as hand-object
interaction patterns. To provide an illustrative example, we use the task of future action prediction
in this case to walk through the whole pipeline.

Consider the image from a video shown in Fig. 9.10 (a). The task of future action prediction
is to predict what the possible future states are to some extent. For example, three possible future
states are likely as in Fig. 9.10 (c). After applying basic computer vision tools, with the knowledge
of the person grabing a cup, we should consequently make the prediction that the person is going to
get water. We here show an example STC-AoG representation from Qi et al . [45] for representing
events using spatial object/human features as well as actions in Fig. 9.11.
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Figure 9.11: Illustration of the STC-AoG. The sky-blue area indicates the T-AoG, and the coral area indicates
the S-AoG and the C-AoG is latent and therefore omitted in this graph. The T-AoG is a temporal grammar
in which the root node is the activity and the terminal nodes are sub-activities. The S-AoG represents the
state of a scene, including the human action, the interacting objects and their affordances.

The problem of inferring intentions and making predictions of future actions require the basis
of learning events and organizing them into a STC-AoG structure. This learning process can be
decomposed into two main parts: (i) learning the symbolic grammar structure for each event/task,
and (ii) learning the parameters Θ of the underlying grammar model. Using grounded action se-
quences, one can simply learn a grammar model from all observed sequences by grammar induction
tools. Such an algorithm learns the And-node and Or-nodes by generating significant patterns and
equivalent classes which are basic approaches for general grammar induction problems.

Parameter learning over the learned grammar structure is obtained from maximum likelihood
estimation (MLE). The optimal branching probabilities of Or-Nodes is simply given frequency
of each alternative choice [154]. This is also the standard protocol of other grammar induction
problems. We show an example grammar learned from these methods in Fig. 9.12.

Given this learned grammar model G, we can conduct probabilistic inference for the most
probable task that one agent is trying to work on. With spatial features and relationships aggregated
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Figure 9.12: An example of a temporal grammar. The green and yellow nodes are And-nodes and Or-nodes
respectively. The numbers on branching edges of Or-nodes represent the branching probability. The circled
numbers on edges of And-nodes indicates the temporal order of expansion.

into Γ, the essential problem becomes:

PG˚ “ arg max
PG

ppPG|Γ,Gq

9 arg max
PG

ppΓ|PGqppPG|Gq
(9.9)

which is an maximum a posteri inference for the most probable parse graph PG. The grammar prior
of parse graph ppPG|Gq follows from the parsing probability of parse graph PG given grammar G.
Note that there are practical computational issues for enumerating possible PGs and also computing
the probability, several methods was proposed with special focus on the computational efficiency
of models, e.g ., Generalized Earley Parser(GEP) [539]. We skip the details of such methods as it is
not our primary focus and please refer to Book II where we discussed the computational concerns
in detail. An example of the step-wise parsing result is shown in Fig. 9.13.

The remaining question lies in making proper predictions about future states. Given the current
parsing result PGt of the observed video sequence, the STC-AoG could be used to predict the next
sub-activity, action, which object the subject is going to interact with, and how the subject will
interact with the object. Similarly, the problem of making the next action becomes

a˚ “ arg max
aPA

ppa|G,PGtq

9 arg max
aPA

ÿ

PGt`1

lt`1“rlt,as

ppPGt`1|G,PGtq (9.10)

where lt denotes the derived sentence of parse graph PGt. This is done by trying all available future
parse graphs PGt`1 that have a as the last token in the derived sentence lt`1 which concatenate on
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Figure 9.13: A simplified example illustrating the parsing and symbolic prediction process. In the first two
figures, the red edges and blue edges indicates two different parse graphs for the past observations. The
purple edges indicate the overlap of the two possible explanations. The red parse graph is eliminated from
the third figure. For the terminal nodes, yellow indicates the current observation and green indicates the
next possible state(s).

Figure 9.14: An example scenario of “refilling tea” in the office. Nodes in the figure corresponds to grammar
terminals/non-terminals. Lines and nodes highlighted in green indicate the current parse graph PGt. Lines
and nodes colored in blue refers to possible alternatives parses for PGt. Lines and nodes in color red show
the grammatical correct next action, which is the only proper next action in this case, “blend down.”

lt with action a. With this approximation, the problem is simplified into calculating the grammar
transition probability from partial parse graph PGt to partial parse graph PGt`1. As the grammar
transition probability will be 0 for sequences that is not derivable by the grammar, only grammatical
correct next actions will be proposed as shown in Fig. 9.14. Please also refer to Fig. 9.13 for a real
example obtained from current method’s computation.

9.5 Discussion

In Section 9.4, we briefly went through an example which takes temporal AoG as the primary entry
point for learning event representations and making inferences. As we mentioned in Section 9.2,
knowledge of events covers both spatial, temporal, and also causal aspects for description purposes.
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Figure 9.15: The task graph and conjugate task graph representation for the same task of assembling furni-
ture: (Left) the task graph of assembling furniture where furniture status is modeled with nodes with actions
modeled as edges between different nodes. (Right) the conjugate task graph of assembling furniture where
actions are treated as nodes and states are modeled as edge transitions.

The missing causal flavor in the previous example is largely due to conjugation of states and actions.
With temporal AoG focusing on the description of actions applied to object states, causal AoG
focus more on the understanding of object fluent change chains. Similar to the task-graph and
conjugate task graph representation, see in Fig. 9.15 commonly studied in robotics literature [540],
temporal and causal AoGs share a similar conjugation relationship.

The critical debate between the two types of representations lie in the competition between
efficiency and generalizability. As actions are already abstractions of object fluent changes, using
the sequence of action to describe an event is definitely more efficient when compared to using
object fluent change sequences. However, the limitation of following action patterns often produce
the gap for models’ performance between seen tasks and unseen tasks. With less knowledge of how
fluents changed and the details of the goal states, following action patterns or routines naturally
harm models’ capability to perform similar inference in new environments. In contrast, using object
fluents change sequence allow us to understand more about the details of goal statuses and values
of each world state, which further helps generalization in new tasks in the same environment.
Therefore, to balance the trade-off between efficiency and generalizability, we emphasize that both
temporal and causal ingredients should be captured for a good and efficient model.



a b

Figure 10.1: (a) A classic launching stimulus [99]. (b) A screenshot of the original Heider-Simmel movie [530].

Chapter 10

Animacy: Physical vs. Social
Perception

In this chapter, we introduce how we can build computational model to study human perception
of animacy in a unified framework.

10.1 Introduction

10.1.1 Background

Imagine you are playing a multi-player video game with open or free-roaming worlds. You will
encounter many physical events, such as blocks collapsing onto the ground, as well as social events,
such as avatars constructing buildings or fighting each other. All these physical and social events
are depicted by movements of simple geometric shapes, which suffice to generate a vivid perception
of rich behavioral, including interactions between physical entities, interpersonal activities between
avatars engaged in social interactions, or actions involving both humans and objects.

This type of rich perception elicited by movements within simple visual displays has been
extensively studied in psychology. On the one hand, classic work such as Michotte [99] has famously
shown that people can perceive physical causality from a simple animation depicting a moving ball
colliding with a stationary ball, which then appears to launch and move off (Fig. 10.1a). On the
other hand, the motion of similar geometric shapes may generate an impression of agency. This
phenomenon is termed as the perception of animacy [301]. For instance, the seminal work of Heider
and Simmel [530] demonstrated that people also have a spontaneous perception of animacy when
viewing simple geometric shapes moving around, where they described the shapes as characters
with minds, personalities and have different relationships with one another (Fig. 10.1b).

Despite the clear evidence of people’s strong abilities to perceive physical causality and social
behaviors from limited and abstract inputs, it is, however, still unclear how these two types of

218



CHAPTER 10. ANIMACY: PHYSICAL VS. SOCIAL PERCEPTION 219

Value function & social force

…
Value 

Function

Goal: “blocking”

…
Potential
Function

Spring

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Physics equation
U(q) = ↵q2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Spring Rod

Soft ropeCollision Agent
(Goal: Blocking)

Agent
(Goal: Leaving 

the room)

Agent
(Goal: Blocking)

Object
Self-propelled force

Physical Regime Social Regime

Object-Object Human-Object Human-Human

Training videos Training videos

q2

q1

Continuous Spectrum

Increasing Complexity

V (q, g) = aq1 + bq2

<latexit sha1_base64="WVIyWnqOBoI1IQ9XeKHTqx1M23c=">AAACAnicbVDLSgNBEOyNrxhfq57Ey2AQIkrYDQH1IAS9eIxgHpCEZXYymwyZfWRmVghL8OKvePGgiFe/wpt/4yTZgyYWNBRV3XR3uRFnUlnWt5FZWl5ZXcuu5zY2t7Z3zN29ugxjQWiNhDwUTRdLyllAa4opTpuRoNh3OW24g5uJ33igQrIwuFejiHZ83AuYxwhWWnLMg3ohabseGo7PeidXeOjY6BS5aOiUHDNvFa0p0CKxU5KHFFXH/Gp3QxL7NFCEYylbthWpToKFYoTTca4dSxphMsA92tI0wD6VnWT6whgda6WLvFDoChSaqr8nEuxLOfJd3elj1Zfz3kT8z2vFyrvoJCyIYkUDMlvkxRypEE3yQF0mKFF8pAkmgulbEeljgYnSqeV0CPb8y4ukXira5eLlXTlfuU7jyMIhHEEBbDiHCtxCFWpA4BGe4RXejCfjxXg3PmatGSOd2Yc/MD5/ANG4lSY=</latexit>

Figure 10.2: A continuous spectrum connecting physical systems and social behaviors. In this chapter, we
focus on three types of interactions, human-human (HH), human-object (HO) and object-object (OO). A
few examples are included by showing trajectories of the two entities. The dot intensities change from low to
high to denote elapsed time. Accordingly, we will learn an increasingly complex model that include potential
functions representing physical laws for inanimate objects as well as value functions representing social
behaviors of human agents.

perception are connected. For a long time, researchers have been approaching these two domains
separately. In the case of physical events, research has been focused on the perception and interpre-
tation of physical objects and their dynamics, aiming to determine whether humans use heuristics
or mental simulation to reason about intuitive physics (see a recent review by [190]). For social
perception, some research has aimed to identify critical cues based on motion trajectories that
determine the perception of animacy and social interactions [541, 301, 542, 543, 132]. There has
also been work focusing on inferences about agents’ intentions [534, 544, 545].

10.1.2 A Continuous Spectrum from Physics to Social Behaviors

In this chapter, we will present a unified view of these two domains. As illustrated in Fig. 10.2,
the physical systems and social behaviors lie on a continuous spectrum ranging from the physical
regime to the social regime. Given this unified view of physical and social perception, we introduce
a unified computational framework for modeling both physical events and social events based on
the movements of simple shapes. In particular, this framework that unifies the physical and social
modeling in three ways.

First, a unified physical and social simulation for generating Heider-Simmel animations in which
simple moving shapes vary in degrees of physical violation and the involvement of intention.

Second, a unified physical and social concept learning paradigm by formulating the concept
learning process as the pursuit of generalized coordinates and the corresponding parsimonious
potential energy functions.

Third, a unified psychological space that may reveal the partition between the perception of
physical events involving inanimate objects and the perception of social events involving human
interactions with other agents.
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Figure 10.3: Overview of the joint physical-social simulation engine. For a dot instantiating a physical object,
we randomly assign its initial position and velocity and then use physics engine to simulate its movements.
For a dot instantiating a human agent, we use policies learned by deep reinforcement learning to guide the
forces provided to the physics engine.

10.2 Heider-Simmel-type Animations in the Continuous Spectrum

Can we have a unified view of physical events with inanimate objects and social events with human
agents? Can we create a continuous transition from objects to agents, and from agents back to
objects? In other words, can we bridge physics and social behaviors? We believe that the first
step towards addressing these questions should be building a simulation engine that can generate
both physical interactions and social interactions in a principled manner, so that the two types of
interactions can emerge in the same world.

Fig. 10.3 gives an overview of a joint physical-social simulation engine. Each video included two
dots (red and green) and a box with a small gap indicating a room with a door. The movements of
the two dots were rendered by a 2D physics engine (pybox2d 1). If a dot represents an object, we
randomly assigned the initial position and velocity, and then used the physics engine to synthesize
its motion. Note that our simulation incorporated the environmental constraints (e.g ., a dot can
bounce off the wall, the edge of the box), but did not include friction. If a dot represents an agent,
it was assigned with a clearly-defined goal (e.g ., leaving room) and pursued its goal by exerting
self-propelled forces (e.g ., pushing itself towards the door).

10.2.1 Interaction Types

As summarized in Fig. 10.2, there are three types of interactions, including human-human (HH),
human-object (HO) and object-object (OO) interactions. When synthesizing the agents’ motion,
we set two types of goals for the agents, i.e., “leave the room” (g1) and “block the other entity”
(g2).

In addition to the three general types of interactions,there are also sub-categories of interac-
tions to capture a variety of physical and social events. For OO animations, theere are four events
– collision, connections with rod, spring and soft rope. For HH animations, we varied the “ani-
macy degree” (AD) of the agents by controlling how often they exerted self-propelled forces in
the animation. In general, a higher degree of animacy associates with more frequent observations
about violation of physics, thus revealing self-controlled behaviors guided by the intention of an
agent. The animacy manipulation introduced five sub-categories of HH stimuli with five degrees of
animacy—7%, 10%, 20%, 50%, and 100%.

1https://github.com/pybox2d/pybox2d
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10.2.2 Unified Physical and Social Concept Learning via Potential and Value
Functions

As illustrated in Fig. 10.2, we intend to acquire physical and social concept by progressively in-
creasing the complexity of a unified model. Specifically, in the social regime, we will learn potential
functions representing physical laws. However, they would not be able to adequately represent agent
behaviors exhibited in the social regime, for which we will learn value functions that capture the
key social concepts that can interpret the intentional movements (or plans) of social agents.

Potential Functions for Physical Systems

To introduce the basic idea of using potential functions as a type of representation for physical
systems, let us first look at the comparison between Lagrangian mechanics (based on potential
energy) and Newtonian mechanics (direct force analysis).

Consider a system of N particles with the same mass (i.e., mi “ m, @i “ 1, ¨ ¨ ¨ , N) where
their positions are px1ptq,x2ptq, ¨ ¨ ¨ ,xN ptqq in Cartesian coordinates at time t. The surrounding
environment (context) is denoted as c. The Lagrangian of this system is defined as

L “ Lpx1, ¨ ¨ ¨ ,xN , 9x1, ¨ ¨ ¨ , 9xN , tq “ T ´ U, (10.1)

where T “ T p 9x1, ¨ ¨ ¨ , 9xN , tq “
řN
i“1

1
2m 9xiptq

2 is the kinetic energy of all entities and U is the
potential energy. When there are only conservative forces in the system, the potential energy solely
depends on the coordinates of the entities, i.e., U “ Upx1, ¨ ¨ ¨ ,xN , tq. For convenience, we may
drop the notation t sometimes.

From the Euler-Lagrange equation, we may derive the motion of equations for each entity:

d

dt

BL

B 9xi
´
BL

B 9xi
“ 0, @i “ 1, ¨ ¨ ¨ , N. (10.2)

By plugging in T and U , this in fact gives us Newton’s second law:

m 9xi “ Fi “ ´
BUpx1, ¨ ¨ ¨ ,xN q

Bxi
. (10.3)

This implies that as an alternative approach to conducting explicit force analysis which is often
extremely difficult in complex systems, we can instead derive forces from a few scalar functions,
i.e., potential energy functions. This advantage becomes more significant when we adopt suitable
generalized coordinates which constitutes potential energy functions in simple forms.

Formally, we may convert the Cartesian coordinates of the N entities into a generalized coordi-
nate system q “ pqjq

D
j“1, where D is usually the number of degrees of freedom in the system. Each

dimension is derived from a transformation function qj “ φjpx1, ¨ ¨ ¨ ,xN , cq, where c is the context
(e.g ., surrounding environment) of the current system. These coordinates’ first-order derivatives
9q “ p 9qjq

D
j“1 become generalized velocities accordingly. Here, φj could be understood as a type of

state representation extracted from the raw observations. Based on the generalized coordinates, we
can redefine the Lagrangian:

L “ Lpq, 9qq “ T ´ U, (10.4)

where T “ T pq, 9qq “ T p 9x1, ¨ ¨ ¨ , 9xN q is the kinetic energy, and V is the potential energy. Again,
if we only consider conservative forces, we will have U “ Upqq. The Euler-Lagrange equation still
holds for the generalized coordinates:

d

dt

BL

B 9qj
´
BL

Bqj
“ 0, @j “ 1, ¨ ¨ ¨ , D. (10.5)
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Figure 10.4: Systems with circles and springs. (a) Two entities (circles) connected by a massless spring. The
Cartesian coordinates of the two entities are x1 and x2. The potential energy of this system can be defined
by using just one variable, i.e., the distance between the two entities. (b) Three entities connected by two
massless springs.

The resulting equations of motion describe the dynamics of the system as a whole in terms of how
generalized coordinates (i.e., the physical quantities of interest) change over time. We can map the
motion back to individual entity’s Cartesian coordinates based on the transformation functions φj :

m 9xi “ Fi “ ´

D
ÿ

j“1

BUpqq

Bqj

Bφj
Bxi

@i “ 1, ¨ ¨ ¨ , N. (10.6)

The use of generalized coordinates allows us to greatly simplify the derivation of forces (or
dynamics) for entities in a system, which ultimately results in a parsimonious model to describe
the dynamics of a system. Therefore, by constructing the most suitable generalized coordinates,
the key characteristics of a system may naturally emerge from raw observations. Consider the
spring system shown in Fig. 10.4a as an example. Assume the equilibrium length of the spring is
l and its constant is k, then potential energy of this system can be conveniently defined by only
one variable – the distance between the two entities (or equivalently the length of the spring).
Let q “ φpx1,x2q “ ||x1 ´ x2||, the potential is Upqq “ 1

2kpq ´ lq2, which is a simple quadratic
function of q. Based on Eq. (10.6), we can derive the forces applied to the two entities accordingly:
F1 “ ´kpq ´ lqpx1 ´ x2q{q, F2 “ ´kpq ´ lqpx2 ´ x1q{q.

Multiple independent potential energy functions may coexist in a complex system, and the
overall potential energy is simply the sum of all individual potential energy functions. This naturally
leads to a modular design, where the potential energy of any system is a combination of atomic
potential energy functions as bases. For instance, in Fig. 10.4b, by defining generalized coordinates
q1 “ ||x1 ´ x2|| and q2 “ ||x1 ´ x3||, the overall potential energy can be decomposed into two
functions associated with the two springs: Upqq “ U1pq1q`U2pq2q. If the two springs have the same
property, then the potential energy can be further simplified by reusing the same atomic function:
Upqq “ Upq1q ` Upq2q.

To enforce sparsity, we assume a polynomial form for each potential function. Specifically,
we consider a potential function such as Ujpqjq “ wJ

j rqj , q
2
j s, where wj are parameters of the

polynomial function.
When we have multiple atomic potential energy functions in a system, it is often important to

identify when each function will be present or effective in terms of yielding forces to the entities.
Some potential energy functions like the ones in Fig. 10.4 are always effective. But there are also
functions with limited effective spatial ranges. For instance, to approximate the force an entity
receives when bouncing off a wall (here we assume perfectly elastic collision) as shown in Fig. 10.5,
we can imagine that when the entity is expected to violate the non-overlapping constraint (the
distance between the entity and the wall can not be smaller than a threshold) in a very short
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Figure 10.5: A circle bouncing off a wall. The generalized coordinate in this case can be derived as the
expected violation after a short period of time ∆t based on the entity’s current position xt and velocity 9xt.

period of time (∆t) based on its current position and velocity, there will be an effective potential
energy function applied to the entity. In fact, this potential can be approximated by a spring
(with a very large constant k " 1 and a equilibrium length of distance threshold) connecting the
contact point and the entity. This type of approximation has been previously introduced in robotics
literature as well [546].

If we denote δjpqjq to be the triggering condition function, then we may define the complete
potential energy as

Upqq “
D
ÿ

j“1

δjpqjqUjpqjq. (10.7)

Value Functions for Social Behaviors

In the joint simulation engine, everything is generated in a physics engine. It is natural to derive
the generalized coordinates and the corresponding potentials regardless of whether an entity is
an object or an agent. Consequently, similar ideas discussed for modeling physical systems may
also be applied to modeling the goals and relations in social behaviors as illustrated in Fig. 10.6a.
Suppose an agent with free will can exert self-propelled forces to purse its goal. Then its plan
or policy w.r.t. a certain goal can be represented as the force exerted by itself given its current
state and the context. By assuming rationality of the agent’s plan, the force should be explained
by certain potential function associated with its goal and its relations with the environment and
other agents, which can be seen as a form of value function defined on semantically meaningful
measurements (i.e., generalized coordinates) such as the distance between its current position and
its goal position, or the relative spatial displacement between itself and other agents. By seeking
the simplest generalized coordinates and the corresponding sparse functions of potential energy,
important concepts in social behaviors, such as goals and relations could naturally emerge as well.

With this analogy, the Cartesian coordinates pxiq
N
i“1 coupled with the context c are the states of

the agents, and the generalized coordinates qj are equivalent to the sufficient statistics in describing
the observed social scenario. Let the agents’ goals be gi P G, where G is a set of all possible goals,
then an agent’s behavior is guided by a potential energy function defined in Cartesian coordinates,
i.e., Uipx1, ¨ ¨ ¨ ,xN , G, cq. We then use a potential energy function defined in generalized coordinates
to equivalently represent the goal directed value function for agent i as follows

Vipq, giq “ ´Uipx1, ¨ ¨ ¨ ,xN , G, cq. (10.8)

Let X “ txiu
N
i“1. The plan of agent i can be derived in a step-by-step manner by Eq. (10.6), i.e.,

Fipxi|X´i, giq “
D
ÿ

j“1

BV pq, giq

Bqj

Bφj
Bxi

, @i “ 1, ¨ ¨ ¨ , N. (10.9)
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Figure 10.6: Illustration of social concepts as generalized coordinates. (a) An example of generalized coor-
dinates in social systems. The pq1, q2, q3q here are potentially the most critical variables in describing this
social system. q1 and q3 here reveal the potential goal (i.e., the door) for both agents, so an attraction
potential term could explain the behavior of “leaving the room.” q2 can represent the relation between the
agents. e.g ., the “chasing” behavior could be modeled by a potential term that only depends on q2. (b) The
generalization of (a) where the generalized coordinates and the potential energy function can be preserved;
we only need to modify the transformation from raw observations to the generalized coordinates.

For instance, in Fig. 10.6a, if the red agent tries to leave the room, then its motion will be
driven by potential V pq1q. Similarly, if the green agent aims to catch the red agent, then it is driven
by a potential V pq2q.

Thus, learning sparse value functions through generalized coordinates takes a straightforward
approach in explaining the rational behaviors demonstrated by the agents since it allows us to
derive the optimal policy directly from the inferred value of states in addition to discovering the
goals. This method may also help us discover sub-goals (i.e., different value function terms) in the
optimal plans. Finally, the explicit modeling of generalized coordinates can potentially improve the
generalization of the learned optimal plans as well since we can simply remap any new environment
to the same coordinate system by only changing φjp¨q; the previously learned value functions and the
corresponding optimal plans can be preserved. For instance, the generalized coordinates and value
functions constructed based on the environment in Fig. 10.6a can be transferred to the new scenario
in Fig. 10.6b where the new position of the door will only affect the coordinate transformation for
q1 and q3.

We summarize the main advantages of constructing generalized coordinates and the correspond-
ing potential energy functions as follows:
• Generalized coordinates as effective representations of a system. The change in q are

the effective change of a system, i.e., BUpqq{Bq. By pursing the coordinates that results in the
simplest Upqq, we are essentially pursuing a sparse model for the system. For physical systems,
such representations will reveal physical concepts, whereas in social systems, they may denote
important concepts of goals and social relations.

• “Compression” of optimal planning. Optimal planning is complex and time consuming.
However, given demonstrations (observed trajectories of agents), we may compress these optimal
plans into a few value functions. Consequently, instead of searching for an optimal plan from
scratch every time, we may derive forces from the value functions and roll out the whole plan
step-by-step starting from the initial state. We may deploy this plan directly, or use it as a starting
point and further refine it to compensate the errors in the learned value functions. Similarly, we
can also take advantage of the derived forces to conduct inverse planning for Bayesian goal
inference.

• Knowledge transfer. When the surrounding environment changes, the value function defined
on generalized coordinates, V pqq, may be preserved. In order to derive forces for the entities
in the new environment, we only need to change the coordinate transformations, i.e., qj “
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Type I: 
Distance

Type II: 
Non-overlapping violation

Figure 10.7: Two types of candidates of generalized coordinates shown as the purple and orange dashed lines
respectively. The blue circles highlight the reference points used for extracting the first type of candidate
coordinates.

φjpx1, ¨ ¨ ¨ ,xN , cq.

A Sketch of the Learning Algorithm

Problem setup. In an N -entity system, we may observe the context (environment) c, and the
trajectories of all entities Γi “ tpxti, 9x

t
iqu

T
t“1, where the length of each step is ∆t, and the total

length is T∆t. We assume that all entities have the same mass m and there are only conservative
forces in the system. From the trajectories, we may also compute the ground-truth force each agent
i receives at time step t, i.e., Ft

i. The goal is to learn a model (generalized coordinates and potential
energy functions) which can predict the forces given the observations.

Proposals of generalized coordinates. From bottom-up proposals, we obtain a pool of
candidates for generalized coordinates, Q “ tqju

D
j“1. Note that many of them may be redundant

and will not be selected by the final model. In particular, these candidates can arise from two types
of proposals:
i) Distance between two geometric shapes. As shown in Fig. 10.7, this can be the distance between

two entities (e.g ., the one in Fig. 10.4) or the distance between an entity and a part of the context
(e.g ., the one in Fig. 10.5). The corresponding potential energy functions are always triggered,
i.e., δjpqjq “ 1.

ii) Expected constraint violation as illustrated in Fig. 10.5. When there is violation, qj represents the
expected overlapped length; otherwise qj “ 0. The triggering condition is consequently defined
as δjpqjq “ 1pqj ą 0q.
Note that for social behaviors, we do not consider the second type of the generalized coordinates.
Pursuing a set of atomic potential energy functions. The final potential energy function

consists of a set of atomic potential energy functions, each of which is defined as Ukpqkq, k P S Ă Q,
where S is a set of generalized coordinates selected from the candidate pool Q. The final potential
energy will be used for predicting the forces for each entity:

F̂t
i “ ´

ÿ

kPS
δkpq

t
kq
BUkpq

t
kq

Bqtk

Bφtk
Bxti

. (10.10)

Finally, we define an MSE loss for the force prediction as the learning objective function:

LpS,Ω “ pwkqKk“1q “ E
„

1

2
||Ft

i ´ F̂t
i||

2
2



. (10.11)



CHAPTER 10. ANIMACY: PHYSICAL VS. SOCIAL PERCEPTION 226

4

8

12

6

3

5

7
9

1

5

27

3

4

6

8

9

Spring

Collision

Setting Pursuit Process

Figure 10.8: Learning process of two physical systems. The purple and orange lines are the selected generalized
coordinates from the first and the second type of candidates respectively; each number indicates the iteration
when the corresponding generalized coordinate was selected.

The pursuit of the final model is essentially the search of the optimal generalized coordinates
S and the parameters Ω of the corresponding potential energy functions that minimize the above
loss (along with some regularization for sparsity). For computational efficiency, we adopt a greedy
pursuit, where we start from an empty set of generalized coordinates, then at each iteration, we
augment the final model with the candidate generalized coordinate that has not yet been selected
in previous iterations and yields a fitted potential energy function with the largest loss reduction.
The iterative pursuit is repeated until there is no significant loss reduction anymore.

Learning Results

We generated collision and spring (with several different spring lengths) physical systems shown
in Fig. 10.2, each had 50 videos as training examples. Fig. 10.8 shows the learning process of two
systems.

We also used the same approach to pursue value functions for two goals depicted in Fig. 10.2
for HH videos. In practice, we used 50 videos of an agent fleeing the room successfully to learn
the potential energy functions for the goal of “leaving the room,” and used another 50 videos of
an agent successfully blocking another agent or attempting to block it without success for the goal
of “blocking.” Fig. 10.9 shows generalized coordinates and the derived forces fields based on the
learned model for both goals. We find that using Lasso can help discover more meaningful goal-
directed potentials for social behaviors by enforcing sparsity for the potential energy function of
each generalized coordinate.

Physics Inference

By giving the positions and velocities of the two entities at time t, i.e., xti, 9xti, i “ 1, 2, we can
predict the physical forces each entity receives at t and consequently their future velocities at t`1,
9̂xt`1
i , i “ 1, 2. By comparing with the ground truth 9xt`1

i , we can evaluate to what degree an entity’s
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Figure 10.9: Learning results of two goals. Left: selected generalized coordinates; right: the learned value
functions and force fields derived from the value functions, where the red circle represents the position of the
other agent, and the color of the background indicate the value of a state (blue to yellow indicates low value
to high value). An agent will move towards high value positions and move away from low value positions.

motion is inconsistent with physics predictions:

Di “
1

T

T
ÿ

t“1

|| 9xti ´ 9̂xti||
2
2, @i “ 1, 2. (10.12)

In practice, there are multiple physical systems, each of which will give different predictions.
Since we do not know which system an observation belongs to, we can enumerate all learned physical
systems and select the one that yields the lowest prediction error, which we may use as the physical
violation measurement.

