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Lecture 1:  Introduction to MC methods

Background:  choices of modeling & computing paradigms

• Approximate modeling  +  Exact computing (e.g. Dynamic programming)

• Exact modeling  + Local computing (e.g. Gradient descent)

• Exact modeling + Global computing  (MCMC, Here we are !)

Approximate model means you simplify the model,  such as removing some edges
in a graph to make it a tree or a chain, and thus removing certain energy terms.

Local computing means you may only find a local minimum (or maximum) and rely
on heuristics to find a “good” one. Unfortunately most of the interesting function, like in deep 

learning, has astronomic number of local minima ! 
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Introduction to MC methods

Two large categories:

1,  Sequential Monte Carlo
-- Maintains and propagates a “population” through reweighting.

2,  Markov chain Monte Carlo
-- Simulates a Markov chain whose state follows the probability

The essence is to represent a target probability by a set of “fair” samples.
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• Discrete states (Gibbs sampler, Metropolis “walks” and “Jumps”)
• Continuous States (Hamiltanion and Langevin “diffusions”).

What is Monte Carlo?

Monte Carlo is a small hillside town in Monaco (near Italy) with casino since 1865 like 
Los Vegas in the US. It was picked by a physicist Fermi (Italian born American) who 
was among the first using the sampling techniques in his effort building the first man-
made nuclear reactor in 1942.

Monte Carlo casino

The casino business is, literally, driven by tossing dice to simulate random events.
Monte Carlo computing is to simulate samples from arbitrary probabilities by a single 
random function x=rand() which 
returns a pseudo-random number 
in the interval [0,1].

So, MC means a type of operation
or business model. 
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Tasks in Monte Carlo computing:        in increasing complexity

Task 1: Simulation: draw fair (typical) samples from a probability which governs a system.

X is a typical state of the system.

Task 2: Integration / computing in very high dimensions, i.e. to compute

Task 3: Optimization with an annealing scheme

Task 4: Learning and Bayesian hierarchical modeling from samples.
Θ∗ ൌ argmax	ℓ Θ ; 				ℓ Θ ൌ ∑ log ;ሺx୧݌ Θሻ

୫
୧ୀଵ

Task 5:  Visualizing the whole landscape of the probability

π(x)~x

π(x)argmaxx* 

 (x)dsπ(x)(x)]E[c ff
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Task 1: Sampling and simulation

For many systems, their states are governed by some probability models. e.g. in 
statistical physics, the microscopic states of a system follows a Gibbs model given the 
macroscopic constraints. The fair samples generated by MCMC will show us what 
states are typical of the underlying system.  In computer vision, this is often called 
"synthesis" --- the visual appearance of the simulated images, textures, and shapes, 
and it  is a way to verify the sufficiency of the underlying model. 

Suppose a system state x follows some global constraints.

Hi(s) can be a hard (logic) constraints (e.g. the 8-queen problem), macroscopic
properties (e.g. a physical gas system with fixed volume and energy), or statistical
observations (e.g the Julesz ensemble for texture). 
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Ex. 1  Simulating noise image

We define a “noise” pattern as a set of images with fixed mean and variance.

This is said to be a “typical image” of the Gaussian model. 
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Ex. 2  Simulating typical textures by MCMC in Stat232A

Iobs Isyn ~ h k=0

(Zhu et al, 1996-01)

Isyn ~ h k=1

Isyn ~ h k=3 Isyn ~ h k=7Isyn ~ h k=4
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Hc are histograms of Gabor filters, i.e. marginal distributions of f (I) 
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Ex. 2  Simulating typical textures

early vision  
(0.1-0.4sec)

Julesz’s quest 1960-80s

“What features and statistics are characteristics of a
texture pattern, so that texture pairs that share the 
same features and statistics cannot be told apart  
by  pre-attentive human visual perception?”

