Stat231--CS276A

Pattern Recognition and Machine Learning

Recent advances in PRML

IBM Watson for Jeopardy

Google driverless car

1. Understand human speech
2. Search and evaluates hypotheses
3. Learns from user selections

Still many obstacles remain in high level cognition.

In 2012, we piloted project 3 with IBM Watson. The main method behind is Logistic regression.
Recent advances in PRML

ImageNet Challenges:
(Russakovsky and Deng IJCV 2015)

- 200 object classes for detection
- 1000 classes for classification
 (top five accuracy plotted for object sizes in real world)

This dataset rejuvenated interests on the multi-layer Neural Network (Deep Learning).

ConvNets recursively defines filter responses layer by layer.

152-Layer ResNet and model is 0.5~1GB!

Classification Performance
Project 0. Classification by Deep Learning

Lecture note, Stat231-CS276A,
© S.C.Zhu
Project I. Human face modeling

First 20 eigen-faces without alignment

Results from previous student:

Face examples in the dataset

Face (lossy) reconstructed by 50+10 numbers
Generated faces by geometric and appearance changes

(a) Training faces with 68 landmarks (b) Sliding in an axis for geometric changes (c) Sliding in an axis for appearance changes

Project I. Human face analysis

Classifying male and female using Fisher’s Linear Discriminants
Project II: Face detection by Boosting

Example: Human face

Viola and Jones, 2000

A 231 project by a student whose face was not detected here.

Project III: Face Detection by Faster R-CNN

Recently, the results have been much improved through engineering the neural networks.
Project IV: Face social attributes

Social dimensions of faces by machine learning

This result is from Jungseock Joo, Ph.D 2015. We are tracking the US 2016 elections.

Training SVM scoring for each dimensions on US politicians
Some relative scores found by machine learning

<table>
<thead>
<tr>
<th></th>
<th>Prediction rate</th>
<th>Number of pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congress election</td>
<td>56.3%</td>
<td>32</td>
</tr>
<tr>
<td>Senator election</td>
<td>65.0%</td>
<td>40</td>
</tr>
<tr>
<td>Governor election</td>
<td>91.7%</td>
<td>12</td>
</tr>
</tbody>
</table>

results from Joo, Steen and Zhu, ICCV 2015.

Demos of automatic PTZ camera for reading license

video files are from Tianfu Wu and Brandon Rothrock

results from Joo, Steen and Zhu, ICCV 2015.
Lecture 1: Introduction

Outline:

1. Patterns in nature: a continuous spectrum.
 --- Overview of the terminologies: concepts, models, and theories.

2. Applications of pattern recognition

3. Schools of thought in pattern recognition and machine learning

4. A simplistic example of pattern recognition

5. Overview of the four course projects
Examples of Patterns

Crystal patterns at atomic and molecular levels

Pattern, in English usually, refers to regular repeated structures. But in pattern recognition, anything that you can perceive is a pattern.

These structures can be represented by graphs or by grammars. This is often called syntactic pattern recognition with generative models.

One may view a compiler for a programming language (e.g. matlab, c) as a syntactic pattern recognition system. A syntactic pattern recognition system not only classifies the input, but also extracts hierarchical (compositional) structures.

Examples of Patterns

Constellation patterns in the sky are represented by 2D (often planar) graphs. Finding patterns helps encoding the signals.

Human perception has a strong tendency to find patterns from almost anything. We see (hallucinate) patterns from even random noise (psychology evidence) --- we are more likely to believe a hidden pattern than denying it when the risk (reward) for missing (discovering) a pattern is often high. This is an important aspect in pattern discovery. It is formulated in the Bayesian decision theory --- considering the risk of classification.
Examples of Patterns

Biology patterns --- study in morphology and biometrics (Human ID is now an industry)

Landmarks (key points) are identified and matched between instances. Applications include biometrics, computational anatomy, brain mapping, forensics (fingerprint was first used in 1905 for solving a murder case, now it is used for all kinds of ID systems and smart phone login). But for other forms, like the root of plants, points cannot be registered crossing instances. They are described by stochastic models.

Examples of Patterns

Pattern discovery and association: In plain language, a pattern often mean a set of instances associated with (or caused by) some underlying factors.

Statistics show connections between the shape of one’s face (adults) and his/her Character. There is also evidence that the outline of children’s face is related to alcohol abuse during pregnancy.

With fMRI, we now can look the internal patterns of brain activity and find relationships between brain activities, cognition, and behaviors.
Examples of Patterns

A pattern often exhibits a wide range of variations with nuisance factors: e.g. faces
1. Expression – geometric deformation
2. Lighting – photometric deformation
3. 3D pose transform
4. Noise and occlusion

Each pattern corresponds to a set (sometimes a manifold) in the signal space (spanned by the degrees of freedoms much smaller than the signal dimensions).

The nuisance factors are called attributes when they are “useful”, e.g. as social traits.

Examples of Patterns

Detecting or recognizing human faces in the real world is challenging.

We need to consider many factors to build a robust system.

1. Face detection with cooperative subjects has found wide commercial applications.
 e.g. face detection in camera and iPhones.

2. Face recognition is getting more promising this year, after failing many companies.
Examples of Patterns

Face recognition becomes more tractable in *constrained environments*.

Outdoor lighting variation is the main obstacle for face recognition.

Neurons in our Brain are detecting all kinds of patterns.