Intention Inference

The force fields illustrated in Fig. 10.9 give us the expected moving direction at each location
given the goal of the agent and the position of the other agent. Inspired by the classic FRAME
model [4, 547] which was originally used for modeling texture and natural images, we may treat a
field derived from the learned model as filters of motion for a given goal at different locations. The
basic idea is illustrated in Fig. 10.10. Specifically, the filter response at location xi for agent i with
goal gi and the other agent being at xj can be defined as

hp 9xi|xi,xj , giq “ cospθq “
F̂ipxi|xj , giq

J
9xi

||F̂ipxi|xj , giq|| ¨ || 9xi||
, (10.13)

where θ is the angle between the observed moving direction 9xi and the expected moving direction
from the predicted force F̂i in Eq. (10.9). By dividing the whole space into R discrete regions (R “ 4
in this work), where each region has a location set Xr, we can define the likelihood of observing an
agent with a goal having a certain trajectory Γi as

ppΓi|gi,Γjq “
1

ZpΛq
exp

#

1

T

T
ÿ

t“1

R
ÿ

r“1

1pxti P Xrqλrhp 9xti|xti,xtj , giq

+

qpΓq, (10.14)
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Figure 10.10: Illustration of the idea of motion filters. Suppose the blue arrow is the observed velocity of
an agent at a given moment, then we may use the angle θ between to measure the fitness of the observed
motion and the expected goal-directed motion (i.e., using cospθq as the filter response). We divide the space
into four regions to compute the likelihood of an agent is pursuing a specific goal.

where qpΓiq “
śT
t“1 qp 9x

t
iq is a background model for all moving directions without pursuing a

specific goal (we assume a uniform distribution for qp 9xtiq), Λ “ pλ1, ¨ ¨ ¨ , λRq is the parameter for
the likelihood corresponding to the R regions, and ZpΛq is the normalization term. We may write
ZpΛq as

ZpΛq “ EqpΓq

«

exp

#

1

T

T
ÿ

t“1

R
ÿ

r“1

1pxti P Xrqλrhp 9xti|xti,xtj , giq

+ff

. (10.15)

Since we assume a uniform distribution for the background velocity, it is easy to show that
ZpΛq “ 1. Then parameter λr in the likelihood can be estimated as the every filter responses
of trajectories in training examples in region r. Finally, we define the intention measurement as
the log-likelihood ratio of a trajectory following the optimal plan for pursuing any goal over the
background trajectory model:

Li “ max
gPG

log ppΓi|g,Γjq ´ log qpΓiq, @i “ 1, 2. (10.16)

10.3 Human Experiment

To test how well the computational model can explain human perception of physical and social
events, we conducted the following human experiment.

10.3.1 Participants

30 participants (mean age = 20.9; 19 female) were recruited from UCLA Psychology Department
Subject Pool. All participants had normal or corrected-to-normal vision. Participants provided
written consent via a preliminary online survey in accordance with the UCLA Institutional Review
Board and were compensated with course credit.

10.3.2 Stimuli and Procedure

850 videos of Heider-Simmel animations were generated from the simulation engine, with 500 HH
videos (100 videos for each AD level), 150 HO videos, and 200 OO videos (50 videos for each sub-
category). Videos lasted from 1 s to 1.5 s with a frame rate of 20 fps. By setting appropriate initial
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Figure 10.11: Human response proportions of interaction categories (a) and of the sub-categories (b,c) in the
experiment. Error bars indicate the standard deviations across stimuli.

velocities, the average speeds of dots in OO videos were controlled to be the same as the average
speeds of dots in HH with 100% ADs (44 pixel/s). The dataset was split into two equal sets; each
contained 250 HH, 75 HO, and 100 OO videos. 15 participants were presented with set 1 and the
other 15 participants were presented with set 2.

Stimuli were presented on a 1024ˆ768 monitor with a 60 Hz refresh rate. Participants were given
the following instructions: “In the current experiment, imagine that you are working for a security
company. Videos were recorded by bird’s-eye view surveillance cameras. In each video, you will see
two dots moving around, one in red and one in green. Your task is to ‘identify’ these two dots based
on their movement. There are three possible scenarios: human-human, human-object, or object-
object.” Videos were presented in random orders. After the display of each video, participants were
asked to classify the video into one of the three categories.

10.3.3 Results

Human response proportions are summarized in Fig. 10.11. Response proportion of human-human
interaction swas ignificantly greater than the chance level 0.33 (tp499q “ 25.713, p ă .001). For
HO animations, response proportion of human-object interaction was significantly greater than the
other two responses (p ă .001). Similarly, response proportion of object-object was greater than the
other two responses (p ă .001) for OO animations. These results reveal that human participants
identified the main characteristics of different interaction types based on dot movements.

Next, we examined human responses to the sub-categories within the HH and OO animations.
We first used the animacy degree as a continuous variable and tested its effect on human responses
in the HH animations. With increases in degree of animacy in HH, the response proportion of
human-human interaction increased significantly as revealed by a positive correlation (r “ .42,
p ă .001). This finding suggests that humans are sensitive to the animacy manipulation in terms of
the frequency with which self-propelled forces occurred in the stimuli. For the OO animations, the
response proportion for object-object interaction among the four sub-categories yielded significant
differences (F p3, 196q “ 34.42, p ă .001 by an ANOVA), with the most object-object responses in
the collision condition, and the least in the rod condition. Pairwise comparisons among the four-
categories show significant difference between collision and everything else (p ă .001), between soft
rope and rope (p ă .001), and also between soft rope and string (p “ .018); there is a marginally
significant difference between rod and string (p “ .079).

We then combined human responses and the model-derived measures for each animation stimu-
lus to depict the unified psychology space for the perception of physical and social events. Fig. 10.12
presents the distributions of 100 HH videos with 100% animacy degree, 150 HO videos, and 200
OO videos, all in this unified space. In this figure, an animation video is indicated by a data point
with coordinates derived by the model, and the colors of data points indicate the average human
responses of this stimulus. Specifically, the values of its RGB channels are determined by the aver-
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Figure 10.12: Constructed psychological space including HH animations with 100% animacy degree, HO
animations, and OO animations. In this figure, a stimulus is depicted by a data point with coordinates
derived by the model, and the colors of data points indicate the average human responses of this stimulus.
The two coordinates of the space are the averaged measures between the two entities, as the measure of
the degree of violation of physical laws (horizontal) and the measure of maximum log-likelihood ratio of
goal-directed trajectory over the background model indicating the presence of intention. The mark shapes
of data points correspond to the interaction types used in the simulation for generating the corresponding
stimuli (circle: HH, triangle: HO, square: OO).

age human-human responses in red, human-object responses in green, and object-object responses
in blue. The mark shapes of data points correspond to the interaction type used in the simulation
for generating the synthesized animations. The coordinates of each data point were calculated as
the model-derived measures averaged across the two entities in an animation, i.e., Eq. (10.12) for
physical violation and Eq. (10.16) for the log-likelihood ratio of the trajectory of an entity is driven
by a goal. The resulting space showed clear separations between the animations that were judged
as three different types of interactions. Animations with more human-human interaction responses
(red marks) clustered at the top-right corner, corresponding to great values of intention and strong
evidence signaling the violation of physics. Animations with high responses for object-object inter-
actions (blue marks), located at the bottom left of the space, show low values of intention index and
little evidence of violation of physics. Animations with high responses for human-object interactions
(green marks) fell in the middle of the space.

To quantitatively evaluate how well the model-derived space accounts for human judgments, we
trained a classifier using the coordinates derived in the space shown in Fig. 10.12 as input features
(D and L for the indices of physical violation and intention respectively). For each ground-truth
type of interactions y P tHH,HO,OOu, we fit a 2D Gaussian distribution pypD,Lq, using half of the
stimuli as training data. Then for a given animation with the coordinates of pD,Lq, the classifier

predicts ppy|D,Lq “ pypD,Lq
ř

y pypD,Lq
for animations in the remaining half of the stimuli. The correlation

between the model predictions and average human responses was 0.815 (p ă .001) based on 2-fold
cross-validation. Using a split-half reliability method, human participants showed an inter-subject
correlation of 0.728 (p ă .001). Hence, the response correlation between model and humans closely
matched inter-subject correlations, suggesting a good fit of the unified space as a generic account
of human perception of physical and social events based on movements of simple shapes.

We examined the impact of different degrees of animacy on the perception of social events, and
how different subcategories of physical events affect human judgments on interaction types. The
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Figure 10.13: Centers of all types of stimuli.

unified space provides a platform to compare these fine-grained judgments. Fig. 10.13 shows the
centers of the coordinates and the average responses for each of the sub-categories. We first found
that, with a decreased degree of animacy, the intention index in HH animations was gradually
reduced towards the level of HO animations. Meanwhile, human judgments of these stimuli varying
from low to high degree of animacy transited gradually from human-object responses to human-
human responses, consistent with the trend that the data points moved along the physics axis.
Among all physical events, the rod and spring conditions showed the highest intention index and the
strongest physical violation, respectively, resulting in a greater portion of human-human interaction
responses than the other categories.



Chapter 11

Theory of Mind Representations

11.1 Introduction to Theory of Mind

Theory of mind (ToM) refers to the ability to understand one’s own and others’ mental states,
which was firstly studied in psychology and cognitive science [548]. As has been shown, the ability
to perform mental simulations of others increases rapidly since the young infant phase [549, 550,
551, 552]. The ability of ToM allows reasoning about others’ mind, and is vital in a multi-agent
environment because each agent’s choice affects the payoff of other agents [553, 554].

Multi-agent systems, ranging from two-player games to the human society, have been studied
across many domains. For individual agents to maximize their values in such environments, they
must learn to interact with and against others, as well as understand the consequences of their
actions.

Contemporary discussions of Theory of Mind have their roots in philosophical debate most
broadly, from the time of Descartes’ Second Meditation, which set the groundwork for considering
the science of the mind. Theory of Mind (ToM) is defined by Premack and Woodruff [555] in the
highly influential article “Does the Chimpanzee have a theory of mind?” as “an individual imput-
ing mental states (like beliefs, desires and intentions) to himself and others, to make predictions,
specifically about the behavior of other organisms.” Further, they differentiated between ToM for
motivation (i.e., another organism’s valuation, intention, purpose, goal) and ToM for knowledge
(i.e., another organism’s belief states or learned schemas / scripts).

Since this initial empirical investigation of ToM in nonhuman primates, experimental approaches
probing and characterizing ToM capacities have been introduced by psychological and behavioral
economics research [556]. Tasks here will be discussed in two dimension following [556]: interactivity
and uncertainty.

Observation under divergent knowledge and environmental uncertainty. One of the most promi-
nent tasks in ToM research is the so-called false belief task [557]. After observing a social scene
that comprises a change in the physical environment that the observed agent is unaware of (induc-
ing a false belief), participants have to predict that observed agent’s behavior. Following a similar
general idea as false belief reasoning, Baker and colleagues [558] introduced a perspective taking
scenario. In a grid world environment, an observed agent with unknown preferences is placed in an
environment containing different choice options with varying subjective value to the agent. Based
on the agent’s trajectory and the environment layout like occlusion, participants will choose the
option that is most valuable to the agent. There are also other tasks including social influence [559],
learning about expertise [560], observational inverse learning [561] that require the participants to
make some choices based on the observation of other agents.

232
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Figure 11.1: Multi-agent belief dynamics in nonverbal communication. Different communication
events emerge from the social interactions and construct agents’ beliefs. In this paper, the belief dynamics
are modeled by “five minds” (top) and maintained by a hierarchical energy-based model that tracks each
agent’s mental state (m1 and m2), their estimated belief about other agent’s mental state (m12 and m21),
and the shared common mind (mc). The concept of the shared “common mind” avoids the infinite recursion
issue in prior work.

Interactive tasks. Interactive tasks require the participant to interact with other agents instead
of only passively observing others’ action. In a fully observable environment, other agents’ state
and payoff can be directly known by the participants. Well-known settings comprise “prisoner’s
dilemma” and “stag hunt” [562, 563]. Very few experimental approaches to date have combined
asymmetric distribution of information, environmental uncertainty and interactivity. One example
is the multi-agent tiger task. In a scenario where two players have to learn which of two doors hides a
pot of gold and which hides a dangerous tiger, after each action players receive half of the partner’s
outcome in the cooperative setting, while in the competitive scenario half of their partner’s outcome
is subtracted from their own outcome [564]. These tasks are also adapted into suitable tasks to test
the theory of mind of non-human primates and individuals with Autism [565, 566].

Modeling. For fully observable tasks, experimental economics and behavioral game theory focus
on finding the converging choices of all the agents called Nash equilibrium. In AI field, “Recursive
Modeling Method” (RMM) [567] deploys mind recursion in agent planning for single-step game
setting. Interactive POMDP (I-POMDP) [568] model is proposed to deal with partial observation
and asymmetric information for sequential planning. Neural networks implicated in ToM were
successfully identified using standard neuroimaging methods [569, 570]. The studies reported in [571]
establish for the first time that a region in the human temporo-parietal junction (called the TPJ-M)
is involved specifically in reasoning about the contents of another person’s mind.

11.2 Spatiotemporal social event parsing and mental representa-
tion

In this section, we propose representations for spatiotemporal social event parsing, as well as new
mental representation, called “five minds” that accounts for the triadic relation and “common
mind;” this representation is embedded in a hierarchical graphical model with a six-level structure.
Table 11.1 lists common notations and their definitions.

We adopt the representation proposed by [572, 573, 140] based on experimental psychology,
infant study, and animal cognition, wherein the communication during social interactions heavily
relies on the “common mind” after only one or two levels of recursive reasoning of mental state.
Below, we use the term “mind” in human/animal studies and the term “mental state” in compu-
tational models interchangeably.

Formally, all agents’ minds Mt at time t is represented as a set, forming a “five mind” repre-
sentation:

Mt “ tm
1
t ,m

2
t ,m

12
t ,m

21
t ,m

c
tu, t “ 1, . . . , T, (11.1)



CHAPTER 11. THEORY OF MIND REPRESENTATIONS 234

Table 11.1: Common notations for parsing social events

Notation Description

I “ tItut“1,...,T The input image sequence, where
T is the total number of frames.

hit “ px
i
t, p

i
t, g

i
tq The detected human agent i at

time t, where xit P R3 denotes the
spatial position, pit P R3ˆ26 the
skeleton pose, and git P R3 gaze
direction.

ojt “ px
j
t , c

j
t , d

j
t q The detected object j at time t,

where xjt P R3 denotes the spatial
location, cjt P C the object cate-
gory, and djt P t1, . . . , Nou the ob-
ject ID; C is the object category
set.

H “ thit : i “ 1, . . . , Nhu The detected human agents in
the video, where Nh is the total
number of agents. Without losing
generality, we assume Nh “ 2 in
this paper.

O “ tojt : j “ 1, . . . , Nou The detected objects in the
video, where No is the total num-
ber of objects.

where m1
t and m2

t denote two agents’ mind, m12
t and m21

t denote the agent’s belief about the other
agent’s mind, and mc

t denotes their common mind. Each mind is defined as mt “ tpe
i
t, Ape

i
tqq : i “

1, . . . , Ne,tu with a set of entities ei (e.g ., an object) and their attributes Apeiq (e.g ., 3D location).
From a top-down perspective, the change within this mental representation along time con-

structs the belief dynamics t∆Mu between two agents, derived from the spatiotemporal parsing of
the video. The parsing is represented by a spatiotemporal parse graph [154] pg “ ppt, Eq, a hier-
archical graphical model that combines a parse tree pt and the contextual relation E on terminal
nodes; Fig. 11.2 gives an example. Here, a parse tree pt “ pV,Rq includes the vertex set with a
six-level hierarchical structure V “ Vr Y VbY VeY VsY Vf Y Vt and the decomposing rule R, where
Vr is the root set and contains only one element—the node that represents the entire video, Vb
the set of belief dynamics forming “five minds,” Ve the set of communication events, Vs the set
of interactive segments, Vf the set of frame-based static scenes, and Vt the set of all the detected
instances in a single scene. Specifically:
• The belief dynamics are conditioned on communication events, grouped by interactive segments.

In this paper, we define four types of belief dynamics: occur, disappear, update, null.
• A communication event e P Ve is one of the three typical nonverbal communication events: No

Communication, Attention Following, and Joint Attention, as shown in Fig. 11.1.
• An interactive segment s P Vs is the decomposition of a communication event and represented by

the 4D spatiotemporal features Φs “ pΦ
1
s,Φ

2
sq extracted from detected entities. These features

describe social interactions, including both unary Φ1
s and pair-wise features Φ2

s.
• The contextual relation E is represented by an attention graph Gs established based on 4D

features, wherein the node represents an agent or an object in the scene, and an edge is connected
between two nodes if there is directed attention detected among the two entities from the visual
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Figure 11.2: A parse graph of a social event with a six-level hierarchical structure. V denotes vertex
sets in the hierarchy. The root node Vr corresponds to the entire video. The set of belief dynamics Vb emerges
from the lower-level communication events (see also Fig. 11.1). Communication events in Ve decompose into
lower-level interactive segments in Vs; these segments are social primitives learned unsupervisedly. Each frame
of the scene in Vf further decomposes into several terminal nodes in Vt, grounded into entities detected from
videos. The colored dots in the Ve layer represent belief changes triggered by communication events. Note
that belief dynamics are accumulated over time; we only illustrate the most significant changes.

inputs.

11.3 Example of theory-of-mind in communication

Fig. 11.3 shows one example of Theory of Mind in Communication. The lecturer M is talking in
the front of the classroom. The person on the left, denoted as H, noticed that time is up, and thus
raised the iPad up, on which is a timer, so as to remind the lecturer M of the remaining time.
However, the lecturer M is not looking into the direction of H, and didn’t notice H’s message. The
person sitting in the right side, denoted as G, noticed that H is raising his iPad, and also noticed
that M didn’t see H’s message. After a while, G decided to help, and he raised his arm to attract
M ’s attention. M noticed G’s arm and looked to G. Then, G puts down his arm and points to H to
refer M ’s attention to H. M follows G’s pointing and looks to the direction of H, and thus finally
build a communication channel with H via mutual gaze. M successfully noticed H’s message now,
and nods his head to H as a signal of receiving the message. M looks back and rushes to finish
his talk, while H puts down the iPad. G, sitting in the back of the classroom, watches the whole
procedure.

This example is simple and common in our daily life; there are rich communication elements
in this simple example, including gaze, waving hand, pointing, etc. The nonverbal communication
signals are performing much more important role in the scenario of this example. Actually, although
natural language is one main communication method in human social interaction, nonverbal com-
munication signals are also irreplaceable in almost all face-to-face communications. As Tomasello
pointed out in his book [140], to understand how humans communicate with one another using a
language and how this competence might have arisen in evolution, we must first understand how hu-



CHAPTER 11. THEORY OF MIND REPRESENTATIONS 236

Figure 11.3: An example of Theory of Mind in communication involving three agents.

Figure 11.4: Different messages are transmitted in different minds.

mans communicate with one another using natural gestures. There are two basic types of great ape
gesture, based on how they function communicatively: intention movements and attention getters.
Attention getter serves to attract the attention of the recipient either with underlying social inten-
tion or referential intention. Attention getter is usually followed by mutual gaze for a verification
that both the communicator and the recipient come to a common mode that they are going to open
the communication channel. The following gestures, actions and gazes will be of great importance
for understanding such a social interaction. For example, in the timer example, G’s waving hand to
attract M ’s attention is one attention getter. Pointing is one typical and signigicant communication
gesture, and one of the first uniquely human forms of communication. A simple gesture of pointing
could mean a lot, combined with different context and shared experience. The ability to create
common conceptual ground–joint attention, shared experience, common cultural knowledge–is ab-
solutely another critical dimension of all human communication. Shared intentionality is what is
necessary for engaging in uniquely human forms of collaborative activity.

Fig. 11.4 shows how different messages are transported between different minds in the above
example. We use different colors to distinguish these different messages with each other.
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11.4 Inferring the Theory-of-Mind Dynamically

11.4.1 Probabilistic Formulation

Based on our proposed new representation, an energy-based probabilistic formulation is derived,
capable of parsing the communication events that emerged from the raw pixel inputs. We illustrate
the detailed description of the model learning and joint inference procedures in Algorithm 3.

To infer the optimal parse graph pg˚ from raw video sequence I, we formulate the video parsing
of social events as an MAP (maximum a posteriori) inference problem:

pg˚ “ arg max
pg

P ppg|H,OqP pH,O|Iq “ arg max
pg

P pH,O|pgqP ppgqP pH,O|Iq, (11.2)

where P pH,O|Iq is the detection score of agents and objects in the video, P ppgq is the prior model,
and P pH,O|pgq is the likelihood model. Below, we detail the prior and likelihood model one by
one.

Prior The prior model P ppgq measures the validness of parse graph; all the nodes in the parse
graph should be reasonably parsed from the root node. We model the prior probability of pg
as a Gibbs distribution: P ppgq “ 1

Z1
expt´Eppgqu “ 1

Z1
expt´Eaggr ´ Eevt ´ Ebeu, where Eaggr

is the aggregation prior, Eevt the communication event prior, and Ebe the belief dynamics prior.
Specifically:
• The aggregation prior encourages the algorithm to focus more on high-level communication pat-

tern, instead of being trapped into trivial primitives that results in fragments; this design prevents
the spatiotemporal parsing from being too brittle. Hence, the aggregation prior is defined to be
proportional to the total number Ne of events composed of interactive segments: Eaggr “ λ1

Ne
T .

• The communication event prior leverages the knowledge of transition and co-occurrence frequen-
cies of communication events, defined as

Eevt “ ´
λ2

ř

i,j,1transpei,ejq“1 log ptranspei, ejq
ř

i,jp1
transpei, ejq “ 1q

´
λ3

ř

i,j,1occpei,ejq“1 log poccpei, ejq
ř

i,jp1
occpei, ejq “ 1q

, (11.3)

where ptranspei, ejq and poccpei, ejq are based on frequencies from the dataset, and 1
trans and 1

occ

are indicator functions that reflects the spatiotemporal relations among events.
• Ebe models the prior of belief dynamics, which helps to prune some invalid configurations, such

as two consecutive occurs or an occur after an update. The prior model is defined as
Ebe “ ´λ4

řNe
j“1 log pM p∆Mj |ejq, where

pM p∆Mj |ejq “
ź

t

pp∆Mt`1|∆Mt, ejq pp∆Mt|ejq, (11.4)

where ∆Mj is the set of belief dynamics occurred within the communication events ej .

Spatiotemporal Likelihood The likelihood model measures the consistency between the parse
graph and the ground-truth observed data. Since our model has a hierarchical structure, we split
the likelihood into three energy terms, corresponding to the three crucial layers above the parsing
of a single frame in the parse graph; the parsing of the single frame provides H and O as the input:

P pH,O |pgq “ P pH,O|Vb, Ve, Eq “
1

Z2
exp

!

´EcomppH,O|Ve, Eq ´ EevtpH,O|Ve, Eq ´ EbepH,O, Ve|t∆Muq

)

.

(11.5)



CHAPTER 11. THEORY OF MIND REPRESENTATIONS 238

• The first energy term Ecomp constrains the communication event composed by the interactive
segments, so that the features within one composition are similar enough, whereas the features
between two consecutive compositions are significantly distinct:

EcomppH,O|Ve, Eq “ EpΦ|Vs, Eq “
λ5

Ne

Ne
ÿ

j“1

˜

1

Tj

ÿ

t

Dpφj,t, φj,t`1q

¸

´
λ6

ř

i,j,1transpei,ejq“1 DpψpΦiq, ψpΦjqq
ř

i,jp1
transpei, ejq “ 1q

´
λ7

ř

i,j,1occpei,ejq“1 DpψpΦiq, ψpΦjqq
ř

i,jp1
occpei, ejq “ 1q

(11.6)

where Φi “ tφi,tu is the set of features within the interactive segment si, ψp¨q is the wavelet
transform [574], and Dp¨q is the distance measurements between two sets of extracted features.

• The second energy term Eevt is the negative communication event classification score with respect
to the detected feature set Φ “ tΦju and the constructed attention graph set G “ tGju. This
second term is defined as EevtpH,O|Ve, Eq “ EpΦ,G|Veq and encodes all the entities in the scene
extracted from visual input, which can be solved by a traditional MLE:

EpΦ,G|Veq “ ´
1

Ne

Ne
ÿ

j“1

λ8 log ppΦΛj ,GΛj |ejq “ ´
1

Ne

Ne
ÿ

j“1

λ8 log ppej |ΦΛj ,GΛj q ´ C, (11.7)

where Λj is the set of indexes of the interactive segments decomposed from ej , and C is a constant.
• The third energy term Ebe models the belief dynamics in all five minds:

EbepH,O, Ve|t∆Mjuq “ ´
1

Ne

Ne
ÿ

j“1

λ9 log pp∆Mj |H,O, Veq

“ ´
1

Ne

Ne
ÿ

j“1

˜

1

Tj

ÿ

t

λ9 log p
`

∆Mj,t`1|gj,t`1, ej , t∆Mj,t1 |t
1 P rtsj , tsu

˘

¸

,

(11.8)

where tsj is the starting frame of the communication event ej , and gj,t`1 is the attention graph
of frame t` 1 under event ej .

11.4.2 Learning Algorithm

The learning process follows a bottom-up procedure; the algorithm (i) parses each frame to extract
the entities and relations, (ii) joint parses both interactive segments (proposals generated unsu-
pervisedly) and communication events (with trained likelihood) by beam search (see the detailed
algorithm in supplementary material), (iii) predicts the belief dynamics (with trained likelihood),
and (iv) fine-tunes all the parameters to minimize the overall errors. Algorithm 3 details the overall
procedure.

11.5 Emotional Quotient (EQ) Test

11.5.1 Introduction

With the rapid development of artificial intelligence, its applications are spread in all corners of
society. Artificial intelligence not only provides convenience for social life in the form of functional-
ization (e.g ., face recognition, machine translation), but also lands in the field of service (e.g ., robot,
assistant). Incorporating human emotional mechanisms allows AI to perform tasks that machines
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Algorithm 3: Learning to parse social events

Input : Video tItrainu, ground truth V ˚e and V ˚b .
Output: Parameter sets Θ˚1 and Θ˚2 , and parse graph pg.
Init. : H,O,Φ,G,Θ˚1 ,Θ˚2 “ H; L˚1 , L

˚
2 “ `8

1 for Ii in tItrainu do
2 Hi = humanDetectionWithReID(Ii), H ÐÝ H YHi

3 Oi = objectDetectionWithReID(Ii), O ÐÝ O YOi
4 Φi = extractSTFeatures(Hi, Oi), ΦÐÝ ΦYΦi
5 Gi = buildAttentionGraph(Hi, Oi, Φi), G ÐÝ G Y Gi
6 end
7 Vs ÐÝ Generate tsu by unsupervised clustering.
/* Train likelihood of ej as in [523] */

8 Train ppej |ΦΛj ,GΛj q in Eq. (11.7) with ground-truth V ˚e .

/* Finetune the parameter set Θ˚1. */

9 for Θ
piq
1 “ pλ1, λ2, λ3, λ5, λ6, λ7, λ8q P ΩΘ1 do

10 Compute Ecomp based on Eq. (11.6), given Φ and Θ
piq
1 .

11 Compute Eevt based on Eq. (11.7), given Φ, G, Θ
piq
1 .

12 Infer Ve by dynamic programming beam search; see details in Algorithm 4.
13 Calculate error L1 between Ve and V ˚e .

14 if L1 ă L˚1 then L˚1 ÐÝ L1. Θ˚1 ÐÝ Θ
piq
1 .

15 end
/* Train belief dynamics likelihood */

16 Train p
`

∆Mj,t`1|gj,t`1, ej , t∆Mj,t1u
˘

in Eq. (11.8) with V ˚b .
/* Finetune the parameter set Θ˚2. */

17 for Θ
piq
2 = pλ4, λ9q P ΩΘ2 do

18 for ej in Ve do
19 Compute the posterior probability of belief dynamics based on Eqs. (11.4)

and (11.8).

20 Predict the best V̂b by MAP.

21 end

22 Calculate error L2 between the best predicted belief dynamics V̂b and the ground-truth
V ˚b .

23 if L2 ă L˚2 then L˚2 ÐÝ L2. Θ˚2 ÐÝ Θ
piq
2 .

24 end

cannot currently be programmed or trained to perform: machines can feel the effects of others and
put themselves in the shoes of others by thinking about the benefits and drawbacks of their actions.
Emotional factors such as curiosity, fear and surprise can regulate their behaviors. We may expect
that intelligences will be able to express their inner states through communication with others and
possibly influence decision-making.

With the emergence of robots, voice assistants, and virtual idols, AI is widely used in the
services [575, 576]. At present, although AI has been applied to psychological counseling, legal
counseling, elderly companionship, etc., most of the existing task planning algorithms for EQ focus
on how to model the strategies of other intelligence based on the ”physical environment state”,
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Algorithm 4: Event inference via DP beam search

Input : Φ, G, Vs, ppej |ΦΛj ,GΛj q.
Output : Ve
Initialization: Ve “ H,B “ tVe, p “ 0u,m, n.

1 while True do
2 B1 “ H
3 for tVe, pu P B do
4 teiu “ NextpVs, Ve,mq
5 if teiu ‰ H then
6 for each proposed ei do
7 ppVe|Φ,Gq “ DP pVe, p, ei,Φ,Gq
8 Ve “ Ve Y teiu; B1 “ B1 Y tVe, pu
9 end

10 else B1 “ B1 Y tVe, pu
11 end
12 if B1 ““ B then return Ve “ BestpB, 1q
13 else D “ BestpB1, nq; B “ D
14 end

and there is a lack of research on EQ that combine emotion, personality, and behavioral habits in
the academic community. There is a lack of research on EQ that combine emotions, personality,
and behavioral habits. Research related to the emotional intelligence has also focused on expression
recognition and generation: i.e., judging the expression of a person through speech, pictures or
videos of facial expressions [577]; some research has also used expression information to generate
facial animations for use in speech, dialogue, etc. [578].