His quest was not answered partly due to the lack of general techniques for generating
fair texture pairs that share the same features and statistics, no more no less.
--- To visualize the typical state of a probability in the high-dimensional space. 
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An example simulated by student from Stat232A
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Ex 3: Simulating typical protein structures

We are interested in the typical configurations, of protein folding given some known 
properties.  The set of typical configurations is often huge ! 

[From Jun Liu]

Molecular dynamcs
Poteintial energy function  
Kinetic energy 
Total energy

Statistical physics
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The real system is hierarchical and heterogeneous,
and the interactions (potentials) are in 3D space and time.

3D genome representation in space and time

From Dr. Bin Ren, UCSD
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Task 2: Scientific computing 

In scientific computing, one often needs to compute the integral in very high dimensional 
space. 

Monte Carlo integration,
e.g. 

1. Estimating the expectation by empirical sample mean. 
2. Importance sampling

Approximate counting
e.g.

1. How many non-self-intersecting paths are in a 2 n x n lattice of length N? 
2. Estimate the value  by generating uniform samples in a unit square. 
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Ex 4: Monte Carlo integration

Often we need to estimate an integral in a very high dimensional space ,

We draw N samples from (x), 

Then we estimate C by the sample mean

For example, we estimate some statistics for a Julesz ensemble (x;), 
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Ex 5: Approximate counting in polymer study

For example, what is the number K of Self-Avoiding-Walks in an n x n
lattice?

Denote the set of SAWs by

An example of n=10.    (Persi Diaconis)

The estimated number by Knuth was 

The truth number is 
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Ex 5: Approximate counting in polymer study

Sampling SAWs ri by random walks (roll over when it fails).

Computing K by MCMC simulation

2

3
3
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Task 3: Optimization and Bayesian inference  

A basic assumption, since Helmholtz (1860), is that biologic and machine vision 
compute the most probable interpretation(s) from input images. 

Let I be an image and X be a semantic representation of the world.

In statistics, we need to sample from the posterior and keep multiple solutions.



X
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1. The state space  in computer vision often has a large number of sub-spaces of 
varying dimensions and structures, because of the diverse visual patterns in images.

Traversing Complex State Spaces

2.  Each sub-space is a product of  
some partition (coloring) spaces ---- what go with what?
some object spaces ---- what are what?

iΩ

partition

spaces

1C
1C

2C
2C

2C

3C 3C

object spaces

p
p

object particles

3.  The posterior has low entropy, the effective volume of the search space is relatively sma
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Ex. 6 Tracking objects by Sequential Monte Carlo

M. Isard and A. Blake, “CONDENSATION—Conditional Density Propagation for Visual Tracking,”
Int’l J. of Computer Vision, 29(1), 5–28, 1998.

Main goal: preserving uncertainty over time.

Ex. 6 Tracking objects by Sequential Monte Carlo

Propagation of the samples for posterior probability 
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Ex. 7 MCMC-Based Particle Filters
From Khan, Balch & Dellaert

Running particle filters in large state spaces 
(ants, bees, people, sports) 

Blue: lose track occurs,
Red: pixel errors per target

20 individual particle filtering

MCMC-based particle filtering
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Task 4: Learning and Model Estimation

In statistical learning and machine learning, a common problem is “point estimation” by
Maximum likelihood (MLE): to learn the parameters	Θ of a model pሺx; 	Θሻ from a set of
Examples D ൌ ሼx୧, i ൌ 1,2, … ,mሽ: 

Θ∗ ൌ argmax	ℓ Θ ; 				ℓ Θ ൌ෍log݌ሺx୧; Θሻ

୫

୧ୀଵ
When the probability is of the Gibbs form, 

p x; 	Θ ൌ
1
Z
expି	ழ஀,		ୌ ୶ வ

The MLE 
డℓሺ஀ሻ

డ஀
ൌ 0 will need to be computed by stochastic gradients, 

ௗ஀

ୢ୲
ൌ ሺE୮ߟ ୶;஀౪ H x 		െ Hഥ୭ୠୱ),     	Hഥ ୭ୠୱ ൌ

ଵ

௠
∑ Hሺx୧ሻ
୫
୧ୀଵ

E୮ ୶;஀౪ H x ൌ ׬ ݌ ;ݔ Θ௧ ܪ ݔ ݔ݀
has to be approximated by samples D୲ ൌ x୨, j ൌ 1,2, … , n ∼ ݌ x; Θ .
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One special example is the Restricted Bolzmann Machine (RBM) with 
binary input v and output h (hidden):