This example is a recorded neuron at the human medial temporal lobe (MTL).

Examples of Patterns

Classifying human actions, activities, and events in video. Other activities include city level (your mobile pattern recorded by GPS, Phone, e.g. Intelligent City)

Some neurons in the pre-motor area of our brain respond to various actions, and how do we encode actions in our brain? Mirror neurons and origin of language.

Types of models for patterns

How are these texture patterns represented in a human brain or a computer? physics-based models vs. phenomenological models vs. example-based models

A wide variety of texture patterns are generated by various stochastic processes (chemical or physical, biologic), do we need to simulate these processes for representing the patterns?
A pattern could be represented by many ways for different purposes.
Examples of Patterns

Speech signal and hidden Markov model (level I)

An example is the model for speech recognition:
People built physical models to simulate the uttering of phonemes.

Now this problem is solved more effectively by collecting large examples of speech to combat accents and variations.

Examples of Patterns

Natural language and stochastic grammar (level II).

Syntactic pattern recognition methods were developed in the 1970s for recognizing patterns which have wide structural variations (i.e. signals have varying dimensions).
Examples of Patterns

A story generated from the rules: (level III)
\[\alpha \beta^3 \delta^1 A^1 B^2 C \uparrow H^1 - I^3 K^4 \downarrow \psi \]

A tsar (emperor in Russian), three daughters (\(\alpha\)). The daughters go walking (\(\beta^3\)),
overstay in the garden (\(\delta^1\)). A dragon kidnaps them (\(A^1\)). A call for rescue (\(B^2\)).
Quest for three heroes (\(C \uparrow\)). Three battles with the dragon (\(H^1 - I^3\)), rescue of the
maids (\(K^4\)). Return (\(\downarrow \)), and reward (\(\psi\)).

\(\alpha \) = initial situation
\(\beta_1 \) = departure of elders
\(\beta_2 \) = death of parents

\(A^1 \) = kidnapping of a person
\(A^3 \) = seizure of a magical agent

\(B^1 \) = call for help
\(D^1 \) = test of hero
\(E^3 \) = sustained ordeal

I didn’t update this slice. Nowadays,
games are designed by stochastic
grammatical models.

Applications of Pattern Recognition

Lie detector,
Handwritten Zip code/digit/letter recognition
Biometrics: voice, iris, finger print, face, and gait recognition
Speech/voice recognition
Smell recognition (e-nose, sensor networks)
Defect detection in chip manufacturing
Reading DNA sequences, Medical diagnosis
Detecting spam mails, …
Levels of difficulties in Pattern Recognition Tasks

For example, there are many levels of tasks related to human face patterns

1. Face authentication (hypothesis test for one class)
2. Face detection (yes/no for many instances).
3. Face recognition (classification)
4. Expression recognition (smile, disgust, surprise, angry) identifiability problem.
5. Gender and age recognition

6. Face sketch and from images to cartoon
 --- needs generative models.
7. Face caricature

The simpler tasks 1-4 may be solved effectively using discriminative methods, but the tasks 5-7 will need generative methods that model faces explicitly.

From this example, we can see a problem of generalization in discriminative methods.

Some hard example: art and antique authentication

In many cases, we only have small data.

Is a picture drawn by a master or an amateur?
Example: Art Authentication

A multi-dimensional scaling (MDS) technique

Project a high-dimensional feature vector to 3D space so as to preserve the similarity (distance).

The circular and rectangular dots correspond to two types of styles.

Two Schools of Thoughts

1. Discriminative methods:
 The goal is to tell apart a number of patterns, say 100 people in a company, 10 digits for zip-code reading. These methods hit the discriminative target directly, without having to understand the patterns (their structures) or to develop a full mathematical description.

 For example, we may tell someone is speaking English or Chinese in the hallway without understanding the words he is speaking.

 “You should not solve a problem to an extent more than what you need” – Vapnik.

2. Generative methods:
 Bayesian school, pattern theory.
 1). Define patterns and regularities (in graphical representations),
 2). Specify likelihood model for how signals are generated from hidden structures
 3). Learning probability models from ensembles of signals
 4). Inferences.

 “If you cannot solve a simple problem in vision, you may have to solve for a complex one”

Recently, the two schools are increasingly integrated, leads to lifelong continuous learning.
Methods and research streams

Methods for pattern recognition:

Axis I: Denerative vs. discriminative
(Bayesian vs. non-Bayesian)

Axis II: Deterministic vs. stochastic
(logic/syntactic/rule-based vs. statistics)

Axis III: Parametric vs. semi-parametric vs. non-parametric
(the number of parameters vs. the size of training examples)

Axis IV: Supervised vs. Weakly supervised vs. unsupervised

Examples:
Bayesian decision theory, neural networks, syntactical pattern recognition (AI),
decision trees, support vector machines, boosting techniques, Deep Learning.

Some popular methods over the years

But we need to take into account of the data complexity

This is a slide borrowed from a DARPA manager.
A simple example of pattern recognition

Classifying fish into two classes: salmon and Sea Bass by discriminative method

Features and Distributions
Main Issues in Pattern Recognition

1. Feature selection and learning.
 --- What are good discriminative features?

2. Modeling and learning

3. Dimension reduction, model complexity

4. Decisions and risks

5. Error analysis and validation.

6. Performance bounds and capacity.

7. Algorithms