In recent years, AI has also gradually started to combine with some humanities and social
sciences to expand the scenarios of its applications. In specific scenarios, AI can be involved in
ethical judgment [579], legal discourse [580], moral code reasoning, and social value research [581].
In the context of social service and human-centered research, agents of high EQ will have direct
benefits for human-computer interaction. We hope agents will be able to not only understand the
overall environment, but also perceive model specific states, remember historical behaviors, and
judge future actions for individuals, in order to achieve more humane and efficient communication
and interaction.

This part of the book focuses on how to give intelligences an emotional quotient (EQ) that
enables them to have a complete understanding and expression mechanism of human emotions, basic
human value perceptions, and reasonable language and behavior guidelines in the service of social
life. We summarize our research on the emotional intelligence of intelligent bodies into the following
three aspects. First, we make artificial agent capable of understanding social relations, especially in
a real-time and comprehensive manner. Second, agents are trained from multi-modalities (human
language, movements, facial expressions) so that they can understand and express human emotions.
robots may express emotions, have anthropomorphic images in service scenarios, and can have better
emotional empathy with service recipients. Third, we want to give the intelligent body in line with
the basic cognition of the universal values of human society, so that it can make a right and wrong
judgment of its own behavior based on morality and common sense, so that we have a more stable,
safe and trustworthy intelligent assistant.
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Figure 11.5: SocAoG: Attributed And-Or Graph representation of a social network. A parse graph deter-
mining each attribute and relation type is marked in blue lines. Dialogues are governed by the word context
and associated human attributes and relations.

11.5.2 Incremental Graph Parsing for Social Relation Inference

Our goal is to construct a social network through utterances in dialogue. The network is a het-
erogeneous physical system [582] with particles representing entities and different types of edges
representing social relations. Each entity is associated with multiple types of attributes, while each
type of relation is governed by a potential function defined in human attribute and value space,
acting as the social norm. The relations are often asymmetric, e.g ., A is B’s father does not mean B
is A’s father. To model the network, we utilize an attributed And-Or Graph (A-AoG), a probabilis-
tic grammar model with attributes on nodes. Such design takes advantage of the reconfigurability
of its probabilistic context-free grammar to reflect the alternative attributes and relations, and the
contextual relations defined on Markov Random Field to model the social norm constraints.

Graph-based Social Relation

The social network graph, named SocAoG, is diagrammatically shown in Fig. 11.5. Formally, So-
cAoG is defined as a 5-tuple:

G “ă S, V,E,X, P ą (11.9)

where S is the root node for representing the interested society. V “ VandY Vor Y V
e
T Y V

a
T denotes

all nodes’ collection. Among them, And-nodes Vand represent the set of social communities, which
can be decomposed to a set of entity terminal nodes, V e

T , representing human members. Community
detection is based on the social network analysis [583, 584], and can benefit the modeling of loosely
connected social relations. Each human entity is associated with an And-node that breakdowns the
attributes into subtypes such as gender, age, and profession. All the subtypes consist of an Or-node
set, Vor, for representing branches to alternatives of attribute values. Meanwhile, all the attribute
values are represented as a set of terminal nodes V a

T . We denote E to be the edge set describing
social relations, Xpviq to be the attributes associated with node vi, and Xp~eijq to be the social
relation type of edge ~eij P E.

Relation Inference

Given P to be the probability model defined on SocAoG, a parse graph pg is an instantiation of
SocAoG with determined attribute selections for every Or-node and relation types for every edge.
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Figure 11.6: Our method iteratively updates the robot’s belief of users’ individual attributes and social
relations, similar to human’s reasoning process. The left and right graph show the established and updated
belief, respectively.

For a dialogue session with T turns DT “ tD
p1q, Dp2q, ..., DpT qu, where Dptq is the utterance at turn

t, our method infers the attributes and social relations incrementally over turns:

GT “ tpgp1q, pgp2q, ..., pgpT qu (11.10)

where pgptq represents the belief of SocAoG at the dialogue turn t. We incrementally update the pg
by maximizing the posterior probability:

pg˚ “ arg max
pg

pppg|D; θq (11.11)

where pg˚ is the optimum social relation belief, and θ is the set of model parameters.
For simplicity, we denote Xpviq as vi and Xp~eijq as eij in the rest of the paper. We introduce

three processes, i.e., α, β, and γ process, to infer any SocAoG belief pg˚. We start by rewriting the
posterior probability as a Gibbs distribution:

pppg|D; θq9ppD|pg; θqpppg; θq

“
1

Z
expt´EpD|pg; θq ´ Eppg; θqu

(11.12)

where Z is the partition function. EpD|pg; θq and Eppg; θq are dialogue- and social norm-based
energy potentials respectively, measuring the cost of assigning a graph instantiation.

Denoting a dialogue as a sequence of words: D “ tw1, w2, ..., wT u, the dialogue likelihood energy
term EpD|pg; θq can be expressed with a language model conditioned on the parse graph:

EpD|pg; θq “
T
ÿ

t“1

Epwt|ct, pgq

“

T
ÿ

t“1

´ logpppwt|ct, pgqq

(11.13)

where ct “ rw1, ..., wt´1s is the context vector. Intuitively, the word selection depends on the word
context, the entities’ attributes and their interpersonal relations. We approximate the likelihood by
finetuning a BERT-based transformer with a customized input format x[CLS]D[SEP]vi0ei0j0vj0 ...vineinjnvjnv0v0...vn
vn[SEP]y, which is a concatenation of the dialogue history D and a flattened parse graph string
encoding the current belief. We call the estimation of pg from the dialogue likelihood ppwt|ct, pgq to
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be the α process. α process lacks the explicit constraints for social norms related to interpersonal
relations and human attributes.

For the social norm-based potential, we design it to be composed of three potential terms:

Eppg; θq “ ´ β
ÿ

vi,vjPV ppgq

logpppeij |vi,vjqq

´ γl
ÿ

~eijPEppgq

logpppvi|eijqq

´ γr
ÿ

~eijPEppgq

logpppvj |eijqq

(11.14)

where V ppgq and Eppgq are the set of terminal nodes and relations in the parse graph, respectively.
We call the term ppeij |vi,vjq the β process, in which we bind the attributes of node vi and vj to
update their relation edge eij , in order to model the constraint on relations from human attributes.
Reversely, we call the terms ppvi|eijq and ppvj |eijq the γ process, in which we use the social
relation edge eij to update the attributes of node vi and vj . This models the impact of relation to
the attributes of related entities. β, γl, and γr are weight factors balancing α, β and γ processes.
Combining Eq. (11.12), Eq. (11.13), and Eq. (11.14), we get a posterior probability estimation
pppg|D; θq of parse graph pg, with the guarantee of the attribute and social norm consistencies.

Here we also provide a reduced version of our model, SocAoGreduced, which applies when char-
acters’ attributes annotation are not available for training1. With the same dialogue-based energy
potential, We define the parse graph prior energy over a set of relation triangles:

Eppg; θq “ ´β
ÿ

~eij ,~eik,~ejkPEppgq

logpppeij |eik, ejkqq. (11.15)

Incrementally parsing the SocAoG is accomplished by repeatedly sampling a new parse graph
pgptq from the posterior probability pppgptq|Dptq; θq. We utilize a Markov Chain Monte Carlo (MCMC)
sampler to update our parse graph since the complexity of the problem caused by multiple energy
terms.

11.5.3 Triangular Character Animation Sampling with Motion,Emotion and
Relation

In this section, we first define the elements to make an animation. Then, we introduce the stochastic
grammar to sample animations. In the sampling process, the norms of valence, arousal, domi-
nance and intimacy run as constraints between the motion, emotion and social relation. Finally,
we put them together to make our probabilistic model of ST-AOG.

Skeletal animation

Skeletal animation or rigging is a technique in computer animation in which a character/an agent is
controlled by a hierarchical set of body joints. Let j denote one body joint that is characterized by
its rotation prx, ry, rzq and position px, y, zq. A body pose p is defined as a set of joints tjuuu“1,2,...,n

controlling the whole body, where n is the total number of joints. Let f be a facial expression
characterized by the its valance, arousal and dominance pv, a, dq, which we will discuss in details in
the next part. Then we make animations by designing the body pose p and facial expression f for

1Both SocAoG and SocAoGreduced do not need attribute annotation during inference once trained.
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Figure 11.7: The norms of VAD and facial expressions

Figure 11.8: Examples of different relation types

the k-th frame at time tk. A motion m is defined as a sequence of body poses and an emotion e
is defined a sequence of facial expressions corresponding to the key frames:

m “ tppu, tuquu“1,2,... (11.16)

e “ tpfu, tuquu“1,2,... (11.17)

11.5.4 Norms of valance, arousal, dominance and intimacy

The norms valence, arousal and dominance (VAD) are fairly standardized to assess environmental
perception, experience, and psychological responses [585]. Valance v describes the pleasantness of
a stimulus, arousal a quantifies the intensity of emotion provoked by a stimulus, and dominance d
evaluates the degree of control. Fig. 11.7 shows different facial expressions with different degrees of
valence, arousal and dominance.

We bring another concept: intimacy [586] to the norms to make them support the definition
of different types of the social relation. Specifically, intimacy i describes the closeness of the rela-
tionship. Define the relation r between two agents as their relative dominance and intimacy pd, iq.
Fig. 11.8 shows some possible social relations along with their dominance-intimacy scores.

Norms of valance, arousal, dominance and intimacy form the space to set constraints between
motion, emotion and social relation, which we will discuss in details in the probabilistic model of
ST-AOG.

Representation of two-agent animations

Define a spatial-temporal And-Or Graph (ST-AOG),

G “ pR, V,C, P, S, T q (11.18)
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Figure 11.9: Spatial-Temporal relations between motion, emotion and social relation.

to represent the social-relational interaction between two characters, where R is the root node
for representing the scene with two characters. V the node set, C the production rules, P the
probability model. The spatial relation set S represents the contextual relations between terminal
nodes and the temporal relation set T represents the time dependencies.

Node Set V can be decomposed into a finite set of nonterminal and terminal nodes: V “

V NT Y V T . The non-terminal nodes V NT consists of two subsets V And and V Or. A set of And-
nodes V And is a node set in which each node represents a decomposition of a larger entity (e.g .,
one body pose) into smaller components (e.g ., head pose and hand pose). A set of Or-nodes V Or

is a node set in which each node branches to alternative decompositions (e.g ., one relationship can
be attributed to family or society). The selection rule of Or-nodes follows probability model P ,
which is defined as a multinomial distribution. The terminal nodes V T represent entities which
have different meanings according to context. In this paper, the terminal nodes under the relation
branch identify the relationship between the two characters (e.g ., a father and a son in one family),
the ones under motion branch determine body poses with the positions and rotations of body joints,
and the ones under emotion branch depict facial expressions from eyebrows, eyes, mouth and etc.

Spatial Relations S among nodes are represented by the horizontal links in ST-AOG forming
Markov Random Fields (MRFs) on the terminal nodes. We define different types of potential
functions for different cliques to encode different semantics between body motion m, emotion e,
and social relation r.

S “ Sme Y Sre Y Srm (11.19)

Sme sets constrains on the motion and emotion to ensure that the body movement supports the
right emotion. For example, crying (rubbing eyes) can hardly be compatible with a smile. Sre
regulates the emotion when social relation is considered. For example, we are unlikely to laugh
presumptuously in the front of our bosses. Similarly, Srm manages to select the suitable body
motion under social relation.

Temporal Relations T among nodes are also represented by the horizontal links in ST-AOG
to address time dependencies in animation. The temporal relations

T “ Tme Y Tr (11.20)

are divided into two subsets. Tme encodes the temporal relation between motion and emotion, to
ensure that they match at the right time. Finally, Tr describes to what extent the two agents’
animations match temporally. For example, the reaction of one’s shaking hand proposal should not
be too late.

A hierarchical parse tree pt is an instantiation of the ST-AOG by selecting a child node for
the Or-nodes and determining the terminal nodes. A parse graph pg consists of a parse tree pt, a
number of spatial relations S and a number of temporal relations T on the parse tree:

pg “ ppt, Spt, Tptq (11.21)
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Probabilistic model of ST-AOG

A scene configuration is represented by a parse graph pg, including animations and social relations
of the two characters. The prior probability of pg generated by an ST-AOG parameterized by θ is
formulated as a Gibbs distribution:

pppg | Θq “
1

Z
expt´Eppg | Θqu

“
1

Z
exp t´Eppt | Θq ´ E pSpt | Θq ´ E pTpt | Θqu (11.22)

where Eppg | Θq is the energy function of a parse graph, and Eppt | Θq is the energy function of a
parse tree. EpSpt | Θq and EpTpt | Θq are the energy terms of spatial and temporal relations.

Eppt | Θq can be further decomposed into the energy functions of different types nodes. Since the
And-nodes are deterministically expanded, we do not need an energy term for the And-nodes here.
The energy terms of Or-nodes and terminal nodes are defined as the log-likelihood from probability
model P .

Eppt | Θq “
ÿ

vPV

EOrΘ pvq

looooomooooon

non-terminal nodes

`
ÿ

vPV rT

ETΘpvq
looooomooooon

terminal nodes

(11.23)

Spatial potential E pSpt | Θq combines the potentials of the three types of cliques formed in
the terminal layer, integrating semantic contexts mentioned previously for motion, emotion and
relation.

p pSpt | Θq “
1

Z
exp t´E pSpt | Θqu

“
ź

cPCme

φmepcq
ź

cPCre

φrepcq
ź

cPCrm

φrmpcq (11.24)

We apply the norms of valence, arousal, dominance and intimacy to quantify the triangular con-
straints between motion, emotion and social relation:
• By the definition of social relation r, we can directly get its dominance and intimacy pdr, irq.
• For emotion e, which is a sequence facial expression, we consider its valance, arousal and domi-

nance scores as the different between the beginning facial expression f0 and ending facial expres-
sion f1:

pve, ae, deq “ f1 ´ f0 “ pvf1 , af1 , df1q ´ pvf0 , af0 , df0q (11.25)

• To get the scores of a motion m, we first label the name Nm of the motion, such as talk, jump
and cry. Then we can the valance, arousal and dominance scores from NRC-VAD Lexicon [587],
which includes a list of more than 20,000 English words and their valence, arousal, and dominance
scores.

mÑ Nm Ñ pvm, am, dmq (11.26)

Therefore, the relation Sme and its potential φme on the clique Cme “ tpm, equ containing all
the motion-emotion pairs in the animation, we define

φmepcq “
1

Zsme
exptλsme ¨ pvm, am, dmq ¨ pve, ae, deq

Ju (11.27)

Calculating Potentials φrm on clique Crm “ tpm, rqu and φre on Cre “ tpe, rqu needs another
variable ime suggesting the intimacy score. ime is defined as the distance dist between the two
agents compared with a standard social distance dist0 :

ime “
dist0 ´ dist

dist0
(11.28)
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Then we can define

φrepcq “
1

Zsre
exptλsre ¨ pdr, irq ¨ pde, imeq

Ju (11.29)

φrmpcq “
1

Zsrm
exptλsrm ¨ pdr, irq ¨ pdm, imeq

Ju (11.30)

Temporal potential E pSpt | Θq combines two potentials for time control.

p pTpt | Θq “
1

Z
exp t´E pTpt | Θqu

“
ź

cPCTme

ψmepcq
ź

cPCTr

ψrpcq (11.31)

Potential ψme is define on clique CTme “ tptm, tequ representing the time to start a motion and an
emotion. We assume the time discrepancy between them follows a Gaussian distribution.

ψmepcq “
1

Ztme
exp

`

λtre ¨ ptm ´ teq
2
˘

(11.32)

Notice that so far the training parameters λsme, λ
s
rm, λ

s
rm, λ

t
me and partition functions Zsme, Z

s
re, Z

s
rm, Z

t
me

should be doubled since we have two characters in the scene.
At last, to match the animation for both characters, we assume that the time differences between

ending time of their motions t1,m, t2,m and emotions t1,e, t2,e follow the Gaussian distribution.2

ψrpcq “
1

Ztm
exp

`

λtm ¨ pt1,m ´ t2,mq
2
˘

`
1

Zte
exp

`

λte ¨ pt1,e ´ t2,eq
2
˘

(11.33)

Here we have two additional parameters λtm, λ
t
e and two more partition functions Ztm, Z

t
e.

11.5.5 Towards Socially Intelligent Agents with Mental State Transition and
Human Utility

We first briefly introduce the game environment LIGHT, followed by the mental state modeling
and utility formulation.

LIGHT [588] is a large-scale crowdsourced fantasy text-adventure platform for studying grounded
dialogues. Fig. 11.10 (a) shows a typical local environment setting, including location description,
objects (and their affordances), characters and their personas. Agents can talk to other agents
in free-form text, take actions defined by templates, or express certain emotions (Fig. 11.10 (b)).
Agents could be role-played by either humans or machines. Our task is to build an agent to speak
and act in LIGHT in a socially intelligent manner. To achieve this goal, we model the agent’s mental
state transition and incorporate human utility. The mind model is proposed to depict the agent’s
belief about the underlying states of the text world. Meanwhile, the utility model is designed to
learn human preference in common social situations.

2We do not make any constraints on starting time of their motions because every motion has a fixed duration.
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Setting: The main foyer is massive. A grand staircase sits to the back of the foyer leading to the upstairs. At the front of the foyer stand two servants
ready to help anyone who comes to visit. To the left of the room there is a doorway leading into a corridor. To the right there is a door leading to another
corridor for the King's servants. At the foot of the stairs there is a bearskin rug that is staring at you almost as if still hungry. The walls are lined with
portraits of the king and the family.

Self Persona: Servant. I come from the lower class. I do what I am told without question. I can not read. I have not seen my family in a long time.
Self Carrying: a duster, a small bucket, a rag
Self Wearing: a shirt

Partner Persona: King. I am a king of the whole empire. I give rules and pursuit them. I am brave and fearless.
Partner Carrying: a crown, a scepter

Mind
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Action mask
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Encoder

1
2
3
4
5
6
7

1
2
3
4
5
6
7

Utility Ranker
3
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5

utt/act/emote

Action Selector

Self: I am sorry sir the rug startled me.
Action:  drop crown
Partner: Haha! That's bear I slain on my latest hunting trip. He's a mighty beast!
Emote: gesture laugh

updateMind State
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Text Encoder
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Figure 11.10: Socially Intelligent Agent Model Architecture with Mind State Parser and Utility Model.

Mental State Modeling

Our goal is to construct and maintain the mental states among the theory of mind in dialogues.
With the mental state grounding on the details of the local environment, the agent could simulate
and reason the evolutionary status of the world and condition its speaking and actions. A graphical
representation of the mental state is proposed, as illustrated in Fig. 11.11. All the agents, persona
descriptions, objects and their descriptions, and setting descriptions are represented as nodes, which
will change as the game location switches. The state of mind is described by the relational edges
between these nodes. The mental state is updated with the observed dialogue history or actions,
e.g ., King gives the scepter to the servant will result the servant is carrying the scepter. Such
graphical representations are largely distributed among the theory of minds and they are updated
in the following mental states:
• Level 0: Physical world
• Level 1: A’s belief and desires; B’s belief and desires
• Level 2: A’s belief in A’s mind, B’s mind in B (self-conscious); B’s belief in A’s mind and A’s

belief in B’s mind.
Note that our model only stays in the Level 1 due to the dataset limitation.

Human Utility Modeling

We assume that the agent in the fantasy world would make near-optimal choices to maximize its
utility. We denote the available alternatives to be a set of n exhaustive and exclusive utterances or
actions A “ ta1, ..., ai, ..., anu. The utility function up¨q describes the common preferences over the
alternatives. For example, if ai is more preferred than aj , then upaiq ą upajq.

Our formation of human utilities takes the following two factors into consideration: (i) the task,
speech, act or agent’s emotion prediction, and (ii) the mental state constraints. As an example, since
some actions could be impossible physically (one cannot drop an object if the agent is not carrying
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self

persona carrying

a small bucket a rag

I come from the
lower class ...

partner

persona

carrying

a scepter

I am a king of the
whole empire ...

servant:king

a duster

a crown

a scepter

give scepter to servant

Figure 11.11: A graphical representation of the agent’s mental state. Nodes are attributed with encoded
natural language description of agents, objects and the environment. Agents’ action trigger explicit topology
changes of the graph.

the object), the decision making process becomes a problem of maximizing the utility function that
is subject to some constraints from the mental state, i.e., upa|cq, where c represents the context
or constraints. Usually, we cannot find an analytical form of the utility function. However, what
matters for preference ordering is which of the two options gives the higher expected utility, not
the numerical values of those expected utilities.

The overall architecture of our proposed agent model is illustrated in Fig. 11.10. For each
scenario, a setting description (Fig. 11.10 (a)) is provided by the LIGHT environment, which can
include a description about the location, object affordances, agents’ personas, and the objects that
agents are carrying, wearing, or wielding. The free-form conversations, actions and emotions are
logged during the communication as the observation history (Fig. 11.10 (b)). To begin with, a
mental state parser will parse the setting descriptions into graph representation and initialize the
agent’s mental state (step 1 and 2). Besides the mental state updating, the parser also outputs an
action mask that is aimed to rule out actions that are physically or causally impossible to take (step
3). A graph encoder (step 4) and a text encoder (step 5) will convert the mental state graph Gt
and the dialogue observation Ot into vector representations, respectively. The same text encoder
will be used to encode the candidates Ct (step 6). In step 7, the context vectors are combined
by a bi-directional attention aggregator, and each candidate is assigned a score with a Multi-layer
Perceptron (MLP) (step 8). The action mask is then applied to get the feasible candidates under the
current state-of-mind constraints (step 9). In step 10 and 11, the top three candidates from the last
step will be fed into the utility model and re-ranked. Finally, the selected utterance/action/emotion
is executed by the agent (step 12) and returned to the environment. Upon receiving the response
from other agents in the environment, the new observation will be again parsed and used to update
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Figure 11.12: Overall Architecture of Hybrid Mind-State Parser

the agent’s state of mind, and the cycle repeats. In the following, we will describe each component
in more detail.

Mental State Modeling (Steps 1-2)

Fig. 11.12 describes the architecture of the mental state parser. The initial mental state graph G0

is constructed by a ruled-based parser from the setting description O0 and the graph is encoded by
function fe to a hidden state that is later used for graph update. At game step t, the mental state
parser parses relevant information from observation Ot and update the agent’s mental state from
Gt´1 to Gt. Considering that observations Ot typically convey incremental information from step
t´ 1 to t, we generate the graph update ∆gt instead of the whole graph at each step

Gt “ Gt´1 ‘∆gt, (11.34)

where ‘ is the graph update operation. The graph update can be discrete and continuous, and there
have been studies on the pros and cons of each updating method [589]. The discrete approach may
suffer from an accumulation of errors but benefit from its interpretability. The continuous graph
model needs to be trained from data, but it is more robust to possible errors. In this work, We
propose a hybrid (discrete-continuous) method for updating the agent’s state of mind by considering
the characteristics of the LIGHT environment: since actions in LIGHT are template-based, it is more
appropriate to adopt a discrete method for parsing; meanwhile, since utterances are challenging to
be encoded into discrete representations, we apply a continuous update method instead.

11.6 Theory of Mind Inference in Games

Besides in real life scenarios, the significance of ToM can never be emphasized too much in games
as well, which, most of the time, intrinsically involve multiple players and are partially observable
to one or more of the them. Nonetheless, currently, most multiagent planning approaches focus on
modeling other agents’ policies based on only physical world states [590, 591, 592, 593]. To have
more human-like agents that can interact with humans smoothly, we need to endow agents ToM, to
be more specific, the ability to reason about other agents’ mental states including their beliefs. This
ability is very crucial in all kinds of multiagent games, such as cooperative games like Hanabi [594]
and adversarial games like the policy-thief game we will later use as an example to explain the
belief update modeling in ToM agents. In both types of the games, a player with ToM not only uses
actions to interact with the world, but also intentionally manipulate other players’ (teammates’
or opponents’) minds to achieve better performance. In general, the most common strategy is to
reveal one’s hidden information as much as possible to cooperative players and conceal, or even
mislead, as much as possible to adversarial opponents [595].

We argue that there are two distinctions between ToM and non-ToM agents:
• ToM agents make predictions in a higher dimension (both physical and mental states).
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Mind of agent j Mind of agent i

Physical world

belief
memory

value function (desire)
action value function

action (intention)
observationstate

Figure 11.13: A ToM agent observes the world s and save the observation o into its memory m. The memory
includes o1:t its past observations, and a1:t´1 the performed actions. Based on the memory, it updates is
belief b1 about the world, belief b2 about other agents’ beliefs. Each level l of belief bl has a corresponding
value function vlp¨q, and value functions are combined into an action value function u. Finally, the agent
chooses an optimal action a based on u and changes the world state.

• ToM agents intentionally change other agents’ mental states, i.e., beliefs about the world. In this
way, a ToM agent changes others’ future behaviors to maximize its own value [568].

Fig. 11.13 shows a ToM planning framework. In this framework, a ToM agent keeps beliefs (prob-
ability distributions) about the world state by Bayesian updates over time: at every time step,
it updates the prior belief after performing an action and receiving an observation. It also keeps
high-level beliefs about other agents’ beliefs, which are represented by distributions of distributions.
They are computed by a nested Bayesian update, which involves Bayesian updates of other agents’
lower-level beliefs.

However, exact inference for nested belief updates is computationally very difficult for several
reasons. These reasons include 1) other agents’ model (e.g ., observation function) are required
to compute the nested belief updates. 2) Belief updates for world states suffer from the curse of
dimensionality, and nested belief updates aggravate this issue. In general, only approximate belief
updates are computable.

To avoid the first problem, most methods assume that other agents’ models are known [596, 597,
598, 599, 600, 601]. A more recent work [602] removes this constraint by adding a prior distribution
to other agents’ models.

To alleviate the second problem, various approximation methods for the belief update are pro-
posed, including particle filter [598], state space pruning [597], and nested MDPs [603].

In this section, we take the policy-thief game as an example to illustrate a novel way of approxi-
mating the belief update, at the same time providing an alternative approach to learn other agents’
models. By decomposing the belief update, we identify and approximate a “belief dynamics” term
that is particularly computationally costly. The belief dynamics predicts how other agents’ beliefs
will change after one agent performs an action. In Section 11.6.1, we showed that this process
can be modeled by a Markov probability transition. The transition kernel linearly transforms the
current belief to a predicted belief, thus greatly reducing the computational complexity. We also
showed that there always exists a kernel that transforms the true beliefs, hence theoretically this
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approximation can be exact. The kernel is also learnable, e.g ., by generator neural networks. Since
this kernel characterizes another agent’s belief update, agents essentially learn the other agents’
models by learning their kernels.

In a police-thief game, the police agent needs to catch the thief while hiding its own identity
from the thief. It can be shown that 1) ToM agents can accurately estimate the beliefs of other
agents. 2) ToM agent can learn meaningful values over physical states and mental states. 3) Most
importantly, they are able to intentionally change other agents’ beliefs to achieve high values,
outperforming other agents trained with state-of-the-art multiagent planning algorithms without
modeling ToM.

11.6.1 Theory of Mind Belief Update

To act in uncertain environments due to noisy/partial observation, an agent tracks the physical
world state s over time based on the actions it performed and its past observations. At each time
step t, an agent i keeps a belief bi,t, which is a probability distribution of the world state st given its
memory mi,t. The memory includes its past observations, oi,1:t, and the performed actions, ai,1:t´1.

In the rest of this section, we will use numbered superscripts to indicate the ToM level of the
variables (e.g ., first level beliefs b1). A first-order ToM agent tracks not only the physical world
state, but also the mental states of other agents. Specifically, it tracks its state s “ ps0, b1q over
time, where b1 is all agents’ first-level beliefs of the world state s0. In other words, a first-order
ToM agent i maintains two types of beliefs: first- and second-level beliefs. They are probability
distributions of s0 and b1, respectively. The first-level belief is formulated as the probability of the
world state given its past observation and actions:

b1i,tps
0
t q “ pps0

t |oi,1:t, ai,1:t´1q (11.35)

The second-level belief b2ij,t is defined as agent i’s belief about agent j’s first-level belief b1j,t:

b2ij,tpb
1
j,tq “ ppb1j,t|oi,1:t, ai,1:t´1q, for j ‰ i. (11.36)

At every time step t, an agent i updates its belief bi,t´1 to bi,t, according to the action ai,t´1

performed at last time step and the observation oi,t received afterwards. This is called belief update,
which we will discuss in details in the rest of this section. In general, the agent estimates the physical
and mental states by Bayes filtering, which updates its belief each time an action is performed and
a new observation arrives.

First-level Belief Update

The first-level belief of agent i about the world state at time t is b1i,tps
0
t q “ pps0

t |oi,1:t, ai,1:t´1q. The
Bayes filtering to update the belief at time t can be decomposed into a two-step process:
‚ Prediction. The agent updates its previous belief b1i,t´1ps

0
t´1q after taking an action ai,t´1 by

predicting how the state s0
t´1 will change:

pps0
t |oi,1:t´1, ai,1:t´1q “

ż

s0t´1

pps0
t , s

0
t´1|oi,1:t´1, ai,1:t´1qds

0
t´1

“

ż

s0t´1

pps0
t |s

0
t-1, oi,t-1, ai,t-1qpps

0
t-1|oi,1:t-1, ai,1:t-2qds

0
t-1

“

ż

s0t´1

pps0
t |s

0
t´1, oi,t´1, ai,t´1q

looooooooooooomooooooooooooon

world dynamics

b1i,t´1ps
0
t´1q

looooomooooon

previous belief

ds0
t´1

(11.37)
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We can see that the agent updates its previous belief b1i,t´1ps
0
t´1q by applying a stochastic state

transition function pps0
t |s

0
t´1, oi,t´1, ai,t´1q. At this time, the agent has not received the new ob-

servation oi,t. This prediction step computes how first-level beliefs will change after performing an
action. Note that although we have uncertainty about the true world state, but this distribution
transition process is deterministic for a certain time step.
‚ Correction. After receiving a new observation oi,t, the agent corrects its prediction from the last
step :

b1i,tps
0
t q “ pps0

t |oi,t, oi,1:t´1, ai,1:t´1q

“ αpps0
t , oi,t|oi,1:t´1, ai,1:t´1q

“ αppoi,t|s
0
t q pps

0
t |oi,1:t´1, ai,1:t´1q

loooooooooooomoooooooooooon

first-level prediction

(11.38)

where α is a normalizing constant as we apply the Bayes rule, ppoi,t|s
0
t q is the likelihood of obser-

vation oi,t, and pps0
t |oi,1:t´1, ai,1:t´1q is the updated belief from the prediction step.