Task 4: Learning and Model Estimation

As the algorithm iterates in infinite number of steps, and thus the network of computing is infinite number of 
layers. This RBM was actually the original “deep learning”, which is quite different from the current multi-layer 
neural network.
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Task 5: Visualizing the landscape of an energy/probability

Q. Zhou and W. Wong, “Reconstructing the energy landscape of a distribution from Monte Carlo sample,” 
Annals of Applied Statistics, 2008.
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Probability mass Volume

Ex. 8   A 2D landscape for a K-mean clustering problem  

By Maria Pavlovskaia, UCLA

The circles represent the relative sizes

Many complex systems are governed by a 
probability model and represented by energy 
landscape U.

Minima of energy UሺI) are maxima of probability ݌ሺI; ߱ሻ

• Physical states (magnetic states, molecular states, 
folding states of a protein chain) 

• Memories/concepts learned from training data (focus 
of our application)

Partition of 2D landscape into 
basins of attraction for local minima.

energy UሺI) 

probability mass of ݌ሺI; ሻߠ

Ex. 9 Visualizing in the landscape of Image models
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Building a Telescope to looking into high dim spaces 
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Scaling (zoom-out)  entropy rate decreases

Ex. 9 Visualizing in the landscape of Image models

By Mitch Hill and Erik Nijkamp, UCLA, 2018
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Ex. 10   Visualizing the behavior of algorithms in the landscape

By Maria Pavlovskaia, UCLA

The bars show the relative frequency that an algorithm visits the local energy basins.

Summary

MC is a general purpose technique for sampling from complex 
probabilistic models.

In high dimensional space, sampling is a key step for 
(a) modeling (simulation, synthesis, verification, visualization)
(b) learning (estimating parameters)
(c) estimation (Monte Carlo integration, importance sampling)
(d) optimization (together with simulated annealing).
(e) imputation (Bayesian hierarchical model).
(f) visualization (landscape and complexity of the problem).

It can achieve global optimal solution for complex models!
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A Brief History of MCMC

1942-46: Real use of MC started during the WWII 
--- study of atomic bomb (neutron diffusion in fissile material)

1948: Fermi, Metropolis, Ulam obtained MC estimates for the eigenvalues
of the Schrodinger equations.

1950s: Formating of the basic construction of MCMC, e.g. the Metropolis method
--- applications to statistical physics model, such as Ising model

1960-80:  Using MCMC to study phase transition; material growth/defect, 
macro molecules (polymers), etc.

1980s:  Gibbs samplers, Simulated annealing, data augmentation, Swendsen-Wang, etc
global optimization; image and speech; quantum field theory, 

1990s: Applications in genetics;  computational biology, vision etc.

2000s:   Application in vision,  graphics, robotics simulation etc.

2010s:   Applications in machine learning, deep learning etc.     
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Metropolis 1946

Hastings 1970

Waltz 1972 (labeling)

Rosenfeld, Hummel, Zucker 1976 
(relaxation-labeling)

Geman brothers 1984, (Gibbs sampler)

Swendsen-Wang 1987 (cluster sampling)

Jump-diffusion,
Miller & Grenander,1994

Kirkpatrick, 1983

Reversible jumps
Green 1995

Swendsen-Wang Cut 2003

DDMCMC 2000-2005C4: Clustering w. +/- Constraints,  2009

Some MCMC developments related to vision

Langevin, 1908

Stochastic gradients, 
e.g. GRADE 1997

ABP 2017