Second-level Belief Update

The second-level belief gets updated in a similar way. At each time step t, agent i maintains a
second-level belief about agent: b2ij,tpb

1
j,tq “ ppb1j,t|oi,1:t, ai,1:t´1q, for j ‰ i. The Bayes filtering is the

same as the first-level belief update, except that the states are replaced by first-level beliefs:
‚ Prediction:

ppb1j,t|oi,1:t´1, ai,1:t´1q “

ż

b1j,t´1

ppb1j,t|b
1
j,t´1, oi,t´1, ai,t´1q

looooooooooooooomooooooooooooooon

belief dynamics

b2ij,t´1pb
1
j,t´1qdb

1
j,t´1 (11.39)

Similar to the first-level belief update, the agent updates the previous belief b2ij,t´1pb
1
j,t´1q by ap-

plying a stochastic transition function ppb1j,t|b
1
j,t´1, oi,t´1, ai,t´1q defined on the first-level belief of

agent j. We call this transition function the belief dynamics. It takes the observation as input since
it contains information about the state, and the first-level belief changes differently under different
states even if the same action is performed.

In principle, the belief dynamics should follow a similar Bayesian update as the first-level belief
update of agent j itself. However, exact inference of the belief dynamics needs to marginalize out
all possible j’s observations and actions, and then perform a lower-level belief update. This is
computationally very expensive or intractable. We discuss a proposed approximation method in
Section 11.6.1.
‚ Correction. The belief is then updated by the observation:

b2ij,tpb
1
j,tq “ ppb1j,t|oi,t, oi,1:t´1, ai,1:t´1q

“ αppoi,t|b
1
j,tq ppb

1
j,t|oi,1:t´1, ai,1:t´1q

loooooooooooomoooooooooooon

second-level prediction

(11.40)

For simplicity, we still use α to represent the normalizing constant, with a value different from the
first-level belief.

Belief Dynamics

The belief dynamics predicts how a belief of another agent, in the form of a probability distribu-
tion, will change stochastically when actions are performed over time. However, exact inference for
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nested belief update is computationally very expensive or intractable as discussed in Section 11.6.1.
Approximated solutions have been proposed, such as particle filters [598] and bounded policy iter-
ation [600]. Here we propose an alternative solution that is simple but effective.

The existing methods model the belief state transition in a general way similar to world state
transitions (e.g ., particle filter). Let us denote the current belief as bt, the predicted belief after
performing an action as b̂t`1. The key observation of this method is that the Bayesian update process
can always be described by a probability transition kernel. In other words, we can always find a
probability transition kernel to transform bt to b̂t`1. Formally, we have the following proposition.

Proposition 1. 3 Let S be a measurable space and st, st`1 P S. @btpstq “ ppst|o1:t, a1:t´1q and
b̂t`1pst`1q “ ppst`1|o1:t, a1:tq, there exists a Markov kernel κpst, st`1q P SˆS Ñ r0, 1s such that (1)
@st`1, b̂t`1pst`1q “

ş

st
btpstqκpst, st`1qdst, and (2) @st,

ş

st`1
κpst, st`1qdst`1 “ 1.

Proof. Since st is independent of at, we have

b̂t`1pst`1q “ ppst`1|o1:t, a1:tq

“

ż

st

ppst`1|st, o1:t, a1:tqppst|o1:t, a1:tqdst

“

ż

st

ppst`1|st, o1:t, a1:tqppst|o1:t, a1:t´1qdst

“

ż

st

ppst`1|st, o1:t, a1:tqbtpstqdst

Obviously @st,
ş

st`1
ppst`1|st, o1:t, a1:tq “ 1.

Hence κpst, st`1q “ ppst`1|st, o1:t, a1:tq is a kernel that satisifies the conditions.

This introduces a general linear form for the belief dynamics that can be extended to higher
levels. Representing the beliefs by vectors, we can re-write the belief dynamics as:

b̂1j,t “ κt´1b
1
j,t´1 (11.41)

Parametrized by observations and actions, the kernel κpo, aq transforms the previous belief to
the predicted belief. The kernel κpo, aq is to be learned. For example, it can be generated by a
generator neural network. The kernel acts on the belief linearly, but the kernel itself is non-linear
in its parameters (i.e. the observations and actions). Due to its simple and general form, it is quite
powerful and computationally favorable.

Since it is difficult to learn a perfect kernel, we can further add a noise term to this belief
transition:

b̂1j,t “ κt´1b
1
j,t´1 ` ε (11.42)

Assuming the noise follows a multivariate Gaussian distribution as a convenient approximation, we
have ε „ N p0,ΣDq where ΣD is the covariance matrix. Equivalently, we have b̂1j,t „ N pκt´1b

1
j,t´1,ΣD)

where κt´1 fi κpoi,t´1, ai,t´1q. After adding the noise, we normalize b1j,t to ensure that it remains to
be a distribution.

Given the above belief dynamics, we can efficiently compute the second-level belief update. If
at the last time step we have b1j,t´1 „ N pµt´1,Σt´1q, then the prediction step (Eq. (11.39)) is a
convolution of two Gaussian distributions. Hence the result will still be a Gaussian distribution.

3For simplicity, we omit the agent indices in the proposition.
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According to the second-level belief prediction (Eq. (11.39)) and correction (Eq. (11.40)), we have
the following conclusions:
‚ The prediction step gives b1j,t „ N pµp,Σpq, where

µp “ κt´1µt´1 (11.43)

Σp “ ΣD ` κt´1Σt´1κt´1 (11.44)

Hence we can obtain the µp and Σp by applying the transition kernel κt´1. To compute the correction

step, we need a observation model. We can first learn an belief estimation model Ăb1j,t “ fpoi,tq that

directly estimates the beliefs from observations up to a Gaussian noise: Ăb1j,t „ N pb1j,t,Σoq. Then we

can rewrite the observation model ppoi,t|b
1
j,tq as ppĂb1j,t|b

1
j,tq, which is a Gaussian distribution. Then

the correction step is computing the predictive posterior given a Gaussian prior and a Gaussian
likelihood. Since a multivariate Gaussian is the conjugate prior of itself, we have:
‚ The correction step gives b1j,t „ N pµt,Σtq, where

µt “ pΣ
´1
p ` Σ´1

o q
´1pΣ´1

p µp ` Σ´1
o µoq (11.45)

Σt “ pΣ
´1
p ` Σ´1

o q
´1 (11.46)

where µo is directly predicted by the belief estimation model. Σo is learned in the training phase
of the belief estimation model by computing the covariance between predicted beliefs and ground
truth beliefs.

The above equations give an efficient way to compute the second-level belief update. The above
process agrees with the Kalman filter. When the state space is continuous, the belief is a continuous
function instead of a discrete vector. Then infinite-dimensional Kalman filter can be adopted [604].

11.6.2 Theory-of-mind Planning

Based on the belief about the world state and other agents’ mental states, a ToM agent chooses an
optimal action based on a value function. This value function is defined on the belief space, and it
is convex and piecewise-linear [568]. Usually this function is learned by value iteration. However,
this is very hard due to the curse of dimensionality.

In the reinforcement learning literature, it is common to learn approximated value functions [605].
Here we approximate this value function by a linear function of the beliefs with intuitive semantic
meanings. Specifically, we define the first-level value function as:

v1
i pb

1
i q “

ż

s0
b1i ps

0qv0
i ps

0qds0 (11.47)

where v0
i ps

0q is a value function defined on true world states. The second-level value function
v2
ijpb

2
ijq measures agent i’s value of its second-level belief b2ij on agent j’s belief. The second-level

value function is similarly defined as:

v2
ijpb

2
ijq “

ż

s0

ż

b1j

b2ijpb
1
j qb

1
j ps

0qv0
ijps

0qdb1jds
0

“

ż

s0

ż

b1j

b2ijpb
1
j qb

1
j ps

0qdb1j
looooooooooomooooooooooon

Expectation of first-level belief

v0
ijps

0qds0

“

ż

s0
Eb2ij

rb1j ps
0qs v0

ijps
0qds0

(11.48)
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Figure 11.14: The decision-making process along time. A first-order ToM agent updates its first- and second-
level beliefs at each time step after performing an action and receiving an observation. The agent then makes
decision according to its updated belief and performs a new action.

It is grounded to the actual mental states by the zero-level value function v0
ijps

0q, which is the value

of agent i when agent j believes that the state is in s0 with probability 1. Notice the difference
between v0

i ps
0q and v0

ijps
0q: v0

i ps
0q is defined on the physical state while v0

ijps
0q is defined on the

mental state.
Then the first-order ToM agent i at time t chooses an optimal action a˚i,t that maximizes its

future value, which combines the first- and second-level value functions:

a˚i,t “ arg max
ai,t

u1
i pb

1
i,t, ai,tq `

ÿ

j‰i

u2
i pb

2
ij,t, ai,tq

“ arg max
ai,t

ż

b1i,t`1

ppb1i,t`1|b
1
i,t, ai,tqv

1
i pb

1
i,t`1qdb

1
i,t`1

loooooooooooooooooooooooomoooooooooooooooooooooooon

expected future physical state value

`
ÿ

j‰i

ż

b2ij,t`1

ppb2ij,t`1|b
2
ij,t, ai,tqv

2
ijpb

2
ij,t`1qdb

2
ij,t`1

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

expected future mental state value

(11.49)

This way the agent considers the change of other agents’ beliefs after taking an action. This is
particularly important since it enables the first-order ToM agent to intentionally change other
agents’ beliefs. This changes others’ future behaviors and thus maximizes the agent’s own value.

11.6.3 Learning

Learning Belief Dynamics

To predict the future beliefs, the agent generates the transition kernel κpoi,t´1, ai,t´1q given its
observation oi,t´1 and action ai,t´1. Each column of this transition kernel κ sums to 1. This can
be practically implemented as a generator neural network, which takes the observation and action
as inputs and generates all the columns for κ. To ensure that each column sums to 1, a softmax
activation function can be added before the final output of each column.
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Learning Estimation Model

The belief estimation model Ăb1j,t “ fpoi,tq estimates the first-level belief of agent j given agent i’s
observation at time t. This can be learned by any classification model that outputs a probability
for each state given the observation. The model can be trained by optimizing the difference (e.g .
mean squared error, cross entropy) between the ground truth and estimated belief of agent j.

Learning Zero-level Value Functions

Since the beliefs of agent i (i.e., b1i,t and b2ij,t`1) themselves are updated deterministically by Bayes

filtering, the stochastic belief prediction ppb1i,t`1|b
1
i,t, ai,tq in Eq. (11.49) is given by the Dirac delta

function δpb1i,t`1 ´ b̂
1
i,t`1q, where b̂1i,t`1 is the belief after the performing the prediction step. Hence

for first-level future value function we have:

u1
i pb

1
i,t, ai,tq “

ż

b1i,t`1

ppb1i,t`1|b
1
i,t, ai,tqv

1
i pb

1
i,t`1qdb

1
i,t`1

“

ż

b1i,t`1

δpb1i,t`1 ´ b̂
1
i,t`1qv

1
i pb

1
i,t`1qdb

1
i,t`1

“ v1
i pb̂

1
i,t`1pai,tqq “

ż

s0
b̂1i,t`1ps

0qv0
i ps

0qds0

(11.50)

where b̂1i,t`1 is the predicted future belief by performing the prediction step in the Bayes filtering
after taking action ai,t. Similarly, for the second-level future value function:

u2
i pb

2
ij,t, ai,tq “ v2

ijpb̂
2
ij,t`1pai,tqq

“

ż

s0
Eb̂2ij,t`1

rb1j,t`1s v
0
ijps

0qds0
(11.51)

Finally, the combined value function can be re-written as an inner product of beliefs and zero-level
value functions:

q1
i pb

1
i,t, ai,tq `

ÿ

j‰i

q2
i pb

2
ij,t, ai,tq “ xb̂,v

0y (11.52)

where b̂ is the concatenation of b̂1i ps
0q and Eb̂2ij,t`1

rb1j,t`1s for all j ‰ i, and v0 is the concatenation

of v0
i ps

0q and v0
ijps

0q for all j ‰ i.
From reinforcement learning’s perspective, this formulation is a function approximation of the

action-value functions. Specifically, b̂ can be interpreted as the feature vector extracted from the
state, and v0 is the weight. Hence learning the zero-level value functions can be achieved by applying
existing algorithms [605, 606, 607, 608] to learn the weights for a linearly approximated value
function.

11.6.4 Example: Police-thief Game

We test the ToM agents in a police-thief game as shown in Fig. 11.15. There are three types
of agents in this game: a police (the player) controlled by the tested algorithm, a thief (the game
engine) controlled by a zero-order ToM policy, and several passersby that wander around randomly.
The goal of the police is catching the thief by colliding with it, while the goal of the thief is to
escape until the game exceeds a maximum time limit. In this game, the thief does not know which
agent is the police, so it needs to maintain a belief of every agent being the police to escape. The
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Police

Passerby Thief

(a) Ground truth

Thief

Guessed police

(b) Thief’s belief

Figure 11.15: The game setting. (Fig. 11.15a) shows the ground truth identities of all agents. (Fig. 11.15b)
shows the thief’s belief of each agent being the police (player). Darker colors indicates higher probabilities.

police knows who is the thief, but it needs to hide its identity to prevent the thief from escaping.
We benchmark the police’s success rate on catching the thief to evaluate the multiagent planning
methods.

Environment

We adopt the multiagent Particle Environment [609], which is a two-dimensional world with contin-
uous space and discrete time. We use a closed-world setting: an agent will reappear on the opposite
side of the world after crossing a boundary. The environment is physically simulated: an agent can
accelerate, and agents can collide with each other. The observation for an agent is the positions of
other agents, and the allowed actions are the accelerations in four directions. The police receives a
1.0 reward when it collides with the thief, otherwise a -0.1 reward at each time step.

Thief’s Belief Update

As mentioned above, we use a zero-order ToM thief to recognize potential police and escape. The
thief maintains a first-level belief about each agent’s identity. In the beginning, the belief for each
agent is uniform (0.5 probability being police for every agent). At each time step, the belief is
updated by Bayes filtering given by Eq. (11.37) and Eq. (11.38). Since an agent’s identity cannot
be changed by the thief’s actions, the prediction step has no effect on the belief. For the correction
step, we compute the observation likelihood as ppoi,t|s

0
t q “ ppθ|µ, kq. Here θ is the relative angle

between the velocity of an agent and the line connecting the agent and the thief. ppθ|µ, kq “ ekcospθ´µq

2πI0pkq
is the von Mises distribution. At every time step, the thief runs away from the agent that has the
highest probability being the police.

We designed two settings in our experiments: slow-thief and fast-thief. In the slow thief setting,
the thief will have a smaller acceleration than that of the police, and a directly chasing policy is
sufficient to catch the thief. In the fast thief setting, the thief can easily escape from a direct chaser.
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Comparative Methods

There has been a booming interest in the AI community to build algorithms that incorporate
ToM into multiagent systems [134, 262]. For example, Bayesian Theory of Mind (BToM) [134, 558]
predicts the mental states of humans. [610] proposed ToMnet, a neural network to predict the
characteristic of an observed agent and its future behaviors. These are perception models that do
not involve planning.

The most representative series of work on ToM planning is I-POMDP [596, 597, 598, 599,
600, 601], which extends the traditional POMDPs. It augments world states to interactive states to
include beliefs of the intentional model of other agents (belief, reward function, observation function,
etc.). However, solving I-POMDP can be extremely expensive and inefficient. The generalization to
interactive states greatly increases the dimension of the state space, and this curse of dimensionality
is exacerbated by the nested belief reasoning among agents.

Methods have been proposed to approximate I-POMDP. For example, I-PF [598] approximates
the belief updates by particle filters. I-PBVI [597] constrains the interactive state space by comput-
ing a finite set of beliefs reachable from the initial belief over a certain horizon. I-POMDP Lite [603]
uses a nested MDP to model other agents to approximate the exact I-POMDP policy.

The above approximation methods all assume that the agent knows exactly the models, except
beliefs, of other agents. A more recent work [602] removes this constraint. It performs belief up-
date using Bayesian inference and particle filtering by sampling other agents’ models from prior
distributions.

We compare the proposed method (full / ablated) with an existing ToM method and a state-
of-the-art multiagent reinforcement learning algorithm. We use the following algorithms to learn
the police’s policy for benchmarking:
‚ ToM-gt. This is the ToM planning agent given the ground truth belief of the thief (computed by
Bayesian filtering) at every time step. It does not perform belief updates, but it needs to learn the
zero-level value functions. This serves as an ablative version of the full model.
‚ ToM. This is the full model. It learns the zero-level value functions, belief dynamics, and belief
estimation models. It performs belief updates by Bayesian filtering. To learn the zero-level value
functions, we use true online TD(λ) [608]. Therefore the value functions are estimated and updated
at every time step during each episode. We use a 3-layer fully connected neural network for both
the transition kernel generator and the belief estimation model. The size of hidden layers is 64 for
the kernel generator, and 32 for belief estimation.
‚ MADDPG [591]. This is a state-of-the-art multiagent reinforcement learning algorithm that ex-
tends deep deterministic policy gradient (DDPG) [611] to a multiagent setting.
‚ MToM [612]. Another theory-of-mind planning approach. However, this approach only models
the belief of policies rather than the belief of world states. We use the deep Q-Network (DQN) [321]
for the initial policy estimation of MToM.
‚ Direct chasing. This agent always chooses the action that will minimize the distance between
itself and the thief.
‚ Passerby. The same random walker as the other passersby.

For simplicity, we only use the positions of the thief and the police itself as observations for every
method. We also compute the distance between these two positions as a feature. The maximum
episode length is 100, and each algorithm is trained for 1000 episodes. Qualitative results are shown
in Fig. 11.18.
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Figure 11.16: Experiment results in the slow-thief setting. Fig. 11.16a shows the average success rate of
catching the thief in the training stage. Fig. 11.16b shows the probability within an episode that the thief
predicts the agent is the police. The curves are averaged over 20 final episodes during training. From the
beliefs we can see that the strategies of different methods vary, but they can achieve similar performance
(as shown in Fig. 11.16b) in the slow-thief setting. Fig. 11.16c shows the estimated belief of the thief by the
full ToM model within an episode, averaged over the final 20 episodes during training. The estimated beliefs
are obtained by the two-level belief update, which employs a learned belief dynamics and belief estimation
model. From the figure we can see that the ToM agent is able to estimate the thief’s belief within a small
error. All the plots use data generated from 10 independent training trials.
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Figure 11.17: Experiment results in the fast-thief setting. Fig. 11.17a shows that the ToM agent significantly
outperforms other methods, achieving a success rate close to 1. Fig. 11.17b shows that the ToM agent
intentionally lowers the thief’s belief thus it achieves the high success rate. The other methods learn to chase
the thief, hence they are recognized by the thief (the belief goes higher as time evolves). Fig. 11.17c shows
that the ToM agent is able to estimate the thief’s belief within a small error.

Empirical Results

We show some quantitative experiment results in Fig. 11.16 and Fig. 11.17. In both settings, we
can see the proposed method achieves a high success rate and outperforms other methods.

Slow-thief setting In the slow-thief setting, different methods show different belief curves (Fig. 11.16b)
but they achieve similar performance (Fig. 11.16a). This is because the thief is easy to catch in
this setting, so different methods converge to different types of policies. The value functions for
ToM converges very quickly (within an episode) since we use true online TD(λ). It updates the
value functions at every time step during every episode. In the beginning, the belief dynamics and
estimation model are inaccurate, but it does not affect the performance. Even if the thief correctly
recognizes the police, it can be caught by direct chasing. Typically, the thief is caught within 20
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(a) An example episode played by MADDPG [591]

(b) An example episode played by ToM

Figure 11.18: Qualitative results in the fast-thief setting. Each group of two rows shows in the first row the
ground truth state, and in the second row the beliefs of the thief along time (from left to right). The green
one is the thief and the red one is the police. Darker colors indicate higher beliefs. Agents appear on the
opposite side when they cross the boundary. Fig. 11.18a The thief recognizes the MADDPG agent as the
police and escapes. Fig. 11.18b The ToM agent successfully hide its identity and catches the thief.

0 200 400 600 800 1000
Episode

1.5

1.0

0.5

0.0

Va
lu

e

Police
Not police

(a) Values of belief in ToM-gt training

0 200 400 600 800 1000
Episode

1.50
1.25
1.00
0.75
0.50
0.25
0.00

Va
lu

e

Police
Not police

(b) Values of belief in ToM training

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Distance

1

0

1

2

3

4
Va

lu
e

ToM gt
ToM

(c) Value function of distance by ToM

Figure 11.19: Learned zero-level value functions in the fast-thief setting. Fig. 11.19a and Fig. 11.19b shows
the learned values on the mental state learned by ToM-gt and ToM, i.e. the value of the ToM agent that the
thief thinks it is/is not the police. The ToM agent successfully learns that being recognized as a police has
a lower value. Fig. 11.19c shows the final learned value function of the distance between the ToM agent and
the thief. The ToM agent learns that when the thief is very close, there is a high value to directly approach
the thief. When the thief is far away, getting closer will not gain much value.

steps for all methods, and we can see a belief raise in that phase. In some episodes, the agent fails to
catch the thief due to some random behavior. Therefore the curves go down after 20 steps similarly
to the curve of the passerby (a random walker).

Fast-thief setting In the fast-thief setting as a contrast, the police needs to hide its identity to
catch the thief with a high success rate. From Fig. 11.17b we can see that the comparative non-ToM
methods all converge to a greedy chasing behavior in this setting. The thief recognizes the police
and escapes. The success rate is around 0.6 for non-ToM methods (including direct chasing), which
is slightly higher than random walk that has a success rate of 0.4.
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On the other hand, the ToM method achieves a success rate close to 1 by hiding its identity.
From the learning curve (Fig. 11.17a) we can see that it takes some time for the ToM agent to
learn the belief dynamics and estimation model to achieve the final performance. The ToM agent
can intentionally lower the belief of the thief to achieve its goal. Comparing with the passerby
(a random walker) we can see that the belief curve of the ToM agent has a sharp decline in the
beginning. Hence this lowering is not a consequence of random movements. As a final result, the
ToM agent significantly outperforms all other methods.

In both settings, the second-level belief update estimates the belief of the thief quite accurately
as shown in Fig. 11.16c and Fig. 11.17c. Qualitative results are shown in Fig. 11.18 and Fig. 11.19
shows that the proposed algorithm learns meaningful zero-level value functions for both the physical
state and the mental state.

11.6.5 Summary

In this section, we discussed the ToM integration in multiagent games and proposed a novel way
to model the nested belief update, which alleviates the computation problem and provides an
alternative way to learn other agents’ models. It has been shown that the nested belief update can
be modeled a a Markov probability transition, leading to a linear transformation. The transition
kernel is learnable and provides an efficient nested belief update. In the illustrate the effectiveness
of our approach in an adversarial multiagent game, the police-thief game and showed that the ToM
agent can successfully learn other agents’ belief updates and intentionally change other agents’
beliefs to achieve its goal.

11.7 Theory of Mind in Practical Life

Theory of mind (ToM) has been studied by the field of cognitive science for several decades.
However, most of previous work considers ToM in toy examples, such as simulation environment
with several dots or geometric shapes. It is challenging to study the ToM in real scenes since the
environment of the real scenes are too complex, the states cannot be defined accordingly, and the
mental states of real agents are especially complicated to be modeled.

In this section we introduce a cognitive system which aims at applying the ToM in real scenarios
to understand the false-belief behavior by joint inference of object states, robot knowledge, and
human beliefs.

11.7.1 False Belief

Sally-Anne [613] is a seminal psychological test regarding human’s social cognition in understanding
false-belief —the ability to understand other’s belief about the world may contrast with true reality.
A cartoon version of the flagship implementation of Sally-Anne test is shown in the left of Fig. 11.20:
Sally puts her marble in the box and left. While Sally is out, Anne moves the marble from the
box to a basket. The test asks where Sally would look for her marble when she is back. In this
experiment, the marble would be inside the box according to Sally’s false-belief, despite the fact
that the marble is actually inside the basket. To answer this question correctly, a subject or an
algorithm should understand and disentangle the object state (observation from the current frame),
the (accumulated) knowledge, the belief of other agents, the ground truth/reality of the world, and
most importantly, the concept of false-belief.

In order to endow the ability to understand false-belief to a robot system, the system should
enable the following three capabilities with increasing depth in cognition:
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Figure 11.20: Left: The classic Sally-Anne test [613]. Middle and Right: Two false-belief scenarios in our
dataset: belief test and helping test.

• Tracking small objects with occlusions across different views. The objects in indoor environment
(e.g ., cups) are usually small and have the similar appearance. Such objects are frequently oc-
cluded during human interactions. Additionally, each robot’s camera view has few overlaps with
others. The proposed method can address such challenging multi-view multi-object tracking
problem.

• Inferring human beliefs. The state of an object normally does not change unless a human inter-
acts with it. By identifying the interactions between human and objects, our system not only
improves its tracking accuracy through a joint reasoning algorithm, but also supports the high-
level cognitive capability; e.g ., knowing which object is interacted with which person, whether a
person knows the state of the object has been changed.

• Helping human by recognizing false-belief. Giving the above tracking and reasoning results, the
proposed algorithm can infer what a person’s belief about the environment at a certain time,
thereby capable of knowing whether and why the person has false-belief, so as to better assist
the person given a specific context.
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Figure 11.21: An illustration of modeling ToM in real life scenario

11.7.2 Cognitive Platform

To facilitate machines with ToM reasoning abilities from visual input, we first need to give ma-
chines deeper understanding about the scene. Initial scene understanding includes object detection
and human pose estimation but we further figure out that all understanding needs to be in 3D
environment to ease the ambiguity in 2D image plane, especially when distinguishing what and
where a person is looking at or pointing to, which are fundamental aspects in belief updating and
communication. See Fig. 11.21 as an example. Reasoning about Tom is built upon many modules
discussed in previous chapters.

The first step includes what we have introduced in Chapter 1 about the 3d scene and human
parsing. Then gaze estimation in the wild by incorporating information about head pose and pupil
is essential for estimating where people’s attention is in every time step. On the higher level what
a person is doing is detected by action detector and further be parsed by image grammars as
described in Chapter 4, which is followed by intention prediction and path planning.

Another problem worth to mention is that the robustness of mind reasoning relies heavily on
the computer vision modules mentioned above, together with human and object tracking and ReID,
especially in heavy occlusion cases.

With all the belief updates, 3D environment and intention prediction, now the machine can
correct agents’ false belief and even perform parental help.



Chapter 12

Explainable AI

12.1 Introduction

From low risk environments such as movie recommendation systems and chatbots to high risk
environments such as self-driving cars, drones, military applications and medical-diagnosis and
treatment, Artificial Intelligence (AI) systems are becoming increasingly ubiquitous [614, 615, 616,
617]. AI is finding its way into a wide array of applications in education, finance, healthcare,
telecommunication, and law enforcement. In particular, AI systems built using black box machine
learning (ML) models—such as deep neural networks and large ensembles [618, 619, 620, 621,
622, 623, 624, 625, 626]—perform remarkably well on a broad range of tasks and are gaining
widespread adoption. However understanding the behavior of these systems remains a significant
challenge as they cannot explain why they reached a specific recommendation or a decision. This is
especially problematic in high risk environments such as banking, healthcare, and insurance, where
AI decisions can have significant consequences. Therefore, much hope rests on explanation methods
as tools to understand the decisions made by these AI systems.

Explainable AI (XAI) models, through explanations, make the underlying inference mechanism
of AI systems transparent and interpretable to expert users (system developers) and non-expert
users (end-users) [618, 619, 620, 627]. Explanations play a key role in integrating AI machines into
our daily lives, i.e., XAI is essential to increase social acceptance of AI machines. As the decision
making is being shifted from humans to machines, transparency and interpretability achieved
with reliable explanations is central to solving AI problems such as Safety (e.g ., how to operate
self-driving cars safely), Bias & Fairness (e.g ., how to detect and mitigate bias in ML models),
Justified Human Trust in ML models (e.g ., how to trust the output of these AI systems to inform
our decisions), Model Debugging (e.g ., how to improve my model by identifying points of model
failure), and Ethics (e.g ., how to ensure that ML models reflect our values) (Fig. 12.1).

In this chapter, we focus mainly on measuring and increasing Justified Positive Trust (JPT)
and Justified Negative Trust (JNT) [628] in AI systems. We measure JPT and JNT by evaluating
the human’s understanding of the machine’s (M) decision-making process. For example, let us
consider an image classification task. Suppose if the machine M predicts images in the set C correctly
and makes incorrect decisions on the images in the set W . Intuitively, JPT will be computed as the
percentage of images in C that the human subject felt M would correctly predict. Similarly, JNT
(also called as mistrust), will be computed as the percentage of images in W that the human subject
felt M would fail to predict correctly. Note that this definition of justified positive and negative
trust is domain generic and can be applied to any task. For example, in an AI-driven clinical world,
our definitions of JPT and JNT can effectively measure how much doctors and patients understand

265
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Figure 12.1: An AI machine that explains its predictions to human users will find more social acceptance.
Therefore, explainable AI (XAI) models are the key in addressing the issues such as Safety in AI, Bias /
Fairness in AI, Trust in AI, Model Debugging, and Ethics in AI.

the AI systems that assist in clinical decisions.

12.1.1 Introducing X-ToM: Explaining with Theory-of-Mind for Increasing JPT
and JNT

Our work, in this chapter, is motivated by the following three key observations:
• Attention is not a Good Explanation: Previous studies have shown that trust is closely

and positively correlated to the level of how much human users understand the AI system—
understandability—and how accurately they can predict the system’s performance on a given
task—predictability [627, 618, 628, 620]. Therefore there has been a growing interest in devel-
oping explainable AI systems (XAI) aimed at increasing understandability and predictability
by providing explanations about the system’s predictions to human users [618, 619, 620, 621].
Current works on XAI generate explanations about their performance in terms of, e.g ., feature
visualization and attention maps [622, 623, 624, 625, 626, 629]. However, solely generating ex-
planations, regardless of their type (visualization or attention maps) and utility, is not sufficient
for increasing understandability and predictability [630]. We verify this in our experiments (see
Section 12.6).

• Explanation is an Interactive Communication Process: We believe that an effective expla-
nation cannot be one shot and involves iterative process of communication between the human
and the machine. The context of such interaction plays an important role in determining the
utility of the follow-up explanations [631]. As humans can easily be overwhelmed with too many
or too detailed explanations, interactive communication process helps in understanding the user
and identify user-specific content for explanation. Moreover, cognitive studies [620] have shown
an explanation can only be optimal if it is generated by taking user’s perception and belief into
account.

• Defining a Collaborative Task for the Communication Process: In our experiments, we
found that it is difficult to evaluate the effectiveness of explanations without constraining the
communication process. In our framework, we constrain the communication by explicitly defining
a collaborative task for the human user to solve through the explanations. Based on how many
tasks that are successfully solved by the user (and the number of explanations in the dialog), we
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Figure 12.2: XAI as Collaborative Task Solving: Our interactive and collaborative XAI framework based
on the Theory of Mind. The interaction is conducted through a dialog where the user poses questions about
facts in the environment (W-QA) and explanation seeking questions (E-QA).

measure the effectiveness of the explanations.
Based on the above three key observations, we introduce an interactive explanation framework,

X-ToM. In our framework, the machine generates sequence of explanations in a dialog which takes
into account three important aspects at each dialog turn: (a) human’s intention (or curiosity); (b)
human’s understanding of the machine; and (c) machine’s understanding of the human user. To
do this, we use Theory of Mind (ToM) which helps us in explicitly modeling human’s intention,
machine’s mind as inferred by the human as well as human’s mind as inferred by the machine.
The ability to reason about other’s perception and beliefs, in addition to one’s own perception and
beliefs, is often referred to as the Theory-of-Mind [632, 633, 555].

More specifically, in X-ToM, the machine and the user are positioned to solve a collaborative
task, but the machine’s mind (M) and the human user’s mind (U) only have a partial knowledge
of the environment (see Fig. 12.2). Hence, the machine and user need to communicate with each
other, using their partial knowledge, otherwise they would not be able to optimally solve the
collaborative task. The communication consists of two different types of question-answer (QA)
exchanges—namely, a) Factoid question-answers about the environment (W-QA), where the user
asks “WH”-questions that begin with what, which, where, and how; and b) Explanation seeking
question-answers (E-QA), where the user asks questions that begin with why about the machine’s
inference. At each turn in the collaborative dialog, our X-ToM updates a model of human perception
and beliefs, and uses this model for optimizing explanations in the next turn.

We argue that our interactive explanation framework based on ToM is practical and more nat-
ural for both expert and non-expert users to understand the internal workings of complex machine
learning models. Furthermore, we also show that ToM facilitates in quantitatively measuring jus-
tified human trust in the machine by comparing all the three mental representations. To the best
of our knowledge, this is the first work to derive explanations using ToM.

We applied our framework to three visual recognition tasks, namely, image classification, action
recognition, and human body pose estimation. Using Amazon Mechanical Turk, we have collected
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explanation dialogs by interacting with turkers through X-ToM framework. From there, X-ToM
learned an optimal explanation policy that takes into account user perception and beliefs. Through
our extensive human studies, we show that X-ToM allows the user to achieve a high success rate
in visual recognition on blurred images, and does so very efficiently in a few dialog exchanges. We
also found that the most popularly used attribution based explanations (viz. saliency maps) are
not effective to improve human trust in AI system, whereas our Theory-of-Mind inspired approach
significantly improves human trust in AI by providing effective explanations.

12.1.2 Contributions

The contributions of this work are threefold: (i) a new interactive XAI framework based on the
Theory-of-Mind; (ii) a new collaborative task-solving game in the domain of visual recognition
for learning collaborative explanation strategies; and (iii) a new objective measure of trust and
quantitative evaluation of how humans gain increased trust in a given vision system.

12.2 Related Work

Generating explanations or justifications of predictions or decisions made by an AI system has
been widely explored in AI. Most prior work has focused on generating explanations using feature
visualization and attribution.

Feature visualization techniques typically identify qualitative interpretations of features used
for making predictions or decisions. Recently, there has been an increased interest in developing
feature visualizations for deep learning models, especially for Convolutional Neural Nets (CNNs) in
computer vision applications, and Recurrent Neural Nets (RNNs) in NLP applications. For example,
gradient ascent optimization is used in the image space to visualize the hidden feature layers of
unsupervised deep architectures [634]. Also, convolutional layers are visualized by reconstructing the
input of each layer from its output [624]. Recent visual explanation models seek to jointly classify
the image and explain why the predicted class label is appropriate for the image [635]. Other
related work includes a visualization-based explanation framework for Naive Bayes classifiers [636],
an interpretable character-level language models for analyzing the predictions in RNNs [637], and
an interactive visualization for facilitating analysis of RNN hidden states [638].

Attribution is a set of techniques that highlight pixels of the input image (saliency maps) that
most caused the output classification. Gradient-based visualization methods [639, 640] have been
proposed to extract image regions responsible for the network output. The LIME method proposed
by [619] explains predictions of any classifier by approximating it locally with an interpretable
model. Influence measures [641] have been used to identify the importance of features in affecting
the classification outcome for individual data points.

More recently, apart from feature visualization and attribution techniques, other important
lines of research in explainable AI explore dimensionality reduction techniques [642, 643] and focus
on building models which are intrinsically interpretable [644, 645]. There are few recent works in
the XAI literature that go beyond the pixel-level explanations. For example, the TCAV technique
proposed by [646] aims to generate explanations based on high-level user defined concepts. Con-
trastive explanations are proposed by [647] to identify minimal and sufficient features to justify the
classification result. [648] proposed counterfactual visual explanations that identify how the input
could change such that the underlying vision system would make a different decision. More recently,
few methods have been developed for building models which are intrinsically interpretable [644].
In addition, there are several works [620, 649, 650] on the goodness measures of explanation which
aim to understand the underlying characteristics of explanations.
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Figure 12.3: An example of the first phase of an X-ToM game aimed at estimating pgUinM : The user is shown
a blurred image and given a task to recognize if the person in the image is running or walking. X-ToM has
access to the original (unblurred) image and pgM . The user then asks questions regarding objects and parts
in the image. Using the detections in pgM , X-ToM provides visual explanations as “bubbles” that reveal the
corresponding image parts in the blurred image. The generated explanations are used to update pgUinM .

12.3 X-ToM Framework

Our X-ToM consists of three main components:
• A Performer that generates image interpretations (i.e., machine’s mind represented as pgM )

using a set of computer vision algorithms;
• An Explainer that generates maximum utility explanations in a dialog with the user by ac-

counting for pgM and pgUinM using reinforcement learning;
• An Evaluator that quantitatively evaluates the effect of explanations on the human’s under-

standing of the machine’s behaviors (i.e., pgMinU ) and measures human trust by comparing
pgMinU and pgM .

12.3.1 X-ToM Game

An X-ToM game consists of two phases. The first phase is the collaborative task phase. The user
is shown a blurred image and given a task to recognize what the image shows. X-ToM has access
to the original (unblurred) image and the machine’s (i.e., Performer’s) inference result pgM (see
Section 12.3.2). The user is allowed to ask questions regarding objects and parts in the image
that the user finds relevant for his/her own recognition task. Using the detected objects and parts
in pgM , X-ToM Explainer provides visual explanations to the user, as shown in Fig. 12.3. This
process allows the machine to infer what the user sees and iteratively update pgUinM , and thus
select an optimal explanation at every turn of the game (see Section 12.3.3). Optimal explanations
generated by the Explainer are the key to maximize the human trust in the machine.

The second phase is specifically designed for evaluating whether the explanation provided in
the first phase helps the user understand the system behaviors. The Evaluator shows a set of
original (unblurred) images to the user that are similar to (but different from) the ones used in
the first phase of the game (i.e., the set of images shows the same class of objects or human
activity). The user is then given a task to predict in each image the locations of objects and
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parts that would be detected by the machine (i.e., in pgM ) according to his/her understanding of
the machine’s behaviors. Based on the human predictions, the Evaluator estimates pgMinU and
quantifies human trust in the machine by comparing pgMinU and pgM (see Section 12.3.4).

12.3.2 X-ToM Performer (for Image Interpretation)

In this work, the visual tasks involve detecting and localizing human body parts, identifying their
poses and attributes, and recognizing human actions from a given image. The AOG for this visual
domain uses AND nodes to represent decompositions of human body parts into subparts, and OR
nodes for alternative decompositions. Each node is characterized by attributes that pertain to the
corresponding human body part, including the pose and action of the entire body. Also, edges in
the AOG capture hierarchical and contextual relationships of the human body parts.

Our AOG-based performer uses three inference processes α, β and γ at each node. Fig. 12.3
shows an example part of the AOG relevant for human body pose estimation [651]. The α process
detects nodes (i.e., human body parts) of the AOG directly based on image features, without
taking advantage of the surrounding context. The β process infers nodes of the AOG by binding
the previously detected children nodes in a bottom-up fashion, where the children nodes have been
detected by the α process (e.g ., detecting human’s upper body from the detected right arm, torso,
and left arm). Note that the β process is robust to partial object occlusions as it can infer an object
from its detected parts. The γ process infers a node of the AOG top-down from its previously
detected parent nodes, where the parents have been detected by the α process (e.g ., detecting
human’s right leg from the detected outline of the lower body). The parent node passes contextual
information so that the performer can detect the presence of an object or part from its surround.
Note that the γ process is robust to variations in scale at which objects appear in images.

12.3.3 X-ToM Explainer (for Explanation Generation)

The explainer, in the first phase of the game, makes the underlying α, β, and γ inference process
of the performer more transparent to the human through a collaborative dialog. At one end, the
explainer is provided access to an image and the performer’s inference result pgM on that image.
At the other end, the human is presented a blurred version of the same image, and asked to
recognize a body part, or pose, or human action depicted (e.g ., whether the person is running or
walking). To solve the task, the human may ask the explainer various “what,” “where” and “how”
questions (e.g ., “Where is the left arm in the image.”) We make the assumption that the human will
always ask questions that are related to the task at hand so as to solve it efficiently. The explainer
answers these questions using pgM and justifies the answers by showing the corresponding visual
explanations in the image (as illustrated in Fig. 12.4).

As visual explanations, we use “bubbles” [47], where each bubble reveals a circular part of the
blurred image to the human. The bubbles coincide with relevant image parts for answering the
question from the human, as inferred by the performer in pgM . For example, a bubble may unblur
the person’s left leg in the blurred image, since that image part has been estimated in pgM as
relevant for recognizing the human action “running” occurring in the image.

Following the “principle of least collaborative effort” [652] and the aforementioned findings [620]
that explanations should not overwhelm the human, our X-ToM explainer utilizes pgM and pgUinM

(i.e., the contextual and hierarchical relationships explicitly modeled in the AOG) for controlling
the depth and breadth of explanations. To enable this control, each bubble is characterized by
a number of parameters, including the amount of image reveal (i.e., the unblurring level), size,
and location in the image, to name a few. We use reinforcement learning to train the explainer to
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Figure 12.4: Illustration of the first phase in X-ToM game. The human is asked to solve the task “Is the
person in the image walking or running?” The human may ask questions related to body parts and body
poses. The machine reveals a bubble (of various sizes and scales) for each of those questions. The figure
shows examples of explanations generated using α, β and γ processes and the updated inferred user’s mind
after each explanation.

optimize these parameters and thus provide optimal visual explanations.

12.3.4 X-ToM Evaluator (for Trust Estimation)

The second phase of the X-ToM game serves to assess the effect of the explainer on the human’s
understanding of the performer. This assessment is conducted by the evaluator. The human is
presented with a set of (unblurred) images that are different from those used in the first phase.
For every image, the evaluator asks the human to predict the performer’s output. The evaluator
poses multiple-choice questions and the user clicks on one or more answers (see Section 12.11.2 for
more details on evaluator interface and questions). As shown in Fig. 12.5, we design these questions
to capture different aspects of human’s understanding of α, β and γ inference processes in the
performer. Based on responses from the human, the evaluator estimates pgMinU . By comparing
pgMinU with the actual machine’s mind pgM (generated by the performer), we have defined the
following qualitative and quantitative metrics to quantitatively assess human trust [627, 653, 628,
654] in the performer:
• Quantitative Metrics:

(1) Justified Positive and Negative Trust: It is possible for humans to feel positive trust with
respect to certain tasks, while feeling negative trust (i.e., mistrust) on some other tasks. The
positive and negative trust can be a mixture of justified and unjustified trust [627, 628]. We
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Figure 12.5: An example of second phase of X-ToM game where we estimate pgMinU and also quantitatively
compute justified trust.

compute justified positive trust (JPT) and negative trust (JNT) as follows:

JPT “
1

N

ÿ

i

ÿ

z“α,β,γ

∆JPTpi, zq,

∆JPTpi, zq “
}pgMinU

i,z,` X pgMi,`}

}pgMi,`}
,

JNT “
1

N

ÿ

i

ÿ

z“α,β,γ

∆JNTpi, zq,

∆JNTpi, zq “
}pgMinU

i,z,´ X pgMi,´}

}pgMi,´}
,

where N is the total number of games played. z is the type of inference process. ∆JPTpi, zq,
∆JNTpi, zq denote the justified positive and negative trust gained in the i-th turn of a game on
the z inference process respectively. pgMinU

i,z,` denotes nodes in pgMinU
i for which the user thinks

the performer is able to accurately detect in the image using the z inference process. Similarly,
pgMinU
i,z,´ denotes nodes in pgMinU

i for which the user thinks the performer would fail to detect
in the image using the z inference process. }pg} is the size of pg. Symbol X denote the graph
intersection of all nodes and edges from two pg’s.
(2) Reliance: Reliance (Rc) captures the extent to which a human can accurately predict the
performer’s inference results without over- or under-estimation. In other words, Reliance is pro-
portional to the sum of JPT and JNT.
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Rc “
1

N

ÿ

i

ÿ

z“α,β,γ

∆Rcpi, zq,

∆Rcpi, zq “
}pgMinU

i,z X pgMi,z}

}pgMi }
.

• Qualitative Metrics:
(3) Explanation Satisfaction (ES). We measure users’ feeling of satisfaction at having achieved an
understanding of the machine in terms of usefulness, sufficiency, appropriated detail, confidence,
accuracy, and consistency. We ask them to rate each of these metrics on a Likert scale of 0 to 9.

12.4 Representation of Minds in X-ToM

The three minds pgM , pgMinU , and pgUinM are sub-graphs of an And-Or Graph (AOG) defining
all objects, parts, and their relationships and attributes of the visual domain considered. Our
motivation to use AOGs for modeling the three mental states of the Theory of Mind stems from
the following advantages. First, an AOG is a context-sensitive stochastic grammar [154] that can
explicitly capture rich contextual and hierarchical relationships (spatial, temporal and causal).
Second, AOG based representation and inference is a domain generic approach and the literature
has abundantly demonstrated that AOG based systems, especially recent methods that combine
deep learning and AOGs, are the top performers for a wide range of tasks in domains such as
computer vision, natural language processing, and human-robot collaboration [644, 655, 656, 657,
651]. Third, since the result of visual recognition (i.e., a parse graph) is a sub-graph of the AOG,
image interpretations can be readily explained using the top-down, bottom-up, or contextual types
of visual reasoning enabled by the AOG. Finally, and of great importance for XAI systems, the rich
contextual and hierarchical nature of AOGs allows for formalizing and quantitatively evaluating
human trust in the visual performer along both depth and breadth.
As AOG is interpretable, why not show PgM directly to the user as an explanation?
It will be daunting to show the entire AOG since our AOG encodes hundreds of objects, parts,
activities, attributes and other concepts as nodes. In addition, AOG has numerous edges. It might
be possible to visualize a part of AOG, but it is not clear how to optimize which AOG subgraph
would not overwhelm the user and maximize utility. The advantage of using our dialog based
explanations is that, at each dialog turn, explainer can tailor the explanations based on the user’s
current perception and understanding (Miller et al ., 2017).

12.5 Learning X-ToM Explainer Policy

Given the following input: image I, task T assigned to the human, dialog history hi of a sequence
of generated bubbles, and question from the user qi selected from a finite set of allowed questions
QpT q for task T , the explainer estimates an optimal explanation ei at dialog turn i as

ei “ arg max
e

U
`

e | pgM , pgUinMi , qi, hi, T, I; θ
˘

where U denotes the utility function parameterized by θ. The set of questions QpT q is automatically
generated from all concepts (objects, object parts, human activities, object attributes, etc.) that
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Figure 12.6: Left: The Machine interprets the image I as PgM ; Middle: Hierarchical representation of the
bubble using the four parameters: explanation content (bcnt), explanation attention (bact), explanation acts
(batt) and explanation discourse (batt); Right: The Human receives visual explanations—bubbles—optimized
by the X-ToM Explainer.

may appear in the image and are also modeled by the Performer. During interaction, the user is
prompted to ask a question from this list1.

As defined earlier, pgUinMi denotes the current estimate of human’s mind, which is an empty
graph without nodes and edges at the beginning of the X-ToM game. At every turn in the dialog,
the explainer infers and updates pgUinMi by maximizing its posterior distribution based on hi, T
and qi. Using a Bayesian approach, we define the posterior of pgUinMi as

p
`

pgUinMi | hi, qi, T
˘

9

p
`

qi | hi, pg
UinM
i , T

˘

p
`

hi | pg
UinM
i , T

˘

p
`

pgUinMi , T
˘

where p
`

pgUinMi , T
˘

is specified as a uniform prior. The likelihoods p
`

qi | hi, pg
UinM
i , T

˘

and
p
`

hi | pg
UinM
i , T

˘

are estimated based on the frequency of occurrence of the question q “ qi and the
dialog history h “ hi over many X-ToM games played with human users. After updating pgUinMi ,
the selection of an optimal bubble, i.e., explanation ei, is cast as a sequential decision-making prob-
lem and formalized using reinforcement learning (RL). Below we specify the state, actions, reward,
and policy of the RL framework.
RL State (si). The state of the explainer at dialog turn i consists of pgM , pgUinMi , qi, and hi.
RL Action (ai). The action space consists of all possible bubbles that can be generated from
pgM so that they reveal relevant image parts in the blurred image to the human. Each bubble b is
characterized by the following four groups of parameters, as illustrated in Fig. 12.6:

(a) Explanation Content, bcnt, is defined as the amount of visual information contained in the
bubble. Our X-ToM uses the Gaussian scale-space [658] for measuring bcnt. Specifically, we model
“space” as a Gaussian with variance σ2

1 governing the length of the radius (i.e., spatial size) of
the bubble. Also, we model “scale” as a Gaussian with variance σ2

2 governing the amount of image
unblur that the bubble reveals to the user. Given σ2

1 and σ2
2, we compute bcnti as the differential

1A NLU component can be added to map users’ free-form natural language questions to the list of interpretable
questions.
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entropy

bcnt “ 1`
1

2
logp4π2σ2

1σ
2
2q

Intuitively, a bubble with large “space” (i.e., large size) and large “scale” (i.e., high resolution)
reveals a lot of information about the image. Conversely, a bubble with small “space” and “scale”
reveals very little evidence. If the explainer always chose bubbles with small “space” and “scale,”
it would lead to inefficient dialogue for solving the task. On the other hand, if the explainer always
chose bubbles with large space and scale, it would distract the human with unnecessary informa-
tion and make it difficult for the human to understand the machine’s internal representation and
inference2. Thus, the explainer’s goal is to find the bubble with an optimal bcnt. In this work, we
discretize “space” and “scale” of bubbles using σ1 P t1.15, 3.15, 4.5u, and σ2 P t1, 9, 15u.
(b) Explanation Acts, bact, parametrizes the three types of visual explanations (i.e., bubbles)
that can be presented to the human, corresponding to the three inference processes in our AOG-
based performer. Specifically, bact can be: α, β, or γ explanation act. Note that using β and γ
explanation acts (i.e., bottom-up and top-down inference processes of the performer) allows for
increasing depth of explanations.
(c) Explanation Attention, batt, indexes a particular human body part from pgM that is the
current focus of the dialog with the human. In the work, the AOG explicitly models human body
parts and their subparts, where pgM infers only a subset of those appearing in the image.
(d) Explanation Discourse, bdis, parametrizes discourse relations of the bubbles generated along
the dialog with the human. In this work, we account for the dialog discourse for enforcing co-
herence among the explanations. In our experiments, we found the following five discourse rela-
tions [659, 652] to be sufficient and helpful:
• Elaboration. If bubble bi`1 provides additional details (e.g ., by increasing “scale” or “space”)

relative to the previous bubbles hi “ b1...i, then bi`1 relates to the dialog history hi with the
elaboration relationship.

• Sequence. If the explanation attention batt of bubble bi`1 is not part of the dialog history hi,
then bi`1 relates to hi with the sequence relationship.

• Recurrence. If bubble bi`1 already exists in hi, then the discourse relationship between bi`1

and hi is called recurrence.
• Restatement. If the dialog history hi already contains a bubble with the same explanation

attention batt as bi`1, then bi`1 relates to hi with the restatement relationship.
• Summary is a special case of the elaboration relationship. If an attention node of pgM has

been already explained in the dialog history hi, and bi`1 has the same explanation attention but
corresponds to a lower resolution and larger size bubble than the one in hi, then bi`1 relates to
hi with the summary relationship.

RL Reward (ri) Our reward function aims to maximize the success rate (ss), user confidence (cf),
user satisfaction (sf) and minimize the cost (Ci) over the total number of bubbles. We estimate the
cost of generating bubbles b1,b2,...,bi as

Ci “
i
ÿ

j“1

1

bcntj

2For example, showing a very large bubble for revealing Left-Wrist will also reveal Left-Elbow to the human. This
makes it harder for human to understand whether the machine is capable of detecting the exact location of Left-Wrist
in the image. In addition, although larger bubbles can potentially minimize the number of turns, they transmit a
large amount of information from machine to human. This effect may not be obvious in the current experimental set
up, but will be significant in the situation where information to be transmitted is through text. Larger bubbles will
correspond to longer textual descriptions.
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RL Reward (ri) is expressed in terms of a user feedback and cost associated with selecting the
bubbles. At each dialog turn i, after choosing bi, the explainer collects the following feedback from
the user:
• Success (ssi): The user is asked to solve the task based on tbi, hiu. The user’s success indicates

that the machine’s dialog with the user had a high utility and the explanations made by the
machine make sense and can help the user reach an understanding of the image. Therefore, if the
user solves the task correctly, the explainer is rewarded with ssi = 1; otherwise, ssi = -1.

• User confidence (cfi): It is possible that user might solve the task by chance without really
understanding the task. We therefore additionally ask the user to report their confidence in
solving the task on a scale of 1 to 5.

• User satisfaction (sfi): We ask the user to rate the ordering of bubbles generated in the dialog,
and their relevance for solving the task on a scale of 1 to 5.

To compute ri, we also estimate the cost function Ci of generating bubbles b1,b2,...,bi, defined as

Ci “
i
ÿ

j“1

1

bcntj

, (12.1)

where bcnt is computed as follows:

bcnt “ 1`
1

2
logp4π2σ2

1σ
2
2q. (12.2)

Intuitively, a large Ci indicates that explanation content of the bubbles revealed is high.
Our reward function aims to maximize the success rate (ss), user confidence (cf), user satisfaction

(sf) and minimize the cost (Ci) over the total number of bubbles. We estimate the cost of generating
bubbles b1,b2,...,bi as

ri “
1

i
expp

ssi cfi sfi
Ci

q. (12.3)

RL Policy and Training. The explainer operates under a stochastic policy, π pai|si; θq, which
samples optimal bubbles conditioned on the state. This policy is learned by a standard recurrent
neural network, called Long-Short Term Memory (LSTM) [660]. In this work we use a 2-layer
LSTM parameterized by θ. Input to the LSTM is a feature vector representing the state si—
specifically, a binary indicator vector of the AOG nodes and edges present in pgM and pgUinMi , as
well as indices of the question qi and bubbles generated in hi. The LSTM’s output is the predicted
quadruple pbcnt, bact, batt, bdisq of bi`1. Thus, the goal of the policy learning is to estimate the LSTM
parameters θ.

We use actor-critic with experience replay for policy optimization [661]. The training objective
is to find π pai|si; θq that maximizes the expected reward Jpθq over all possible bubble sequences
given a starting state. The gradient of the objective function has the following form:

∇θJpθq “ Er∇θ log πθ pai|si; θqA psi, aiqs (12.4)

where A psi, aiq “ Q psi, aiq ´ V psiq is the advantage function [662]. Q psi, aiq is the standard Q-
function, and V psiq is the baseline function aimed at reducing the variance of the estimated gradient.
We use the same specifications of Q psi, aiq and V psiq as in [662]. As in [662], we sample the dialog
experiences randomly from the replay pool for training.



CHAPTER 12. EXPLAINABLE AI 277

12.6 Experiments

We deployed the X-ToM game on the Amazon Mechanical Turk (AMT) and trained the X-ToM
Explainer through the interactions with turkers. All the turkers have a bachelor’s degree or higher.
We used three visual recognition tasks in our experiments, namely, human body parts identification,
pose estimation, and action identification. We used 1000 images randomly selected from Extended
Leeds Sports (LSP) dataset [663]. Each image is used in all the three tasks. During training, each
trial consists of one X-ToM game where a turker solves a given task on a given image. We restrict
Turkers from solving a task on an image more than once. In total, about 2400 unique workers
contributed in our experiments.

We performed off-policy updates after every 200 trials, using Adam optimizer [664] with a
learning rate of 0.001 and gradients were clipped at [-5.0, 5.0] to avoid explosion. We used ε-greedy
policy, which was annealed from 0.6 to 0.0. We stopped the training once the model converged. In
our case, the X-ToM policy model converged after interacting with 3500 turkers. All our data and
code will be made publicly available.

Elaboration Sequence Recurrence Restatement Summary

26% 48.7% 12.6% 5.1% 7.6%

Table 12.1: Distribution of observed discourse relations in the test trials

The trained X-ToM Explainer was applied to an additional 500 X-ToM games with AMT turkers
for testing. Table 12.1 shows the percentage of discourse relations among bubbles found in the
test interactions. As can be seen, the discourse relation sequence dominates other relations. This
indicates that the X-ToM’s most common explanation strategy is to prefer a bubble containing
new evidence (that was not already shown to the user). Furthermore, the experiment has shown
that 55.3% of the bubbles in the test trials were generated using α explanation act, 23.1% using β
explanation act, and 21.6% using γ explanation act. The high percentage of β and γ explanation
acts indicate that contextual evidence is not only helpful for the performer to detect but also for
the explainer to explain.

12.6.1 AMT Evaluation of X-ToM Explainer

We conducted an ablation study to quantify the importance of taking the inferred human’s mind into
account for generating optimal explanations, i.e., the ablated model does not explicitly represent
and infer pgUinM . Similar to X-ToM, the ablated model was also deployed and trained on AMT.
The trained ablated model was again applied to an additional 500 X-ToM games with AMT turkers
for testing. Table 12.2 compares X-ToM Explainer with the ablated model in terms of objective
measures such as average success rate (ss), average number of bubbles, average rewards (r). X-
ToM Explainer significantly outperforms the ablated model (p ă 0.01) in terms of the overall
reward. Although the success rates of both models are similar, the ablated model is found to use a
significantly larger number of bubbles, which leads to lower overall reward.

Using an additional 100 X-ToM games on AMT, we further compare the explanations generated
by our X-ToM Explainer with the explanations annotated by humans. We asked three graduate
students (not the authors), to select the most appropriate bubbles for a given task. Bubbles that
have been agreed upon by these three subjects were taken as the best explanations for the given
task and image. In terms of maximizing the reward, we found that X-ToM Explainer performed
significantly better than the human strategy of bubble selection (p ă 0.01). However, we found



CHAPTER 12. EXPLAINABLE AI 278

Model
#test tri-
als

ss #bubbles r

X-ToM 500 81.3% 10.5 0.91

Ablated Model 500 77.1% 28 0.42

Human Strategy 100 78.9% 6 0.62

Table 12.2: Comparison of X-ToM with ablated and human baselines

that the average dialog length in the human explanations is 6, while the average dialogue length
observed in the X-ToM explanations is 10.5, indicating that there is a possibility to further improve
the quality of the X-ToM explanations. We leave this for future exploration.

12.6.2 Human Subject Evaluation on Justified Trust

Using X-ToM Evaluator, we conduct human subject experiments to assess the effectiveness of the
X-ToM Explainer, that is trained on AMT, in increasing human trust through explanations. We
recruited 120 human subjects from our institution’s Psychology subject pool 3. These subjects have
no background on computer vision, deep learning and NLP (see Section 12.11.1 for more details).
We applied between-subject design and randomly assigned each subject into one of the three groups.
One group used X-ToM Explainer, and two groups used the following two baselines respectively:
• ΩQA: we measure the gains in human trust only by revealing the answers for the tasks without

providing any explanations to the human.
• ΩSalience: in addition to the answers, we also provide saliency maps generated using attribution

techniques to the human as explanations [639, 640].
Within each group, each subject will first go through an introduction phase where we introduce

the tasks to the subjects. Next, they will go through familiarization phase where the subjects
become familiar with the machine’s underlying inference process (Performer), followed by a testing
phase where we apply our trust metrics and assess their trust in the underlying Performer.

Fig. 12.7 compares the justified positive trust (JPT), justified negative trust (JPT), and Reliance
(Rc) of X-ToM with the baselines.

As we can see, JPT, JNT and Rc values of X-ToM are significantly higher than ΩQA and ΩSalience

(p ă 0.01). Also, it should be noted that attribution techniques (ΩSalience) did not perform any better
than the ΩQA baseline where no explanations are provided to the user. This could be attributed to
the fact that, though saliency maps help human subjects in localizing the region in the image based
on which the performer made a decision, they do not necessarily reflect the underlying inference
mechanism. In contrast, X-ToM Explainer makes the underlying inference processes (α, β, γ) more
explicit and transparent and also provides explanations tailored for individual user’s perception
and understanding. Therefore X-ToM leads to the significantly higher values of JPT, JNT and Rc.
This is one of the key results of our work, given the popularity of attribution techniques as the
state-of-the-art explanations.

Fig. 12.8 shows the average explanation satisfaction rates obtained from each of the three
groups. As we can see, subjects in X-ToM experiment group found that explanations were highly
useful, sufficient and detailed compared to the baselines (p ă 0.01). Interestingly, we did not find
significant differences across the three groups in terms of other satisfaction measures: confidence,
understandability, accuracy and consistency. We leave this observation for future exploration

3These experiments were reviewed and approved by our institution’s IRB.
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Figure 12.7: Gain in Justified Positive Trust, Justified Negative Trust and Reliance: X-ToM vs baselines
(QA, Saliency Maps). Error bars denote standard errors of the means.

Figure 12.8: Explanation Satisfaction: X-ToM vs baselines (QA, Saliency Maps). Error bars denote standard
errors of the means.

12.6.3 Gain in Reliance over time

We hypothesized that human trust and reliance in machine might improve over time. This is
because, it can be harder for humans to fully understand the machine’s underlying inference process
in one single session. Therefore, we conduct an additional experiment with eight human subjects
where the subjects’ reliance is measured after every session. The results are shown in Fig. 12.9. As
we expected, subjects’ reliance increased over time. Specifically, reliance with respect to α inference
process significantly improved only after 2.5 sessions. Reliance with respect to β and γ inference
processes significantly improved after 4.5 sessions. It is clearly evident that, with more sessions, it
is possible to further improve human reliance in AI system.
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Figure 12.9: Gain in Reliance over sessions w.r.t. α, β and γ processes

Figure 12.10: Top-3 best explanations generated with and without using X-ToM.

12.6.4 Case Study

Fig. 12.10 shows examples where the top-3 best explanations preferred by X-ToM are compared
against the top-3 explanations generated by the attribution techniques. The first column shows
the input image for the task. The second column shows all the evidence (i.e., explanations in the
form of bubbles, highlighted in yellow color) used in the machine’s inference about the task. The
thicker the bubble, the higher is its influence, for the machine, in interpreting the image. As we can
see, attribution techniques chose the explanations only based on how influential they are for the
machine in recognizing the image (third column). In contrast, since X-ToM maximizes the utility of
explanations based on both influence values and user’s model, explanations selected by the X-ToM
(fourth column) are diverse and are more intuitive for humans to understand and solve the task
efficiently. For example, for the first image, to aid the human user in solving the task “Is the person
in the image walking,” X-ToM generates the explanation bubbles based on left arm, right arm and
lower body of the person, whereas attribution techniques generate the top-3 bubbles only based on
right arm which clearly is not sufficient for the user to successfully solve the task.
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Figure 12.11: Response Times (in milliseconds per question). Error bars denote standard errors of the
means.

In addition to the quantitative and qualitative metrics discussed in section 2.5, we also measure
the following metrics for comparing our X-ToM framework with the baselines:
• Response Time: We record the time taken by the human subject in answering evaluator ques-

tions. Fig. 12.11 shows the average response times (in milliseconds per question) for each of the
three groups (X-ToM, QA and Saliency Maps). We expected the participants in X-ToM group
to take less time to respond compared to the baselines. However, we find no significant difference
in the response times across the three groups.

• Subjective Evaluation of Reliance: We collect subjective Reliance values (on a Likert scale
of 0 to 9) from the subjects in the three groups. The results are shown in Fig. 12.12. These results
are consistent with our quantitative reliance measures. It may be noted that subjects’ qualitative
reliance in Saliency Maps is lower compared to the QA baseline.
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Figure 12.12: Qualitative Reliance. Error bars denote standard errors of the means.
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12.7 Case Study 2: Robot explanation

In this section, we present a case study that looks at how STC-AOGs can be used in combi-
nation with neural networks to explain robot behavior, which was presented originally in Science
Robotics [665]. This case study aims to disentangle explainability from task performance, measuring
each separately to gauge the advantages and limitations of two major families of representations—
symbolic representations and data-driven representations—in both task performance and imparting
trust to humans. The goals are to explore: (i) what constitutes a good performer for a complex robot
manipulation task? (ii) How can one construct an effective explainer to explain robot behavior and
impart trust to humans?

12.7.1 Experiment Domain

This case study develops an integrated framework consisting of a symbolic action planner using
a stochastic grammar as the planner-based representation and a haptic prediction model based
on neural networks to form the data-driven representation. The authors examine this integrated
framework in a robot system using a contact-rich manipulation task of opening medicine bottles
with various safety lock mechanisms. From the performer’s perspective, this task is a challenging
learning problem involving subtle manipulations, as it requires a robot to push or squeeze the
bottle in various places to unlock the cap. At the same time, the task is also challenging for
explanation, as visual information alone from a human demonstrator is insufficient to provide an
effective explanation. Rather, the contact forces between the agent and the bottle provide the
hidden “key” to unlock the bottle, and these forces cannot be observed directly from visual input.

To constitute a good performer, the robot system proposed here cooperatively combines multiple
sources of information for high performance, enabling synergy between a high-level symbolic action
planner and a low-level haptic prediction model based on sensory inputs. A stochastic grammar
model is learned from human demonstrations and serves as a symbolic representation capturing
the compositional nature and long-term constraints of a task [666]. A haptic prediction model
is trained using sensory information provided by human demonstrations (i.e., imposed forces and
observed human poses) to acquire knowledge of the task. The symbolic planner and haptic model are
combined in a principled manner using an improved Generalized Earley Parser (GEP) [539], which
predicts the next robot action by integrating the high-level symbolic planner with the low-level
haptic model. The learning from demonstration framework presented here shares a similar spirit
of our previous work [667] but with a new haptic model and a more principled manner, namely
the GEP, to integrate the haptic and grammar models. Computational experiments demonstrate a
strong performance improvement over the symbolic planner or haptic model alone.

To construct an effective explainer, the proposed approach draws from major types of ex-
planations in human learning and reasoning that may constitute representations to foster trust
by promoting mutual understanding between agents. Previous studies suggest humans generate
explanations from functional perspectives that describe the effects or goals of actions and from
mechanistic perspectives that focus on behavior as a process [668]. The haptic prediction model
is able to provide a functional explanation by visualizing the essential haptic signals (i.e., effects
of the previous action) to determine the next action. The symbolic action planner is capable of
providing a mechanistic explanation by visualizing multiple planning steps (instead of just one) to
describe the process of the task. The proposed robot system provides both functional and mecha-
nistic explanations using the haptic model and symbolic planner, respectively.
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Robot Explanation:

The key actions are pushing the 
cap three times and twisting the 
cap three times

Robot Explanation:

The key actions are pushing the 
cap three times and twisting the 
cap two times

Robot Explanation:

I succeeded to open the bottle 
because I pushed on the cap three 
times and twisted the cap twice

A B D

Group RGB (A) Symbolic (B) Haptic (C) Text (D)

Baseline X
Symbolic X X
Haptic X X
GEP X X X
Text X X

<latexit sha1_base64="wH37P6izE4FhdS54HDmzZWFl5rc="></latexit>

E Summary of human subject groups and explanations presented 

Action sequence:
Approach à Grasp à Push à Twist à
Ungrasp à Move à Grasp à Push à
Twist à Ungrasp à Move à Grasp à
Push à Pull

Action choices: 
1) Approach 4) Ungrasp 
2) Pull 5) Twist
3) Push 6) Move
7) Grasp 8) Pinch

C

Figure 12.13: Illustration of visual stimuli used in human experiment. All five groups observed the
RGB video recorded from robot executions, but differed by the access to various explanation panels. (A)
RGB video recorded from robot executions. (B) Symbolic explanation panel. (C) Haptic explanation panel.
(D) Text explanation panel. (E) A summary of which explanation panels were presented to each group.

12.7.2 Experiment Design

The human experiment aims to examine whether providing explanations generated from the robot’s
internal decisions foster human trust to machines and what forms of explanation are the most
effective in enhancing human trust. We conducted a psychological study with 150 participants;
each was randomly assigned to one of five groups. Our experimental setup consisted of two phases:
familiarization and prediction. During familiarization, all groups viewed the RGB video, and some
groups were also provided with an explanation panel. During the second phase of the prediction
task, all groups only observed RGB videos.

The five groups consist of the baseline no-explanation group, symbolic explanation group, hap-
tic explanation group, GEP explanation group, and text explanation group. For the baseline no-
explanation group, participants only viewed RGB videos recorded from a robot attempting to open
a medicine bottle, as shown in Fig. 12.13a. For the other four groups, participants viewed the same
RGB video of robot executions and simultaneously were presented with different explanatory panels
on the right side of the screen. Specifically, the symbolic group viewed the symbolic action planner
illustrating the robot’s real-time inner decision-making, as shown in Fig. 12.13b. The haptic group
viewed the real-time haptic visualization panel, as shown in Fig. 12.13c. The GEP group viewed the
combined explanatory panel, including the real-time robot’s symbolic planning and an illustration
of haptic signals from the robot’s manipulator, namely both Fig. 12.13b–c. The text explanation
group was provided a text description that summarizes why the robot succeeded or failed to open
the medicine bottle at the end of the video, as shown in Fig. 12.13d. See a summary in Fig. 12.13e
for the five experimental groups.
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BA

Figure 12.14: Human results for trust ratings and prediction accuracy. (A) Qualitative measures
of trust: average trust ratings for the five groups. and (B) Average prediction accuracy for the five groups.
The error bars indicate the 95% confidence interval. Across both measures, the GEP performs the best. For
qualitative trust, the text group performs most similarly to the baseline group.

12.7.3 Results and Analysis

Fig. 12.14a shows human trust ratings from the five different groups. The analysis of variance
(ANOVA) reveals a significant main effect of groups (F p4, 145q “ 2.848; p “ 0.026) with the sig-
nificance level of 0.05. This result suggests that providing explanations about robot behavior in
different forms impacts the degree of human trust to the robot system. Furthermore, we find that
the GEP group with both symbolic and haptic explanation panels yields the highest trust rating,
with a significantly better rating than the baseline group in which explanations are not provided
(independent-samples t-test, tp58q “ 2.421; p “ 0.019). Interestingly, the GEP group shows greater
trust rating than the text group in which a summary description is provided to explain the robot
behavior (tp58q “ 2.352; p “ 0.022), indicating detailed explanations of robot’s internal decisions
over time is much more effective in fostering human trust than a summary text description to ex-
plain robot behavior. In addition, trust ratings in the symbolic group are also higher than ratings
in the baseline group (tp58q “ 2.269; p “ 0.027) and higher than ratings in the text explanation
group (tp58q “ 2.222; p “ 0.030), suggesting symbolic explanations play an important role in fos-
tering human trust of the robot system. However, the trust ratings in the haptic explanation group
are not significantly different from the baseline group, implying that explanations only based on
haptic signals are not effective ways to gain human trust despite the explanations are also provided
in real-time. No other significant group differences are observed between any other pairing of the
groups.

The second trust measure based on prediction accuracy yields similar results. All groups provide
action predictions above the chance-level performance of 0.125 (as there are 8 actions to choose
from), showing that humans are able to predict the robot’s behavior after only a couple of observa-
tions of a robot performing a task. The ANOVA analysis shows a significant main effect of groups
(F p4, 145q “ 3.123; p “ 0.017), revealing the impact of provided explanations on the accuracy of
predicting the robot’s actions. As shown in Fig. 12.14b, participants in the GEP group yield sig-
nificantly higher prediction accuracy than those in the baseline group (tp58q “ 3.285; p “ 0.002).
Prediction accuracy of the symbolic group also yields better performance than the baseline group
(tp58q “ 2.99; p “ 0.004). Interestingly, we find that the text group shows higher prediction accu-
racy than the baseline group (tp58q “ 2.144; p “ 0.036). This result is likely due to the summary
text description providing a loose description of the robot’s action plan; such a description decou-



CHAPTER 12. EXPLAINABLE AI 286

Figure 12.15: (a) A top-down view of our collaborative cooking game, where the user (the bottom character)
collaborates with a robot (the top character) on some cooking tasks, e.g ., making apple juice. (b) The
explanation interface exhibits the expected sub-tasks for both agents. Pre-conditions and post-effects of
atomic actions are displayed as well.

ples the explanation from the temporal execution of the robot. The prediction accuracy data did
not reveal any other significant group differences among other pairs of groups.

In general, humans appear to need real-time, symbolic explanations of the robot’s internal
decisions for performed action sequences in order to establish trust in machines when performing
multi-step complex tasks. Summary text explanations and explanations only based on haptic signals
are not effective ways to gain human trust, and the GEP and symbolic group foster similar degrees
of human trust to the robot system according to both measures of trust.

12.8 Case Study 3: Explanation in human-machine workspace

We conducted a user study in a gaming environment to evaluate our algorithm, where participants
can collaborate with agents on a virtual cooking task. The gaming environment and explanation
interface are displayed in Fig. 12.15.

12.8.1 Experiment Domain

Our experiment domain is inspired by the video game Overcooked4, where multiple agents are
supposed to make use of various tools and take different roles to prepare, cook, and serve various
dishes. Particularly, we use Unreal Engine 4 (UE4) to create a real-time cooking task, namely
making apple juice. To finish the task, teammates need to take apples from the box and slice
them with a knife near the chopping board. Three apple slices should be put into the juicer before
producing and delivering apple juice. Fig. 12.15 shows a top-down view of the environment. The
game interface is designed to be interactive (e.g ., object appearance will change after taking valid
actions) so that people can easily play through.

To finish the task, each user needs to complete a sequence of 62 atomic actions, if acting
optimally, and observe 5 different object fluent changes with a total state space around 109. An
example task schedule is shown in Fig. 12.16.

12.8.2 Experiment Design

Hypotheses. The user study tests the following hypotheses with respect to our algorithm in the
collaboration:

4http://www.ghosttowngames.com/overcooked/

http://www.ghosttowngames.com/overcooked/
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Figure 12.16: An example task schedule for making apple juice. The robot maintains the schedule to reflect
its expectation on how the team should finish the task. Each color block represents a sub-task, performed by
either robot or human. At a specific timing, we can assign tasks to both agents based on the schedule. e.g .,
at 10.0s, the robot is getting apple slices 1 while the user is supposed to be preparing apple 2. The schedule
gets updated based on inferred human mental states.

• H1: Task completion time. Participants would collaborate with the robot more efficiently if
the robot generates explanations based on the human mental state modeling, compared to the
other conditions.

• H2: Perception of the robot. Participants would have higher perceived helpfulness and ef-
ficiency of the robot, as a result of receiving explanations based on the human mental state
modeling, compared to the other conditions.

Manipulated Variables. We use a between-subject design for our experiment. In particular, users
are randomly assigned to one of three groups and receive different explanations from the robot:
• Control: Users would not get any explanations from the robot. As a result, they can learn to

finish the task by interacting with the environment.
• Heuristics: The robot gives explanations when there is no detected user action for a period of

time. This serves as a simple heuristic for the robot to infer whether the user is having difficulties
in finishing the task. The timing threshold is set to 9.3 seconds, based on the result of a pre-study
in which users can actively ask for explanations when they get stuck.

• Mind modeling: The robot gives explanations when there is a disparity between robot and
human mental states.

Study Protocol. Before starting the experiment, each participant signs an informed consent form.
An introduction is given afterward, including rules and basic controls of the game. As a part of the
introduction, participants are given three chances to work on a simple single-agent training task, to
verify their understanding. Those who fail to complete the training task in one minute would not
continue the study. This is a comprehension test to exclude people who do not understand game
control.

Participants who finish training get to see further instructions before starting to collaborate with
the robot. They are first educated about the goal of a collaboration task (i.e., making apple juice)
and what actions the team should perform to finish it. This is done to make sure every participant
have sufficient knowledge to finish the task, so the impact of user-specific prior knowledge can be
minimized. To prepare users to interact and communicate with the robot agent, we would also
show them a top-down view of the level map (as shown in Fig. 12.15), the appearance of the robot
agent as well as an example of an explanation. During the task, the team is required to make and
serve two orders of dishes in the virtual kitchen. At the end of the study, each participant is asked
to complete a post-experiment survey to provide background information and evaluate the robot
teammate.
Measurement. In the background study, we have collected from users their basic demographic
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information, education, as well as experience with video games.
Our objective measure is intended to evaluate the human-robot teaming performance and sub-

jective measure is designed for evaluating users’ perception of the robot. Our dependent measures
are listed below:
• Teaming performance. We evaluate teaming performance by recording the time for the team

to complete each order.
• Perception of the robot. We measure user’s perception about the robot, in terms of its

helpfulness and efficiency. Helpfulness is comprised of questions that measure users’ opinion on
the robot’s ability to provide necessary help. Efficiency is comprised of questions that measure
users’ opinion on how efficiently and fluently the team is able to finish the task.

12.8.3 Results and Analysis

We recruited 29 subjects for our IRB-approved study from the university’s subject pool. Most of
the participants (69.3%) came from a non-STEM background. Their reported ages ranged from 17
to 36 (M=19.52, SD=2.89). All the participants have moderate experience with video games and
have not played the video game Overcooked, which inspired our study design. Each participant
got 1 course credit after completing the study. In addition, for ease of conducting the study, we
discarded the data of 2 participants from the control group, as they got completely lost and failed
to finish the designated task. As a result, there are 10 valid participants in the “mind modeling”
and “heuristics” group, and 7 in the “control” group.

Generally, we use ANOVA to test the effects of different experimental conditions on teaming
performance and subjective perception of the robot. Tukey HSD tests are conducted on all possible
pairs of experimental conditions.

As shown in Fig. 12.17, we found marginally significant effects from “mind modeling” conditions
on completion time of the first order (F p2, 24q “ 2.038, p “ .152). Post-hoc comparisons using the
Tukey HSD tests revealed that teams could finish the first order significantly faster if users were
under the “mind modeling” condition, compared to those under “control” (p “ .044). The result is
marginally significant compared to those in “heuristics” (p “ .120), confirming H1. However, for
the completion time of the second order, we did not find any significant effect (F p2, 24q “ 0.425, p “
.658). This is not surprising since users were asked to finish the same task twice. They could take
advantage of their previous experience working with the robot for the second order. Intuitively, the
quantitative result showed that our explanation generation algorithm helped non-expert users to
finish the task efficiently on their first run, while those in the control group needed to complete the
task once to be able to finish it with the same efficiency.

The factorial ANOVA also revealed a significant effect of the explanation system on the per-
ceived helpfulness (F p2, 24q “ 4.663, p “ .019) and efficiency (F p2, 24q “ 4.136, p “ .029) of the
robot (Fig. 12.18). In support of H2, post-hoc analysis with the Tukey HSD tests showed that
the robot’s perceived helpfulness was significantly higher under the “mind modeling” condition,
compared to “control” (p “ .023) and “heuristics” (p ă .01). Users under the “mind modeling”
were also more likely to believe the explanation system resulted in improved collaboration efficiency,
compared to “heuristics” (p “ .026) and “control” (p ă .01).

12.9 Conclusions

This chapter presents X-ToM—a new framework for Explainable AI (XAI) and human trust evalu-
ation based on the Theory-of-Mind (ToM). X-ToM generates explanations in a dialog by explicitly
modeling, learning, and inferring three mental states based on And-Or Graphs—namely, machine’s
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Figure 12.17: Time taken for the team to complete two orders under different testing conditions.

Figure 12.18: User’s self-reported perception of the robot in terms of its efficiency and helpfulness.

mind, human’s mind as inferred by the machine, and machine’s mind as inferred by the human.
This allows for a principled formulation of human trust in the machine. For the task of visual
recognition, we proposed a novel, collaborative task-solving game that can be used for collecting
training data and thus learning the three mental states, as well as a testbed for quantitative evalu-
ation of explainable vision systems. We demonstrated the superiority of X-ToM in gaining human
trust relative to baselines.
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Figure 12.19: Statistics (based on Age, First Language and Gender) of the 120 human subjects, from Psy-
chology subject pool, participated in our study.

12.11 Appendix

12.11.1 Evaluation with Psychology Subject Pool

Fig. 12.19 shows the statistics (Age, First Language, Gender) of the 120 human subjects, recruited
from our institution’s Psychology subject pool.

12.11.2 X-ToM Evaluator Interface and Questions

Specifically, there are two main types of evaluator questions about the user’s prediction: (1) whether
the Performer would successfully or incorrectly detect objects, parts and other concepts encoded
by AOG; and (2) which image parts are most influential for the Performer’s successful or incorrect
object detection. For example, the evaluator’s questions include “which parts of the image are most
important for the machine to recognize that the person is running,” and “which small part of image
contributes most to inferring the surrounding larger part of image.” Figs. 12.20 to 12.22 show few
sample screenshots (from our web interface) of the exact questions, on the detection of the body
part “Left-Arm,” that we pose to the subjects.
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Figure 12.20: Sample evaluator questions
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Figure 12.21: Sample evaluator questions

Figure 12.22: Sample evaluator questions



Chapter 13

Communicative Learning

13.1 Introduction

As the advancement of information technology, the world is entering the era of Big Data. This
deluge of data calls for automated methods of data analysis, which is the origin of machine learning,
one of, if not the, most important stream of recent AI. Nonetheless, fitting models to explain
patterns from extensive data, though well compatible to modern computers, is not the typical
way of human learning. Human learning is a lifelong cognitive process of communicating with the
physical and social world. In other words, rather than studying data by oneself, human learning
happens through interaction with others. Its sophistication, effectiveness and complexity give rise to
human intelligence—a phenomenon that AI is inspired to replicate. Decades of studies in cognitive
psychology [139, 669] and anthropology & communications studies [140] have revealed that human
communication and learning is built on many layers of cognitive infrastructures and protocols.

To fully grasp the essence of human learning, learning needs to be studied in a multi-agent
system, where the agents communicate with each other in the process of learning and teaching.
Each agent has a mind that consists of the agent’s current knowledge of the environment, the
agent’s utility function and value, and the agent’s goal and intent. These drive the learning and
communication. In order for an agent to communicate with other agents effectively in the process of
learning, the agent must know about other agents’ knowledge, values and goals, i.e., the agent must
have a summary of the mind of any other agent. The ability for an agent to learn is determined
by the agent’s IQ, or capacity as a learner. The learning process may halt, at least temporarily,
if certain conditions are met. For effective communication and learning, it is crucial to design a
learning protocol that is optimal in terms of some criterion.

The current mathematical and statistical frameworks in communication, machine learning, and
AI are still far from addressing the complexity of human learning and communications.

The mathematical theory of communication was concerned with sending messages through
a noisy channel [670], as Fig. 13.1a illustrates. The sender and receiver share a codebook, and the
message refers to some world state ω, e.g ., a parse graph. Shannon’s theory has intentionally left
out the “semantics” or “meanings” of messages. Sender and receiver are assumed to share com-
mon ground to make sense of the messages outside this framework. The limits of coding efficiency
and channel capacity are based on a protocol that does not model mental states and motives of
agents in sending messages. In our new communicative learning (CL) framework, messages are
selected after deliberations & reflection using theory-of-mind representations, and carry extra in-
formation that is recoverable in a more effective communication protocol, i.e., agents are capable

293
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(a) Diagram of Shannon’s communication theory.

(b) Diagram for statistical learning theory.

Figure 13.1: Diagrams of Shannon’s communication theory and statistical learning theory.

of “reading between lines.”

Statistical and machine learning theories went a step further. As show in Fig. 13.1b, a
learner learns a concept c, which is defined as a set in a state space Ω [671] or a probability model
θ in a hypothesis space θ P H [259], using random samples tpIi, ciq, i “ 1, ...,mu drawn from an
external world. Learning is driven by a pre-defined utility or loss function µ. In this setting, the
PAC-learning theory [671] bounds the number of examples npε, δq needed to learn the concept with
error ď ε and confidence ą 1´δ. The bounds for PAC-learning and generalization are often defined
on the capacity of the hypothesis space, and overly pessimistic [672, 673, 674, 675, 676]. In parallel
to PAC learning, the minimax learning theory in the statistical learning literature defines the limit
of the learned model as a lower bound,

LBpθ, nq “ inf
θ̂

sup
θPH

Eθr´µpθ, θ̂pI1, I2, ..., Inqqs (13.1)

These theories all make an inefficient assumption that examples in learning are random samples,
while we argue that learning is a communication process where examples are deliberate messages
by reflecting mental states of learner and teacher, and derive limits of learning in new CL protocol.

Deep learning and information bottleneck. Deep learning with convolutional neural net-
works (CNN) [677] maps input X to output Y (annotated classification labels) by learning k-layers
of features Z “ pZ1, ..., Zkq. Recently, [678, 679] tried to reveal the “blackbox” by an information
bottleneck (IB) theory. That is, the representation Z should preserve the mutual information in X
for Y : i.e., MIpZ, Y q ´MIpX,Y q “ 0, and minimize its mutual information with the raw signal,
i.e., forgetting the features in X that are irrelevant to the task Y . By Lagrange multipliers, this
becomes to learn in a hypothesis space of neural nets:

θ˚ “ arg minMIpZ,Xq ´ βMIpZ, Y q (13.2)

The IB theory may give an explanation for how CNN works, but the layered features Z “ pZ1, ..., Zkq
are features trained by big data for a specific task, i.e., in a “big-data for small-task” paradigm,
and remain uninterpretable. In contrast, to enable distributed intelligence and commonsense AI
systems, agents must use interpretable messages and achieve common knowledge to communicate
about world state and concepts: objects, scenes, actions, activities.
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Complexity studies in CS and multi-agent systems in AI. In theoretical computer sci-
ence, [680] studied a problem of communication complexity in distributed computation. e.g ., sup-
pose the task is to compute a Boolean function bpx, yq, agent A knows augment x and agent B
knows augment y, how much information exchange between two agents is necessary? This is ex-
tended in [681] using approximation theory. But this stream of work does not involve theory-of-mind
representation either. The theory-of-mind representations are studied by multi-agent system [682],
mostly focusing on toy examples (e.g ., [683, 684]). A recent work [598] extends POMDP to in-
teractive POMDPs (I-POMDP), where the agent’s belief is represented approximately by a set of
samples, i.e., particle filtering in sequential Monte Carlo. Then the belief-of-belief is represented
by particles of particles and computation becomes infeasible. In this project, we will develop a
parametrized representation for nested belief in the CL framework.

In this chapter, we propose a CL framework to investigate human-like learning. Such a frame-
work encompasses and goes beyond existing machine learning paradigms. The framework is impor-
tant for understanding real life learning and teaching, and is necessary for human-robot interactions
in real life settings. To begin with, we introduce a formal definition of knowledge, from which we
can define common knowledge and belief-of-belief.

13.2 Common Knowledge Representation

13.2.1 Overall Setting

There are two agents A and B in a physical world ω P Ω. Each of them knows some facts about
the world. They want to achieve certain tasks requiring some facts about the world to become
their common knowledge. At the beginning of the process, agent A and B receives different sensory
inputs from the common physical state ω. Then, they communicate with each other to infer some
facts about the common physical state collaboratively. Each agent has a mind that includes the
agent’s model of the physical state, the agent’s utility function or value, and the agent’s intent and
goal. For the agents to communicate with each other effectively, each agent must also model the
minds of the other agents. The agents interact with each other and gradually reach common ground
that consists of common knowledge shared by both agents as well as a common value function.

The key notion is that of “common knowledge.” When we say that an event is “common
knowledge,” we mean more than just that both A and B know it; we require also that A knows
that B knows it, A knows that B knows that A knows it, and so on. For example, if A and B are
both present when the event happens and see each other there, then the event becomes common
knowledge [685].

13.2.2 From Distributed Knowledge to Common Knowledge

Let pΩ, E , P q denote a probability space where Ω is the set of states, E is the set of events, and P
gives the probability assigned to each event. We make the assumption that both agents have access
to the probability space, and all uncertainty is represented in the state. For agent i P tA,Bu, we
define i’s perception of the world as a partition Πi of Ω. If the true state of the world is ω P Ω,
then i is informed of the element of Πi that contains ω, which we denote as Πipωq. An event E P E
is a subset of Ω. Agent i knows an event E at state ω if Πipωq Ď E. In most cases, the set of
events E Ď PpΩq are predefined. Both agents know the definition of every event. Namely, given
an event, an agent always know in what states does that event happen. We can also regard E as
a commonsense given a probability space. Here we use PpΩq to represent the power set of Ω and
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(a) Common Knowledge (b) Distributed Knowledge

Figure 13.2: Aumann Knowledge Structure. The blue circle represents an event. The true state ω is indicated
by a blue star. In Fig. 13.2a, the event is common knowledge as it contains the cell of the meet that includes
ω. In Fig. 13.2b, the event is distributed knowledge (but not common knowledge) as it contains the relevant
cell of the join. Everything that is common knowledge is also distributed knowledge.

the set of event is a subset of the power set, because not all combination of states are meaningful
events that the agents care about. Given the same Ω, E can be task-dependent1.

Name Notation Argument Definition

Commonsense E ω,E Can tell whether ω P E

Perception Π ω Feel Πpωq when ω

Knowledge Πpωq Ď E ω,E Knows E at ω

Table 13.1: Notation Definitions

One could equivalently represent perception through random variables. Say that agents A and
B observe the random variables OA and OB respectively. In the language of measure theory, these
random variables are functions of the state. So if ω is the true state, then the agents observe OApωq
and OBpωq respectively. For each agent i P tA,Bu, construct the partition Πi such that for each
ω1, Πipω1q “ tω : Oipωq “ Oipω1qu. In other words, every cell c P Π is a subset of Ω containing
physical states generating the same observation.

@i P tA,Bu, ω1, ω2 P Ω, Oipω1q “ Oipω2q ô Πipω1q “ Πipω2q (13.3)

Suppose the observation functions OA and OB are known to both agents, or equivalently the
partitions ΠA and ΠB are known to both agents. Under this assumption we will use the definition
of common knowledge used by Aumann and Fagin [683]. If the true state is ω, then an event E is
common knowledge at ω if and only if ΠCpωq Ď E, where ΠC “ ΠA ^ΠB (here, ^ indicates the
meet of the two partitions). E is distributed knowledge at physical state ω if and only if ΠDpωq Ď E,
where ΠD “ ΠA _ΠB (here, _ indicates the join of the two partitions). Intuitively, an event is
distributed knowledge means that the agents verify the event if they combine their information,
even if they cannot certify the event on their own. Common knowledge indicates that both agents
can not only verify that the event has taken place, but can verify that the other agent can verify the
event, and that the other agent can verify that they can verify the event, and so on. An illustration
of common and distributed knowledge is shown in Fig. 13.2. We also give two simple examples
using above knowledge representation.

1Notice that E is not a partition. Elements in E are not necessarily mutually exclusive and do not need to cover Ω
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Example 13.2.1. Consider the simple case where the state space consists of sets of integers.
As a concrete example let Ω “ tt1, 2, 3, 4u, t3, 4, 5, 6u, t2, 4, 5, 7u, t2, 3, 5, 8u, t2, 3, 4, 5uu. Label these
elements as ω1, . . . , ω5 respectively. Let agent A know the true state and agent B know nothing. In
the language of observation functions, OApωq “ ω,OBpωq “ ∅. In the language of partitions, agent
A’s partition consists of singleton sets for each element, while agent B’s partition contains only
one cell. Here, the goal is for A to communicate its observed set to agent B. We will refer to the
case that A knows the true state and B knows nothing as a referential game following [686].

Example 13.2.2. Consider situation of Example 13.2.1, but where the agents observe different
features of the true state. Say that agent A only sees all the even numbers in the state, while B only
sees all odd numbers in the state. This can be represented in the language of observation functions
as OApωq “ tn|@n P ω, n ” 0 (mod2qu, OBpωq “ tn|@n P ω, n ” 1 (mod2qu. In the language of
partitions we have that the cells of ΠA are tω1, ω3, ω5u, tω2u, and tω4u and the cells of ΠB are
tω1u, tω2, ω4, ω5u, and tω3u.

Knowledge Acquiring through Communication

With above definition of knowledge, we can model learning as a process of transferring information
from distributed knowledge to common knowledge. Fig. 13.3 illustrates a toy example where an
instance ω happens in a 1D Ω, i.e., a time interval. The two agents A and B cannot observe ω,
instead they observe some projections as input:

IA “ IApωq “ pIA,1, ..., IA,8q; IB “ IBpωq “ pIB,1, ..., IB,9q (13.4)

Each input IA,j , IB,j P 0, 1 is binary: “ 1 if ω is on its right side and “ 0 if ω is on the left. We
can define ΠA{B with IA{B. If we define a probability measure p on Ω, then we can have ppωq as
the probability model on states and ppEq “

ř

ωPE ppωq as the probability model on events. We
can term an agent’s uncertainty after receiving the observation as its imperceptibilty, defined by
entropy of ppω|ΠA{Bq, Hpppω|ΠA{Bqq “ |ΠA{Bpωq|, where |ΠA{Bpωq| is the cardinality of the set.

As shown in Fig. 13.3, E2 cannot be detected by A or B individually, but they can know E2

after combining their knowledge. The goal is to pass minimum messages to transfer a distributed
knowledge to common knowledge. In this example, the optimal messages for E2 are:

mAÑB
1 pωq “ IA,3pωq;m

BÑA
1 pωq “ IB,4pωq (13.5)

By only 1-round of messaging, E2 becomes common knowledge. The perceived cell is compressed:

ΠApω,m
BÑA
1 q “ tω1 : IApω

1q “ IApωq ^ IApω
1q “ mBÑA

1 u (13.6)

ΠBpω,m
AÑB
1 q “ tω1 : IBpω

1q “ IBpωq ^ IBpω
1q “ mAÑB

1 u (13.7)

A{B’s information gain from B{A’s message is measured by the reduction of uncertainty/entropy,

δpm
A{BÑB{A
1 q “ log

|ΠA{Bpωq|

ΠA{Bpω,m
B{AÑA{B
1 q

(13.8)

Remark: When the agents gain information, this is represented through a refinement of their
partitions. This is because new information can only narrow the set of possibly valid states, as the
agents cannot loose previous information. This is equivalent to observing a new random variable,
and computing the join of the corresponding partitions.
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Figure 13.3: Common and distributed knowledge for inferring a state ω (star) in 1D space between A and
B.

In CL, the agents are cooperative. Agent i’s goal is to maximize its knowledge about the state
(achieve the finest possible partition) but also for the other agent to achieve maximum information
about the state. It does this through communicating its own information to its partner through
messages, and through receiving messages from its partner and adding the content to its knowledge
base. As the individual agents’ partitions are refined, the common knowledge partition is refined.
However the distributed knowledge partition remains fixed, as the agents cannot introduce knowl-
edge that cannot be deduced from the combination of their observations through communication.

Goes beyond Shannon Limit with Theory of Mind Protocol

In the previous example, we show how learning can happen as transferring information from dis-
tributed knowledge to common knowledge. In fact, using different communication protocols, the
efficiency of the communication can be also distinctive. Recall example 13.2.1. Suppose the true
world state is ω5 “ t2, 3, 4, 5u and agent A wants to teach the true state to agent B by indicating
a number that is included in the set. If the two agents are using the Shannon protocol, then agent
A at least needs 4 messages to successfully identify ω5. On the contrary, if agent A and B have
ToM and communicate cooperatively, they can finish the teaching successfully with only 1 message.
That is, ω1:4 all have unique identifier, namely, 1 for ω1, 6 for ω2, 7 for ω3 and 8 for ω4. Hence,
suppose the intended state is one of the ω1:4, agent A will definitely use one of the t1, 6, 7, 8u as
the message. That is to say, as long as the message is not one of the t1, 6, 7, 8u, e.g . 2, then agent
B can infer that the true state is ω5. Fig. 13.4 compares the two protocols by visualizing the belief
transition process.

Next, we generalize the 1D toy example in Fig. 13.3 by showing how to communicate distributed
knowledge for high-dimensional spaces. Let state ω be an image and each agent has Ni “neurons”
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Figure 13.4: Comparison between the Shannon protocol and ToM protocol. the information gain is calculated
as the decrease of the belief entropy after a message has been received. Here we assume that the initial belief
of agent B is uniform over all possible world states, and agent B updates belief with Bayesian rule.

as its observations for i P A,B:

Iipωq “ pIi,1, ..., Ii,Niq, with Ii,j “ hi,jpωq,@i, j (13.9)

Each neuron is an indicator or ReLu projection of the image, inside a layered network in Fig. 13.5
(d).

Ii,j “ hi,jpωq “ 1pxω, θijy ě 0q or “ maxp0, xω, θijyq. (13.10)

θij is the weight of neuron hij and is a hyper-plane splitting the state space. Neuron in higher layers
is a weighted poly-hyperplane and further splits cells. Thus we have the partitions ΠA and ΠB as
cells shown in Fig. 13.5 (c). This is true for high-dimensional spaces and for multiple layer neural
networks. Fig. 13.5 (d) zooms in two nested cells: ΠA,a is bounded by 8 neurons in red, and ΠA,b

is bound by 4 neurons in green. When agent A knows an event ω P ΠA,a and tells B by

mAÑB
r1´8spωq “ phA,a1 , ..., hA,a8q. (13.11)

Then, agent B will refine its perception from ΠBpωq to ΠA,a. an information gain by Shannon is:

δshannonpm
AÑB
r1´8spωqq “ log

|ΠBpωq|

|ΠA,a|
(13.12)

. Similarly, if agent B has a ToM capability, he will read-between-lines: since Alice could but didn’t
send a shorter message using the 4 blue neurons, B infers that ω R ΠA,b. The new information that
B gains from A’s message is:

δToM pm
AÑB
r1´8spωqq “ log

|ΠBpωq|

ΠA,a{ΠA,b
. (13.13)

ΠA,a{ΠA,b means the set of elements that are in ΠA,a but not in ΠA,b. It is obvious that δToM ą

δShannon.
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Figure 13.5: An example of partition in 2D space and inference of a state or concept using the ToM-protocol.

Remark: The ToM-protocol goes beyond Shannon’s information by reflecting the minds of the
other agent: agent A selects messages after deliberating what B knows, and B reasons why A sent
this message not other plausible messages. This is a recursive mutual reasoning process. The level
and complexity of the recusion will be discussed in later sections.

13.2.3 Belief over Belief

We can define a probability measure on E by assigning positive weights for each states. Namely, for
agent i P tA,Bu its belief for event E at state ω is

P pE|Πi, uiq “

ř

ωPΠipωqXE
uipωq

ř

ωPΠipωq
uipωq

(13.14)

where uipωq ě 0 represents the weight assigned to the state ω by agent i.

Definition 6. Suppose agent A’s weight assignments are known to agent B. At state ω, agent B’s
belief about agent A’s belief about event E can be defined as: @µ, µ P r0, 1s:

P
`

P pE|ΠA, uAq “ µ|ΠB, uB, ω
˘

“
ÿ

cPΠA

P pΠApωq “ c|ΠB, uB, ωq1
`

P pE|ΠA “ c, uAq “ µ
˘

“
ÿ

cPΠA

P pΠApωq “ c|ΠB, uB, ωq1
´

ř

ωPcXE uApωq
ř

ωPc uApωq
“ µ

¯

(13.15)

@c P ΠA, P pΠApωq “ c|ΠB, uB, ωq “

ř

ωPΠBpωqXc
uBpωq

ř

ωPΠBpωq
uBpωq

(13.16)

Remark: When there are finite number of cells in ΠA, equation Eq. (13.15) is only non-zero for
finite number of µ P r0, 1s.

Cannot Agree to Disagree

Above definition of belief of belief will lead to an important fact, if the posterior of an event is a
common knowledge between two agents, then their posterior must be the same.

Theorem 13.2.1. For an event A P E, define qA as the posterior probability equals to p
`

A|Πpωq
˘

and qB “ p
`

A|Πpωq
˘

. If it is common knowledge that at state ω and qA “ q1, qB “ q2, then
q1 “ q2 [685].
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Proof. Let Π be the member of ΠA ^ ΠB that contains ω. Write Π “ Yjπj where the πj are
disjoint members of ΠA. Since qA “ q1, throughout Π, we have ppA X πjq{ppπjq “ q1, for all
j; hence ppA X πjq “ q1ppπjq, and so by summing over j we get ppA X Πq “ q1ppΠq. Similarly,
ppAXΠq “ q2ppΠq, and so q1 “ q2.

This theorem coincides with our goal in CL, whose goal is for two agents to share their individual
information and agree on a common belief about a certain event. When a certain common belief
is acquired, the learning process can be halted. In Section 13.7, we will discuss this topic in more
detail. In next section, we give example usage of the ToM in some communication games, where
two parties of the game have private information unknown to others and the success of the game
requires the integration of both parties’ information.

13.3 Applications: Referential Game

We discussed what is knowledge, how to model learning as a communication process transiting
information from distributed knowledge to common knowledge and the advantage of the ToM
protocol over Shannon protocols. In this section, we show how a ToM protocol can be acquired and
illustrate the advantage of such a protocol over others. It is very common to study communication
in multi-agent games [687, 688, 686]. In most communication games, there are two agents and
each of them has some private information that the other doesn’t know. The two have to work
together to achieve a certain goal, whose completion requires the private information from both of
the agents. In this section, we present a teacher-student scenario, in which only one of the agents
has private information. This agent needs to teach the other agent its private information, playing
the role of a teacher.

13.3.1 Referential Game

Game Definition

The referential game can be defined by a tuple xA,B,Ω,M, Ay, where A and B stand for a teacher
and a student. Ω is the instance space, where the distractors and targets are sampled from. M is
the message space and A is the student’s action space. In a specific game, a set of instances O Ď Ω
is sampled from Ω as candidates, and one of the candidates o‹ P O is designated as the target, while
the rest, O{to‹u, are distractors. The candidates O are available to both of the agents, while only
the teacher knows the target, o‹. Agents take turns in this game. In every round, the teacher first
sends a message mt P M to the student, followed by an action at P A “ t1, 2, ..., |O|,Ξu taken by
the student, where number 1 to |O| represent “identify a certain instance as the target,” Ξ means
“wait for next message” and t stamps the t-th round. Every message comes with a message cost,
cm, and the total gain for both the teacher and the student, given aT the first non Ξ action, is
R “

řT
t“1´cmt ` 1po‹ “ OraT sq. Notice that the game ends when the student performs a non Ξ

action. We define a protocol between A and B as a set of policies

Π “ xπA : PpΩq ˆO ˆM˚ ˆMÑ r0, 1s, πB : PpΩq ˆM˚ ˆMˆAÑ r0, 1sy

PpΩq is the power set of Ω, where O sampled from, and ˚ is the kleene star, standing for the
history of message. Intuitively, the teacher selects a message based on the distractors, the target
and the communication history. The student chooses an action according to the candidates, the
communication history and latest message. The goal for both of the agents is to maximize the
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Figure 13.6: (a) An example referential game. (b) First, the teacher chooses a message according to the
context and her prediction of the student’s reaction (blue arrows). After a message is sent, the student
updates his belief and the teacher updates her estimation of student’s belief (purple and orange arrows).
Then, the student either waits or selects a candidate (red arrows). Only in the training phase, the actual
student belief will be returned to the teacher (gray arrow). Bold arrows stand for the whole message space
being passed. Notice that φA is part of the QA. O and bt´1

BinA are passed in φA twice, for message selection
and teacher’s new belief estimation. Empty boxes are game and time variants, while shadowed boxes are
agents’ constant mental structure.

expected gain:

EO„PpΩq,o‹„O,m1:T„πA,a1:T„πB

«

´

T
ÿ

t“1

cmt ` 1po‹ “ OraT sq

ff

(13.17)

Algorithm

Emergence of ToM Protocol: Our goal is to learn a protocol for agent A and B so that
they can communicate with ToM capability. To avoid tracking the message history, which scales
exponentially with the time, we use beliefs as sufficient statistics for the past. Hence, ToM can be
embodied as estimating partner’s current and future belief, then choose the most ideal action to
manipulate them as needed. In the referential game, since the teacher knows the target, only the
student holds a belief, bB, about the target. Utilizing the obverter technique, we let the teacher
holds a belief bBinA as her estimation of student’s belief. bBinA is still a distribution over the
candidates. We didn’t use a distribution over distribution to model this nested belief because the
belief update process is deterministic for rational agents following Bayesian rule. Given b0B a uniform
distribution over candidates, P pbtBq is unimodal with uncertainty merely from the likelihood and
can be approximated with a single point.

Before speaking, teacher traverses all messages and predicts the student’s new belief after re-
ceiving each message. She then sends the message leading to the most optimal student’s new belief.
Hearing the message, student updates his belief and takes action. This process is visualized in
Fig. 13.6b and formalized in algorithm Algorithm 5 Line 11 to Line 20. The recursive mutual
modeling in ToM is integrated within the belief update process. φθi , i P tA,Bu are belief update
functions parameterized by θi, taking in candidates, current belief, message and returning a new
belief. The beliefs in our model are semantically meaningful hidden variables in teacher’s Q-function
and student’s policy network, as the student directly samples an action according to his belief. The
evolving of the belief update function reflects the protocol dynamics between the agents.

Within φ, we align the candidates’ embedding into a 1ˆ |O| ˆD tensor and apply 1ˆ 1 convo-
lution to every candidate, where D is the candidate embedding dimension. We sum the candidates
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embedding as the context embedding and concatenate it after each candidate’s embedding, followed
by another 1 ˆ 1 convolution. In each phase, we first train the teacher for a fixed student. Next,
the student is trained to adapt to the teacher.

Teacher: The teacher selects messages according to her Q-values and belief update function.
We use φθApO, b,mq to denote teacher’s belief update function, which takes in the candidates set,
current belief estimation and a message. The return value of this function is a new belief estimation
b1 P ∆O. ∆O represents all probabilistic distributions over the candidates. This function can be
parameterized as a neural network with weighted candidates encoding and messages as inputs and
softmax as the output layer. The return value of the belief update function is directly fed into the
Q-function. In practice, we implement it as a submodule of the Q-net. That is, the output of the
belief update function is used in A’s Q-function and to predict student’s belief in next step during
testing. The teacher chooses messages according to her Q-function.

πθApm|O, o
‹, bq “

exp pβQθApO, o
‹, b,mqq

ř

m1PM exp pβQθApO, o
‹, b,m1qq

(13.18)

QθApO, o
‹, b,mq “ ´cm ` Ea„πθB

`

φθB pO,b,mq
˘

“

1pOras “ o˚q

` 1pa “ Ξqmax
m1

QθA
`

O, o‹, φθB pO, b,mq,m
1q
˘‰

(13.19)

By definition, the teacher’s Q-function relies on student’s policy and belief update function. She
has no access to these student’s functions, but since we never train the teacher and student simul-
taneously, the expectation can be approximated through Monte-Carlo (MC) sampling. To form a
protocol, agent A needs to learn two functions, her belief update function φθA and QθA . In the
training phase, every time the student receives a message, he returns his new belief btB to the
teacher. During testing, she needs to use the output of φθA to approximate student’s new belief.
We train φθA by minimizing the cross-entropy, H, between btB and teacher’s prediction, denoted
as LObv, the obverter loss. Teacher’s Q-function is learned with Q-learning [689]. The λ in line 33
controls the scale of the two losses.

Student: We directly learn the belief update function and policy of the student through the
REINFORCE algorithm [690]. In the referential game, student’s policy is quite simple. If his belief
is certain enough, he will choose the target based on his belief; otherwise, wait for further messages.
The output of the policy network is a distribution with |O| ` 1 dimensions. The last dimension is a
function of the entropy of the original belief. If the belief is uncertain, this value will be dominant
after normalization. φθB has the same structure as φθA . φθB and πθB can be parameterized as an
end-to-end trainable neural network, with the candidates encoding, original belief and received a
message as the input and returning an action distribution.

Adaptive Training: The whole training process can then be summarized as Algorithm 5. Both
the teacher and student are trained in adaptive manner to maximize their expected gain defined in
Eq. (13.17). The training details for teacher are illustrated in Line 28-34 of Algorithm 5, while the
training details of student are in Line 35-39 of Algorithm 5.

Results

We evaluated our algorithm with two datasets, number set and 3D objects, and played referential
games with four or seven candidates. The number set is a symbolic dataset, with an instance as
a set of categorical numbers. For example, rp1, 2, 3, 9q, p1, 2, 4q, p2, 3q, p3, 4, 5qs consists a referential
game with four candidates. Notice that the numbers are merely symbols without numerical order.
If there are four candidates, we randomly choose numbers from 0 to 9, with maximum four numbers
in a set; if seven candidates, we choose from 0 to 11, with maximum five numbers in a set. Each set
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Algorithm 5: Iterative Adaption Protocol Emergence

1

1: Initialize θA, θB
2: No. candidates K
3: Learning rate η, Batch size N
4: for each phase do
5: for i P tA,Bu do
6: Initialize replay buffer D ÐH

7: while train agent i do
8: t “ 1
9: Initialize E ÐH

10: repeat
11: if t “ 1 then
12: Sample O “ tω1, ..., ωKu
13: Random select o‹ “ ωj
14: Initialize b0B , b

0
BinA as

uniform distribution
15: end if
16: mt „ πθApm|O, o

‹, bt´1
BinAq

17: btB “ φθB pO, b
t´1
B ,mtq

18: at „ πθB pb
t
Bq

19: rt “ ´cmt ` 1pOrats “ o‹q
20: btBinA “ btB
21: if i “ A then

22: D Ð D Y tpO, o‹, bt´1
BinA,mt, b

t
B , rqu

23: else
24: E Ð E Y tpO, bt´1

B ,mt, at, rqu
25: end if
26: tÐ t` 1
27: until at ‰ Ξ
28: if i “ A then
29: Sample tpO, o‹, bt´1

BinA,mt, b
t
BinA, rquN „ D

30: ξ “ r ` γ arg maxmQθ1
A
pO, o‹, btBinA,mq

31: LQ “ 1
N

ř

N ||ξ ´QθApO, o
‹, bt´1

BinA,mtq||
2

32: LObv “ 1
N

ř

N Hpb
t
BinA, φθA

`

O, bt´1
BinA,mtq

˘

33: θA Ð θA ´ η∇θApL
Q ` λLObvq

34: Update θ1A Ð θA periodically
35: else
36: Compute Rt “

řT
k“t γ

k´trk for t in E
37: J “ 1

N

ř

N log πθB
`

at|φθB pO, b
t´1
B ,mtq

˘

Rt
38: θB Ð θB ` η∇θBJ
39: end if
40: end while
41: end for
42: end for

Candidates: (0, 1, 4, 8), (0, 1, 5, 9), (0, 1, 2, 8), (9, 4, 5)
Levels: 1, 2, 0, 2

Candidates: (0, 1, 4, 8), (4, 3, 7), (1, 7, 8), (0, 1, 7)
Levels: 1, 0, 2, 2

(a) Number Set Example
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(b) Geometric Shape Example

Figure 13.7: 4 distractors referential game example. Number set on the left (candidates listed in the title
with the target in bold fonts) and 3D objects on the right. Due to the space limit, we only show the message
distribution for the target and student’s new belief after receiving the most probable message. As for the
teacher’s message distribution for distractors, all probability weights concentrate on the unique identifiers
after the first phase of training. Student’s belief illustrates that teacher’s most probable message, though
consistent with multiple candidates, can successfully indicate the target with more confidence as training
goes. In general, both agents’ behavior becomes more certain, and the certainty coordinates.
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is encoded by multi-hot encoding. There are 385 and 1585 different possible number sets, consisting
up to 9.0ˆ 109 and 4.9ˆ 1018 different games with four and seven candidates. Number sets make
a generic referential game prototype, where each instance can be disentangled into independent
attributes perfectly. To verify the generality of our algorithm on more complicated candidates, we
used MoJoCo physical engine to synthesize RGB images of resolution 128ˆ128 depicting single 3D
object scenes. For each object, we pick one of six colors (blue, red, yellow, green, cyan, magenta), six
shapes (box, sphere, cylinder, pyramid, cone, ellipsoid), two sizes and four locations, resulting in 288
combinations. In every game, candidates are uniformly sampled from the instances space. We use a
message space with the same size as the number of attributes appeared in the dataset, i.e., 10 or 12
for number set, and 18 for 3D objects. In every game, we only allow one round of communication
with one message. To prevent collusion using trivial position indicator, candidates are presented to
the agents in different orders. We show an example for each type of data in Fig. 13.7.

13.4 Communication Problem Definition

In a communication problem, there is a world state ω sampled from the state space Ω, holding all
possible states. Suppose there are two agents, A and B. Both agents know the state space, but they
may not know the exact state. Each agent receives a perception from the state according to their
observation function. Based on their perception and their model θ they can form a belief of the
state. The goal is for the agents to communicate and exchange their information/knowledge about
the state so that the exact state or some attributes of the state can be realized by both of the agents
(certain attributes come to the common mind). See Fig. 13.8 as an illustration. To accomplish this
goal, we assume that the two agents share the state space, speaks the same language (same message
space). We call the language between the agents a protocol. More formal mathematical definitions
will be discussed in later sections.

This definition of communication problem can be utilized to formalize many concrete commu-
nication examples in real life and can be easily generalized to scenarios involving more than two
agents. Now that if we narrow down a little and look into a special case, in which agent A knows
strictly more than agent B does. That is the information accommodated by IB is a subset of that
by IB. Then, the general communication problem becomes a pedagogical problem, where A is the
teacher and B is the student.

13.4.1 Insight from Human Pedagogy

As we compared machine learning with human learning, one might think of human solution of
the communication problem defined above. The most important characteristic of human commu-
nication is that the two people will simulate their partner’s reaction and act accordingly [691]. In
the pedagogical scenario, for example, the teacher will consider student’s reaction after receiving
different messages, then selecting the one with the most ideal outcome. Similarly, by modeling the
teacher, the student can usually infer teacher’s intention behind the message, and absorb more
information from the message than the content of the message per se, an ability known as reading
between lines.

To develop this capability, agents need to accommodate more complicated structures than their
own beliefs. The teacher needs to have a value function evaluating student’s mental status so that
she can have preference over messages. The student, on the other hand, should have an estimation
of teacher’s message usage given different intentions, so that a counterfactual reasoning can be
conducted. Moreover, both agents needs to estimate their partner’s current mental status, namely
other’s belief in one’s own mind. We summarize the new mind structures in Fig. 13.9. The ability to
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Figure 13.8: Illustration for general communication problem. 1) State space commonly known by both agents.
2) and 3) agents’ belief about the actual state, a distribution over the state space. 4) common mind holds
by the agents, also a distribution over the state space, usually with larger entropy than individual beliefs.

model other’s mind even when the mind is different one’s own is known as theory of mind (ToM). In
later sections, we’ll show detailed definition of CL with ToM and examples revealing its advantage
over methods without it. Prior to that, let’s briefly review the mainstream categories of machine
learning algorithms, which we later show as special cases of CL.

13.5 Classic Learning Paradigms

13.5.1 Passive Learning

Passive learning is the most popular learning setting whereby a learner passively receives data from
the outside world and tries to figure out the underlying regularity based exclusively on its input. See
Fig. 13.10 for an illustration. The Probably Approximately Correct (PAC) model was introduced
by Valiant [671] for its analysis. Under this model, learning an unknown concept from data is
forming, with high probability, a good approximation of it. Moreover, the model requires a learning
algorithm that is efficient. The main difference between passive learning and human learning is that
the learner receives samples from a fixed distribution without initiatives. To disambiguate concepts,
the size of the samples needs to be large.

13.5.2 Active Learning

Active learning aims to address a crucial issue in the era of big data: instances are often abundantly
available at little cost whereas their labeling requires human effort and can thus be expensive. In
contrast to the (agnostic) PAC model where a learning algorithm is fed with randomly sampled
instances and their labels, in the active setting, a learner is only provided with unlabeled instances.
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Figure 13.9: Mind representations for CL. We have four new structures with the rest same as in Fig. 13.8. 1)
teacher’s value function. 2) student’s estimation of teacher’s teaching schema. 3) and 4) agents’ belief over
other agent’s belief. Every point represents a belief vector with length |ω|.
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Figure 13.10: Illustration for passive learning.

Their labels are not revealed unless explicitly requested. See Fig. 13.11 for an illustration, where
the learner B queries the teacher A about the labels of the selected examples.
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Figure 13.11: Illustration for active learning.

Despite this paradigm shift, an active learner is required to fulfill the same learning objective
as its passive counterpart. But the two learning modes differ in terms of how they query labels: a
passive algorithm is seen as implementing a trivial query strategy by requesting the label of every
instance in its training data. On the contrary, an active learner may ask for significantly less labels
than instances. As a consequence, label complexity, namely the minimum number of label queries
required to achieve same certainty and accuracy as PAC learning, becomes a natural substitute to
sample complexity for measuring active learning efficiency.

13.5.3 Algorithmic Teaching

In the settings considered so far, a learner has the goal of finding a hypothesis which best describes
its training data, sampled from a distribution over which it has no control. Despite their solid the-
oretical guarantees, both passive and active learners require a rather large data set (i.e., exceeding
the sample complexity to make up for not knowing the distribution) to fulfill its goal reliably.

Algorithmic teaching takes a different approach to learning by involving a teacher in the process.
A teacher is the counterpart to a learner, who shares the same hypothesis space and knows the target
hypothesis for a given learning task. However, unable or disallowed to communicate the hypothesis
directly, she exerts influence on the learner through its training data and aims to accelerate its
learning. See Fig. 13.12 for an illustration, where the teacher A provides customized training
examples to teach the learner B. To produce teaching materials suited to her audience, she has to
possess some knowledge as to how the student reacts to data.

In general, teaching can thus be posed as an inverse problem to learning [692] and its goal
is to find the smallest set of examples based on which an intended learner can output a desired
hypothesis. This idea was first formalized in [676, 684] in which they consider teaching an arbitrary
consistent learner i.e., Empirical error minimization (ERM) and introduce a new way of measuring
the complexity of a hypothesis space: the teaching dimension. There are multiple variations of
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Figure 13.12: Illustration for algorithmic teaching.

teaching dimension corresponds to different teaching and learning paradigms [693]. In later chapters,
we’ll later argue that the complexity of CL can be represented with the recursive teaching dimension
(RTD) [694, 695].

None of the listed learning paradigms assign full initiatives to both the teacher and the student,
eliminating the possibility of human-like cooperative pedagogy from emerging. In next section, we’ll
introduce CL, in which both agents intentionally select their actions and show the generality of
this learning paradigm.

13.6 Communicative Learning as A General Learning Paradigm

13.6.1 Motivation

Before we actually start defining CL, let’s take a look at an example and compare different learning
paradigms. Suppose we have an instance space consisting of n elements tx1, x2, ..., xnu and a concept
space Ω “ tc1, c2, ..., cnu. Fig. 13.13 shows an example in the case of n “ 4. As we can see that in
this example, algorithmic teaching can identify any target concept with only one example by using
the most representative one. In the example above, pxi,`q for ci.

Nevertheless, in the next example shown in Fig. 13.14, all existing paradigms have high com-
plexity. The new concept c5 doesn’t have any positive labeled instance, nor any unique identifier
(a labeled instance that only consistent with one concept). Given this concept class, even algo-
rithmic teaching cannot teach c5 without sending all negative labeled instances. The advantage
of CL reveals itself by utilizing the cooperative fact between the agents and pinpoint all concepts
including c5 with one labeled instance. Because the teacher is helpful, she will teach c1´5 using
unique identifiers px1´5,`q. Thus, any negative labeled instances will suggest c5. In next section
we’ll show how to mathematically formalize this process.
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Figure 13.13: Left: A stylized case for n “ 4, red dots means certain element is in a concept. Right: The
teaching/learning complexity for different learning paradigms. Examples for each set are labeled instances
such as px1,`q, px3,´q for c1.

Paradigm Complexity
passive statistical learning 𝑂(𝑛log(𝑛))

active learning by label request 𝑂 𝑛
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Figure 13.14: As there is a concept without unique identifier, the teaching/learning complexity for all
paradigms in section Section 13.5 cannot identify c5 easily. CL, on the other hand, can pinpoint c5 with
any negative labeled example by taking advantage of the cooperative attributes between agents.
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Figure 13.15: Diagrams for communicative learning agents’ minds. “bob” stands for belief over belief.

13.6.2 Framework of Communicative Learning

We review the components requiring for CL in Fig. 13.15. Each agent has its own belief and an
belief over its partner’s belief. In addition, a common belief and the ground truth God’s belief are
included. In its turn of speaking, the agent will select a message using its value function taking its
accessible mental structures as inputs. The listener, once receives the message, will update related
mental structures as a reaction. Thus, we have:

mt`1
AÑB “ arg max

mPM
µApb

t
A, bob

t
BinA, b

t
C ,mq (13.20)

mt`1
BÑA “ arg max

mPM
µBpb

t
B, bob

t
AinB, b

t
C ,mq (13.21)

bt`1
A “ φApb

t
A, b

t
C , bob

t
BinA,m

t`1
BÑAq (13.22)

bt`1
B “ φBpb

t
B, b

t
C , bob

t
AinB,m

t`1
AÑBq (13.23)

bobt`1
BinA “ φBinApb

t
A, b

t
C , bob

t
BinA,m

t`1
BÑAq (13.24)

bobt`1
AinB “ φAinBpb

t
B, b

t
C , bob

t
AinB,m

t`1
AÑBq (13.25)

where µs are score functions and φs are belief update functions, possibly different for different
agents; M is the message space, shared by both agents. Formulas above only captures the intuition
behind CL and needs to be designed for different tasks. However, the essence is to include “my
estimate of your mental states” into my decision function, so that the cooperativeness between
agents is considered and ToM can emerge. The goal of CL is to learn µs and φs for various tasks.
Concrete examples will be provided in section Section 13.3.

To be noticed that all learning paradigms mentioned in Section 13.5 are in fact special cases of
CL we just defined. For example, passive learning includes only one agent without score function
for message selection and update its belief using consistent samples; active learning omits student’s



CHAPTER 13. COMMUNICATIVE LEARNING 312

Physical world:
• objects, scenes;
• agents, activities

state 𝜔

Mind of student B
perce

ptio
n

𝐼#

𝑝(𝑝𝑔#| I#; 𝜃#)

Θ#

Mind of teacher A

perception 

𝐼-

𝑝 𝑝𝑔- I.; 𝜃-)

Θ-

Θ-/0#

𝑢- 𝑢#

Θ#/0-

𝑢#/0-
𝑢-/0#

𝜋 𝑎 𝑝𝑔-; 𝑢-)

Common ground

Action/intervention

& causality

teach

query

observed

Action/effects

𝜋#/0-

𝜔4∗ = 𝑝𝑔4∗

Θ7∗
Common knowledge

1B
5

4

3

2

6

policy
𝜋 𝑎 𝑝𝑔#; 𝑢#)

utility utility

model

model
model

model

belief 𝑏-
belief 𝑏#

belief of belief
belief of belief

𝑏𝑜𝑏#/0-
𝑏𝑜𝑏-/0#

1A

Figure 13.16: A zoomed-in view of CL: unifying all existing learning protocols and beyond. Each mind
contains four spaces: i) pentagon for hypothesis space H of model Θ; ii) ellipse for the situate ω “ pg in state
space Ω where the belief is represented by a cloud; iii) diamond for policy π in action space; and iv) square
for utility µ in a fluent space. The arrows illustrates the dynamics: observation, intervention, and messages.

belief during teacher’s message selection and student’s belief update function only takes in message
and its current belief; algorithmic teaching lacks student’s estimation of the teacher and simplifies
student’s belief update function. In next section, we’ll show a comprehensive picture of learning
established on top of the CL framework.

13.6.3 General Framework of Learning

To summarize the representation discussed in previous section, we illustrate the CL representations
in Fig. 13.16 in a zoomed-in view. In the case of two agents, the representations include:
• CL = pG,Pn, Qn, P̂n, Q̂n, Cnq includes six minds shown by the 6 big ellipses. We can add higher

level nested mental states, which will generate more advanced learning protocols.
• Each of Pn, Qn, P̂n, Q̂n, Cn has 4 representations pθ, ω, π, µq, whose spaces are represented by

pentagon for hypothesis space θ P H, ellipse for state space ω P Ω, diamond for action space
a P Ωa, and square for the utility defined on fluent space ΩF respectively.

• The uncertainty of state ω is represented by the belief bA and bB. The two probabilities bA and
bB are illustrated by the blue and pink clouds in the perceived state space Ω.

• Belief-of-belief bobBinA and bobAinB are illustrated by larger clouds in new bob-space.
The arrows in Fig. 13.16 show the various dynamics and information flows, including 3 types:

• Observations IA and IB from the physical state to perceived state space Ω
• Actions or interventions that cause fluent changes in the physical state (not discussed here)
• Messages between the two agents to exchange information. Depending on the learning modes,

these messages are for inference, learning, demonstration, confirmation etc.
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For clarity, we omit arrows for other dynamics: for example, some of the message may be generated
from a bob-space to probe what the other agent is thinking, like “I think your state estimate ω is
...” or “what do you know about the state ω?” Some arrows are second-order, for example, A learns
the policy πBinA from observing how B conducts a task, i.e., learning-from-demonstration [222],
or learning the utility µBinA by watching B’s decision or choice [696]. In CL, the communication
of A and B converges at three levels (see curved arrows in Fig. 13.16):
• When the inference process converges, they reach a common ground or situation ω˚c .
• When the learning process converges, they reach a common model knowledge θ˚c
• When their policy & utility converges, they reach a common social norm π˚c and ethics µ˚c .
Depending on the learning protocols and characteristics (i.e., capacity of generating and inter-
preting messages) of the agents, the convergences may have different equilibria which decide the
limits of learning. In CL, we assume the agents are cooperative and not deceptive, and their utility
functions are aligned through learning.

CL is a unifying framework where all existing learning methods can be shown as special cases,
i.e., being part of the diagram in Fig. 13.16. Furthermore, CL will create more effective and ad-
vanced learning protocols. We elaborate their relations in the following.
• Shannon’s communication: CL extends Shannon’s communication setting by including the mental

states, the bob-space, utility functions, and a common mind Cn which all evolve over time. This
will allow more sophisticated messages, and enable agents to “read between lines.”

• Valiant/Vapnik’s theory [671] is a passive inductive statistical learning, supervised or unsuper-
vised, from random sampled examples. This is shown by arrow 1 in Fig. 13.16. In contrast, in
CL, messages are deliberated based on reflecting the mental states and utility functions.

• Active learning is arrow 2, where B can ask A for labeling certain examples selected by B. The
example is selected to gain the most information in optimizing B’s utility/loss function.

• Algorithmic teaching [697, 676] is a protocol complementary to active learning. Teacher A chooses
best examples to teach a learner B for efficiency. A must consider what the B knows, and selects
critical examples to B, e.g ., support vectors for classification.

• Learning-by-demonstration [698] is a typical learning protocol in robotics, and is an important
component for commonsense acquisition. This learning method is shown by arrows 4 and 5 in
Fig. 13.16, agent A teaches a task by a sequence of actions on objects and shows the outcomes
The learner observes the actions directly, and learn the action policy from the learner.

• Causal learning is represented by arrows 1 and 4, where an agent applies actions to change the
fluents of objects and scenes, and learns the causal effects of its action in terms of changed object
fluents, including appearance changes (e.g ., painting a wall, mopping a floor), geometry changes
(e.g ., blow a balloon) and topology changes (e.g ., cutting a fruit).

The CL can create new learning methods or protocols which are not well-known. For example:
• Perceptual causality learning. In contrast to causal learning [291] where the experiment / inter-

vention requests A to perform action (arrow 4) and observe the effects of her own actions (arrow
1). We propose a new protocol named perceptual causality learning in [302]. Here B can learn
causality by watching (arrows 1 and 5) of the actions of A (arrow 4), under the assumption that
A is not performing magic (i.e., not cheating) and B has the capability of inferring and mirroring
the actions of A. This is called “perceived causality.” We have shown in [302] that this is far more
effective learning causality, and opens the door for learning causality from observations. This is
a key aspect of human intelligence.

• Utility learning is shown by arrows 4 and 6. B infers the utility function of A by observing
her decisions and choices in actions. Economics theory says that rational agents make decisions
and take actions for utility maximization. By observing the actions taken by A, B can infer
A utility, denoted by µAinB in CL. For example, we have demonstrated in [696] an example of
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Figure 13.17: CL includes 3 nested loops: i) The reflection loop in black for deliberation of inferential
messages to achieve common ground; ii) The learning loop in blue to achieve a common model; and iii) The
characterization loop in red to achieve better characterization and capacity of the learners, such ToM, utility,
hypothesis space etc.

commonsense acquisition, like folding T-shirt. By watching A folding T-shirts, B can not only
learn the causality and policy πA, but also learn an utility function µAinB for aesthetics – what
states of the T-shirt have relatively higher value to A. B may choose to adopt a similar utility
function µB Ð µAinB. In CL, agents will update and align to common utility.

• Learning by analogy is a powerful learning mode used by humans [139], but missing in current
popular machine learning methods. It requests shared knowledge pωC ,ΘCq between two agents,
and the capabilities of abstraction and projections to transfer knowledge across domains using
abstract graphical representation. Abstraction and projection are key intelligent capabilities in
classic Raven’s IQ tests, but are missing in current statistical learning. The shared mind Cn will
facilitate learning-by-analogy. As Cn grows, the two agents will be more and more effective.

13.7 Halting Problem of Learning

Fig. 13.17 summarizes CL learning in three nested loops, and thus convergence occurs at three
levels.
1. Reflection loop. The messages at this level communicate about a state, a cell, or an event (set)

in state space Ω to achieve a common ground and common belief. Although we only discuss
messages as projection on linear neurons and cells as partitions in Ω, this can be extended to
nodes in a parse graph or logic predicates which correspond to compositions of the atomic cells
or events.

2. Learning Loop. The messages at this level communicate about statistical summaries of data and
information projections to achieve a common model θ P H in the hypothesis space. This includes
updating models θAinB for P̂n, θBinA for Q̂n in the bob-space for the nested minds.

3. Characterization loop. This loop will update the hyper-parameters ρA, ρB, ρAinB, ρBinA that
characterize the agents and their capacity of learning, including the hypothesis space and bob-
space, e.g ., the number of neurons, protocols, and utility functions. The goal is to achieve
common characterization or mutual understanding of each other’s characterization which decides
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the “IQ-of-learner and teacher” and efficiency of communication and learning.
The three CL loops terminate when certain halting conditions occur. By analogy to the halting

problem of computing [699], we formulate a halting problem of learning, i.e., whether and how a
CL learning process terminates, and reach its limits of learning. The ideal halting occurs when the
six minds converge to one, and validated by oracle (God’s mind):

Pn “ Qn “ P̂n “ Q̂n “ Cn “ G. (13.26)

When agents have diverse, and often conflicting, utility functions as stated in social choice the-
ory, such convergence is not reachable. This project will focus on learning commonsense concepts
in daily tasks for which the utility functions are not conflicting, and convergence is feasible. We will
investigate some pre-mature halting conditions. For example, let KLpPn}Qnq denote the discrep-
ancy between two agent’s minds. When KLpQ̂n}P̂nq “ 0, learner Bob will think he knows what
teacher Alice knows, and quits prematurely. Similarly if KLpP̂n}Q̂nq “ 0, Alice mistakenly thinks
the Bob has already known what she knows, and stops teaching, and so on.

We assume CL agents are cooperative not deceptive, and they are also sincere: not sending fake
messages, do not ignore the messages sent by others, and are willing to align their utility functions.
We will study how the various CL protocols achieve game theoretical equilibrium [700, 701].



Chapter 14

Discussion: Path to General AI

Robots are mechanically capable of performing a wide range of complex activities; however, in prac-
tice, they do very little that is useful for humans. Today’s robots fundamentally lack physical and
social common sense; this limitation inhibits their capacity to aid in our daily lives. In this article,
we have reviewed five concepts that are the crucial building blocks of common sense: functionality,
physics, intent, causality, and utility (FPICU). We argued that these cognitive abilities have shown
potential to be, in turn, the building blocks of cognitive AI, and should therefore be the foundation
of future efforts in constructing this cognitive architecture. The positions taken in this article are
not intended to serve as the solution for the future of cognitive AI. Rather, by identifying these
crucial concepts, we want to call attention to pathways that have been less well explored in our
rapidly developing AI community. There are indeed many other topics that we believe are also
essential AI ingredients; for example:
• A physically realistic VR/MR platform: from big data to big tasks. Since FPICU is “dark”—

meaning that it often does not appear in the form of pixels—it is difficult to evaluate FPICU
in traditional terms. Here, we argue that the ultimate standard for validating the effectiveness
of FPICU in AI is to examine whether an agent is capable of (i) accomplishing the very same
task using different sets of objects with different instructions and/ or sequences of actions in
different environments; and (ii) rapidly adapting such learned knowledge to entirely new tasks.
By leveraging state-of-the-art game engines and physics-based simulations, we are beginning to
explore this possibility on a large scale; see Section 14.1.

• Social system: the emergence of language, communication, and morality. While FPICU captures
the core components of a single agent, modeling interaction among and within agents, either
in collaborative or competitive situations [702], is still a challenging problem. In most cases,
algorithms designed for a single agent would be difficult to generalize to a multiple-agent systems
(MAS) setting [591, 703, 704]. We provide a brief review of three related topics in Section 14.2.

• Measuring the limits of an intelligence system: IQ tests. Studying FPICU opens a new direction
of analogy and relational reasoning [705]. Apart from the four-term analogy (or proportional
analogy), John C. Raven [706] proposed the raven’s prograssive matrices test (RPM) in the image
domain. The RAVEN dataset [707] was recently introduced in the computer vision community,
and serves as a systematic benchmark for many visual reasoning models. Empirical studies show
that abstract-level reasoning, combined with effective feature-extraction models, could notably
improve the performance of reasoning, analogy, and generalization. However, the performance gap
between human and computational models calls for future research in this field; see Section 14.3.

316



CHAPTER 14. DISCUSSION: PATH TO GENERAL AI 317

Figure 14.1: Diverse physical phenomena simulated using the material point method (MPM).

14.1 Physically-Realistic VR/MR Platform: From Big-Data to Big-
Tasks

A hallmark of machine intelligence is the capability to rapidly adapt to new tasks and “achieve
goals in a wide range of environments” [364]. To reach this goal, we have seen the increasing use of
synthetic data and simulation platforms for indoor scenes in recent years by leveraging state-of-the-
art game engines and free, publicly available 3D content [708, 709, 710, 711], including MINOR [712],
HoME [713], Gibson [714], House3D [715], AI-THOR [716], VirtualHome [717], VRGym [718], and
VRKitchen [719]. In addition, the AirSim [720] open-source simulator was developed for outdoor
scenarios. Such synthetic data could be relatively easily scaled up compared with traditional data
collection and labeling processes. With increasing realism and faster rendering speeds built on
dedicated hardware, synthetic data from the virtual world is becoming increasingly similar to data
collected from the physical world. In these realistic virtual environments, it is possible to evaluate
any AI method or system from a much more holistic perspective. Using a holistic evaluation, whether
a method or a system is intelligent or not is no longer measured by the successful performance of
a single narrow task; rather, it is measured by the ability to perform well across various tasks: the
perception of environments, planning of actions, predictions of other agents’ behaviors, and ability
to rapidly adapt learned knowledge to new environments for new tasks.

To build this kind of task-driven evaluation, physics-based simulations for multi-material, multi-
physics phenomena (Fig. 14.1) will play a central role. We argue that cognitive AI needs to accelerate
the pace of its adoption of more advanced simulation models from computer graphics, in order to
benefit from the capability of highly predictive forward simulations, especially graphics processing
unit (GPU) optimizations that allow real-time performance [721]. Here, we provide a brief review
of the recent physics-based simulation methods, with a particular focus on the material point
method (MPM).

The accuracy of physics-based reasoning greatly relies on the fidelity of a physics-based simu-
lation. Similarly, the scope of supported virtual materials and their physical and interactive prop-
erties directly determine the complexity of the AI tasks involving them. Since the pioneering work
of Terzopouloset al . [722, 723] for solids and that of Foster and Metaxas [724] for fluids, many
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mathematical and physical models in computer graphics have been developed and applied to the
simulation of solids and fluids in a 3D virtual environment.

For decades, the computer graphics and computational physics community sought to increase
the robustness, efficiency, stability, and accuracy of simulations for cloth, collisions, deformable, fire,
fluids, fractures, hair, rigid bodies, rods, shells, and many other substances. Computer simulation-
based engineering science plays an important role in solving many modern problems as an inexpen-
sive, safe, and analyzable companion to physical experiments. The most challenging problems are
those involving extreme deformation, topology change, and interactions among different materials
and phases. Examples of these problems include hypervelocity impact, explosion, crack evolution,
fluid-structure interactions, climate simulation, and ice-sheet movements. Despite the rapid develop-
ment of computational solid and fluid mechanics, effectively and efficiently simulating these complex
phenomena remains difficult. Based on how the continuous physical equations are discretized, the
existing methods can be classified into the following categories:
1. Eulerian grid-based approaches, where the computational grid is fixed in space, and physical

properties advect through the deformation flow. A typical example is the Eulerian simulation of
free surface incompressible flow [725, 252]. Eulerian methods are more error-prone and require
delicate treatment when dealing with deforming material interfaces and boundary conditions,
since no explicit tracking of them is available.

2. Lagrangian mesh-based methods, represented by FEM [410, 726, 727], where the material is
described with and embedded in a deforming mesh. Mass, momentum, and energy conservation
can be solved with less effort. The main problem of acfem is mesh distortion and lack of contact
during large deformations [458, 728] or topologically changing events [729].

3. Lagrangian mesh-free methods, such as smoothed particle hydrodynamics (SPH) [234] and the
reproducing kernel particle method (RKPM) [730]. These methods allow arbitrary deformation
but require expensive operations such as neighborhood searching [731]. Since the interpolation
kernel is approximated with neighboring particles, these methods also tend to suffer from nu-
merical instability issues.

4. Hybrid Lagrangian–Eulerian methods, such as the arbitrary Lagrangian–Eulerian (ALE) meth-
ods [732] and the MPM. These methods (particularly the MPM) combine the advantages of both
Lagrangian methods and Eulerian grid methods by using a mixed representation.
In particular, as a generalization of the hybrid fluid implicit particle (FLIP) method [733, 236]

from computational fluid dynamics to computational solid mechanics, the MPM has proven to be a
promising discretization choice for simulating many solid and fluid materials since its introduction
two decades ago [734, 235]. In the field of visual computing, existing work includes snow [735, 736],
foam [737, 738, 739], sand [237, 740], rigid body [741], fracture [742, 743], cloth [744], hair [745], wa-
ter [746], and solid-fluid mixtures [747, 748, 749]. In computational engineering science, this method
has also become one of the most recent and advanced discretization choices for various applica-
tions. Due to its many advantages, it has been successfully applied to tackling extreme deformation
events such as fracture evolution [750], material failure [751, 752], hyper-velocity impact [753, 754],
explosion [755], fluid-structure interaction [756, 757], biomechanics [758], geomechanics [759], and
many other examples that are considerably more difficult when addressed with traditional, non-
hybrid approaches. In addition to experiencing a tremendously expanding scope of application, the
MPM’s discretization scheme has been extensively improved [760]. To alleviate numerical inaccu-
racy and stability issues associated with the original MPM formulation, researchers have proposed
different variations of the MPM, including the generalized interpolation material point (GIMP)
method [761, 762], the convected particle domain interpolation (CPDI) method [763], and the dual
domain material point (DDMP) method [764].
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<latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit>

Entity
<latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit>
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Modify constrained attributes to generate an answer set 

(c)

Noise Attributes

Center
<latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit>

Center
<latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit>

Rules
<latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit><latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit><latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit><latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit>

Figure 14.2: The RAVEN creation process proposed in Ref. [707]. A graphical illustration of (a) the grammar
production rules used in (b) A-SIG. (c) Note that Layout and Entity have associated attributes. (d) A sample
problem matrix and (e) a sample candidate set. Reproduced from Ref. [707] with permission of the authors,
© 2019.

14.2 Social System: Emergence of Language, Communication, and
Morality

Being able to communicate and collaborate with other agents is a crucial component of AI. In
classic AI, a multi-agent communication strategy is modeled using a predefined rule-based system
(e.g ., adaptive learning of communication strategies in MAS [702]). To scale up from rule-based
systems, decentralized partially observable Markov decision processes were devised to model multi-
agent interaction, with communication being considered as a special type of action [765, 766]. As
with the success of RL in single-agent games [617], generalizing Q-learning [767, 704] and actor-
critic [591, 592]-based methods from single-agent system to MAS have been a booming topic in
recent years.

The emergence of language is also a fruitful topic in multi-agent decentralized collaborations. By
modeling communication as a particular type of action, recent research [703, 768, 609] has shown
that agents can learn how to communicate with continuous signals that are only decipherable within
a group. The emergence of more realistic communication protocols using discrete messages has been
explored in various types of communication games [769, 688, 770, 686], in which agents need to
process visual signals and attach discrete tokens to attributes or semantics of images in order to form
effective protocols. By letting groups of agents play communication games spontaneously, several
linguistic phenomena in emergent communication and language have been studied [771, 772, 773].

Morality is an abstract and complex concept composed of common principles such as fairness,
obligation, and permissibility. It is deeply rooted in the tradeoffs people make every day when
these moral principles come into conflict with one another [774, 775]. Moral judgment is extremely
complicated due to the variability in standards among different individuals, social groups, cultures,
and even forms of violation of ethical rules. For example, two distinct societies could hold oppo-
site views on preferential treatment of kin: one might view it as corrupt, the other as a moral
obligation [776]. Indeed, the same principle might be viewed differently in two social groups with
distinct cultures [777]. Even within the same social group, different individuals might have different
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standards on the same moral principle or event that triggers moral judgment [778, 779, 780]. Many
works have proposed theoretical accounts for categorizing the different measures of welfare used in
moral calculus, including “base goods” and “primary goods” [781, 782], “moral foundations” [783],
and the feasibility of value judgment from an infant’s point of view [784]. Despite its complexity
and diversity, devising a computational account of morality and moral judgment is an essential step
on the path toward building humanlike machines. One recent approach to moral learning combines
utility calculus and Bayesian inference to distinguish and evaluate different principles [776, 785, 786].

14.3 Measuring the Limits of Intelligence System: IQ tests

In the literature, we call two cases analogous if they share a common relationship. Such a relationship
does not need to be among entities or ideas that use the same label across disciplines, such as
computer vision and AI; rather, “analogous” emphasizes commonality on a more abstract level.
For example, according to Ref. [787], the earliest major scientific discovery made through analogy
can be dated back to imperial Rome, when investigators analogized waves in water and sound.
They posited that sound waves and water waves share similar behavioral properties; for example,
their intensities both diminish as they propagate across space. To make a successful analogy, the
key is to understand causes and their effects [788].

The history of analogy can be categorized into three streams of research; see Ref. [705] for a
capsule history and review of the literature. One stream is the psychometric tradition of four-term
or “proportional” analogies, the earliest discussions of which can be traced back to Aristotle [789].
An example in AI is the word2vec model [790, 791], which is capable of making a four-term word
analogy; for example, [king:queen::man:woman]. In the image domain, a similar test was invented
by John C. Raven [706]—the raven’s prograssive matrices test (RPM).

RPM has been widely accepted and is believed to be highly correlated with real intelligence [792].
Unlike visual question answering (VQA) [793], which lies at the periphery of the cognitive ability test
circle [792], RPM lies directly at the center: it is diagnostic of abstract and structural reasoning abil-
ity [794], and captures the defining feature of high-level cognition—that is, fluid intelligence [795].
It has been shown that RPM is more difficult than existing visual reasoning tests in the following
ways [707]:
• Unlike VQA, where natural language questions usually imply what the agent should pay attention

to in an image, RPM relies merely on visual clues provided in the matrix. The correspondence
problem itself, that is, the ability to find corresponding objects across frames to determine their
relationship, is already a major factor distinguishing populations of different intelligence [792].

• While current visual reasoning tests only require spatial and semantic understanding, RPM needs
joint spatial-temporal reasoning in the problem matrix and the answer set. The limit of short-
term memory, the ability to understand analogy, and the grasp of structure must be taken into
consideration in order to solve an RPM problem.

• Structures in RPM make the compositions of rules much more complicated. Problems in RPM
usually include more sophisticated logic with recursions. Combinatorial rules composed at various
levels also make the reasoning process extremely difficult.
The RAVEN dataset [707] was created to push the limit of current vision systems’ reasoning

and analogy-making ability, and to promote further research in this area. The dataset is designed to
focus on reasoning and analogizing instead of only visual recognition. It is unique in the sense that it
builds a semantic link between the visual reasoning and structural reasoning in RPM by grounding
each problem into a sentence derived from an attributed stochastic image grammar attributed
stochastic image grammar (A-SIG): each instance is a sentence sampled from a predefined A-SIG,
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and a rendering engine transforms the sentence into its corresponding image. (See Fig. 14.2 [707] for
a graphical illustration of the generation process.) This semantic link between vision and structure
representation opens new possibilities by breaking down the problem into image understanding and
abstract-level structure reasoning. Zhang et al . [707] empirically demonstrated that models using
a simple structural reasoning module to incorporate both vision-level understanding and abstract-
level reasoning and analogizing notably improved their performance in RPM, whereas a variety of
prior approaches to relational learning performed only slightly better than a random guess.

Analogy consists of more than mere spatiotemporal parsing and structural reasoning. For ex-
ample, the contrast effect [796] has been proven to be one of the key ingredients in relational and
analogical reasoning for both human and machine learning [797, 798, 799, 800, 801]. Originating
from perceptual learning [802, 803], it is well established in the field of psychology and educa-
tion [804, 805, 806, 807, 808] that teaching new concepts by comparing noisy examples is quite
effective. Smith and Gentner [809] summarized that comparing cases facilitates transfer learning
and problem-solving, as well as the ability to learn relational categories. In his structure-mapping
theory, Gentner [810] postulated that learners generate a structural alignment between two rep-
resentations when they compare two cases. A later article [811] firmly supported this idea and
showed that finding the individual difference is easier for humans when similar items are compared.
A more recent study from Schwartz et al . [812] also showed that contrasting cases helps to foster
an appreciation of deep understanding. To retrieve this missing treatment of contrast in machine
learning, computer vision and, more broadly, in AI, Zhang et al . [813] proposed methods of learning
perceptual inference that explicitly introduce the notion of contrast in model training. Specifically,
a contrast module and a contrast loss are incorporated into the algorithm at the model level and
at the objective level, respectively. The permutation-invariant contrast module summarizes the
common features from different objects and distinguishes each candidate by projecting it onto its
residual on the common feature space. The final model, which comprises ideas from contrast effects
and perceptual inference, achieved state-of-the-art performance on major RPM datasets.

Parallel to work on RPM, work on number sense [814] bridges the induction of symbolic concepts
and the competence of problem-solving; in fact, number sense could be regarded as a mathematical
counterpart to the visual reasoning task of RPM. A recent work approaches the analogy problem
from this perspective of strong mathematical reasoning [815]. Zhang et al . [815] studied the ma-
chine number-sense problem and proposed a dataset of visual arithmetic problems for abstract and
relational reasoning, where the machine is given two figures of numbers following hidden arith-
metic computations and is tasked to work out a missing entry in the final answer. Solving machine
number-sense problems is non-trivial: the system must both recognize a number and interpret
the number with its contexts, shapes, and relationships (e.g ., symmetry), together with its proper
operations. Experiments show that the current neural-network-based models do not acquire mathe-
matical reasoning abilities after learning, whereas classic search-based algorithms equipped with an
additional perception module achieve a sharp performance gain with fewer search steps. This work
also sheds some light on how machine reasoning could be improved: the fusing of classic search-
based algorithms with modern neural networks in order to discover essential number concepts in
future research would be an encouraging development.
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