
Additive Logistic Regression� a Statistical View of

Boosting

Jerome Friedman
�

Trevor Hastie
�

Robert Tibshirani
y

July ��� ����

Abstract

Boosting �Freund � Schapire ����� Schapire � Singer ����	 is one
of the most important recent developments in classi
cation method�
ology� The performance of many classi
cation algorithms often can
be dramatically improved by sequentially applying them to reweighted
versions of the input data� and taking a weighted majority vote of the
sequence of classi
ers thereby produced� We show that this seemingly
mysterious phenomenon can be understood in terms of well known
statistical principles� namely additive modeling and maximum likeli�
hood� For the two�class problem� boosting can be viewed as an ap�
proximation to additive modeling on the logistic scale using maximum
Bernoulli likelihood as a criterion� We develop more direct approx�
imations and show that they exhibit nearly identical results to that
of boosting� Direct multi�class generalizations based on multinomial
likelihood are derived that exhibit performance comparable to other
recently proposed multi�class generalizations of boosting in most sit�
uations� and far superior in some� We suggest a minor modi
cation
to boosting that can reduce computation� often by factors of � to
�� Finally� we apply these insights to produce an alternative formu�
lation of boosting decision trees� This approach� based on best�
rst
truncated tree induction� often leads to better performance� and can
provide interpretable descriptions of the aggregate decision rule� It is
also much faster computationally making it more suitable to large scale
data mining applications�

�Department of Statistics� Sequoia Hall� Stanford University� Stanford California ������

fjhf�trevorg	stat
stanford
edu
yDepartment of Public Health Sciences� and Department of Statistics� University of

Toronto� tibs	utstat
toronto
edu

�

� Introduction

The starting point for this paper is an interesting procedure called �boost�
ing�� which is a way of combining or boosting the performance of many
�weak� classi�ers to produce a powerful �committee�� Boosting was pro�
posed in the machine learning literature �Freund 	 Schapire �

�� and has
since received much attention�
While boosting has evolved somewhat over the years� we �rst describe the

most commonly used version of theAdaBoost procedure �Freund 	 Schapire
�

��� which we call �Discrete� AdaBoost� Here is a concise description
of AdaBoost in the two�class classi�cation setting� We have training data
�x�� y��� � � � �xN � yN � with xi a vector valued feature and yi �� or �� We
de�ne F �x�

PM
� cmfm�x� where each fm�x� is a classi�er producing val�

ues �� and cm are constants� the corresponding prediction is sign�F �x���
The AdaBoost procedure trains the classi�ers fm�x� on weighted versions
of the training sample� giving higher weight to cases that are currently mis�
classi�ed� This is done for a sequence of weighted samples� and then the
�nal classi�er is de�ned to be a linear combination of the classi�ers from
each stage� We describe the procedure in more detail in Algorithm �

Discrete AdaBoost�Freund � Schapire �����

�� Start with weights wi ��N � i �� � � � � N �

�� Repeat for m �� �� � � � �M �

�a� Estimate the classi�er fm�x� from the training data with weights
wi�

�b� Compute em Ew���y ��fm�x���� cm log���� em��em��

�c� Set wi � wi exp�cm � ��yi ��fm�xi���� i �� �� � � � N � and renormalize
so that

P
iwi ��

�� Output the classi�er sign�
PM

m�� cmfm�x��

Algorithm �� Ew is the expectation with respect to the weights w �
�w�� w�� � � � wn	� At each iteration AdaBoost increases the weights of the obser�
vations misclassi�ed by fm�x	 by a factor that depends on the weighted training
error�

Much has been written about the success of AdaBoost in producing accu�
rate classi�ers� Many authors have explored the use of a tree�based classi�er
for fm�x� and have demonstrated that it consistently produces signi�cantly

�

lower error rates than a single decision tree� In fact� Breiman �NIPS work�
shop� �

�� called AdaBoost with trees the �best o� the shelf classi�er in
the world�� Interestingly� the test error seems to consistently decrease and
then level o� as more classi�ers are added� rather than ultimately increase�
For some reason� it seems that AdaBoost is immune to over�tting�
Figure � shows the performance of Discrete AdaBoost on a synthetic

classi�cation task� using a adaptation of CARTTM�Breiman� Friedman� Ol�
shen 	 Stone �
��� as the base classi�er� This adaptation grows �xed�size
trees in a �best��rst� manner �see Section ��� Included in the �gure is the
bagged tree �Breiman �

�� which averages trees grown on bootstrap resam�
pled versions of the training data� Bagging is purely a variance�reduction
technique� and since trees tend to have high variance� bagging often produces
good results�
Early versions of AdaBoost used a resampling scheme to implement

step � of Algorithm �� by weighted importance sampling from the train�
ing data� This suggested a connection with bagging� and that a major
component of the success of boosting has to do with variance reduction�
However� boosting performs comparably well when�

� a weighted tree�growing algorithm is used in step � rather than weighted
resampling� where each training observation is assigned its weight wi�
This removes the randomization component essential in bagging�

� �stumps� are used for the weak learners� Stumps are single�split trees
with only two terminal nodes� These typically have low variance but
high bias� Bagging performs very poorly with stumps �Fig� ��top�right
panel���

These observations suggest that boosting is capable of both bias and variance
reduction� and thus di�ers fundamentally from bagging�
The base classi�er in Discrete AdaBoost produces a classi�cation rule

fm�x� � X �� f��� �g� where X is the domain of the predictive features
x� If the implementation of the base classi�er cannot deal with observation
weights� weighted resampling is used instead� Freund 	 Schapire ��

�� and
Schapire 	 Singer ��

�� have suggested various modi�cations to improve
the boosting algorithms� here we focus on a version due to Schapire 	 Singer
��

��� which we call �Real AdaBoost�� that uses real�valued �con�dence�
rated� predictions rather than the f��� �g of Discrete AdaBoost� The base
classi�er for this generalized boosting produces a mapping fm�x� � X �� R�
the sign of fm�x� gives the classi�cation� and jfm�x�j a measure of the �con�
�dence� in the prediction� This real�valued boosting tends to perform the

�

Figure �� Test error for Bagging �BAG�� Discrete AdaBoost �DAB� and Real
AdaBoost �RAB� on a simulated two�class nested spheres problem �see Section ���
There are 	

 training data points in �
 dimensions� and the Bayes error rate
is zero� All trees are grown �best��rst without pruning� The left�most iteration
corresponds to a single tree�

�

best in our simulated examples in Fig� �� especially with stumps� although
we see with ��� node trees Discrete AdaBoost overtakes Real AdaBoost
after ��� iterations�

Real AdaBoost�Schapire � Singer ���	�

�� Start with weights wi ��N � i �� �� � � � � N �

�� Repeat for m �� �� � � � �M �

�a� Estimate the �con�dence rated� classi�er fm�x� � X �� R and
the constant cm from the training data with weights wi�

�b� Set wi � wi exp��cm � yifm�xi��� i �� �� � � � N � and renormalize
so that

P
iwi ��

�� Output the classi�er sign�
PM

m�� cmfm�x��

Algorithm
� The Real AdaBoost algorithm allows for the estimator fm�x	 to
range over R� In the special case that fm�x	 � f��� �g it reduces to AdaBoost� since
yifm�xi	 is � for a correct and�� for an incorrect classi�cation� In the general case
the constant cm is absorbed into fm�x	� We describe the Schapire�Singer estimate
for fm�x	 in Section ��

Freund 	 Schapire ��

�� and Schapire 	 Singer ��

�� provide some
theory to support their algorithms� in the form of upper bounds on gen�
eralization error� This theory �Schapire �

�� has evolved in the machine
learning community� initially based on the concepts of PAC learning �Kearns
	 Vazirani �

��� and later from game theory �Freund �

�� Breiman �

���
Early versions of boosting �weak learners� �Schapire �

�� are far simpler
than those described here� and the theory is more precise� The bounds and
the theory associated with the AdaBoost algorithms are interesting� but
tend to be too loose to be of practical importance� In practice boosting
achieves results far more impressive than the bounds would imply�
In this paper we analyze the AdaBoost procedures from a statistical

perspective� We show that the underlying model they are �tting is addi�
tive logistic regression� The AdaBoost algorithms are Newton methods for
optimizing a particular exponential loss function � a criterion which be�
haves much like the log�likelihood on the logistic scale� We also derive new
boosting�like procedures for classi�cation�
In Section � we brie�y review additive modelling� Section � shows how

boosting can be viewed as an additive model estimator� and proposes some
new boosting methods for the two class case� The multiclass problem is

�

studied in Section �� Simulated and real data experiments are discussed
in Sections � and �� Our tree�growing implementation� using truncated
best��rst trees� is described in Section �� Weight trimming to speed up
computation is discussed in Section �� and we end with a discussion in
Section
�

� Additive Models

AdaBoost produces an additive model F �x�
PM

m�� cmfm�x�� although
�weighted committee� or �ensemble� sound more glamorous� Additive mod�
els have a long history in statistics� and we give some examples here�

��� Additive Regression Models

We initially focus on the regression problem� where the response y is quan�
titative� and we are interested in modeling the mean E�Y jx� F �x�� The
additive model has the form

F �x�
pX

j��

fj�xj�� ���

Here there is a separate function fj�xj� for each of the p input variables
xj � More generally� each component fj is a function of a small� pre�speci�ed
subset of the input variables� The back�tting algorithm �Friedman 	 Stuetzle
�
��� Buja� Hastie 	 Tibshirani �
�
� is a convenient modular algorithm
for �tting additive models� A back�tting update is

fj�xj�� E

�
�y �X

k ��j

fk�xk�jxj

�
� � ���

Any method or algorithm for estimating a function of xj can be used to
obtain an estimate of the conditional expectation in ���� In particular� this
can include nonparametric smoothing algorithms� such as local regression
or smoothing splines� In the right hand side� all the latest versions of the
functions fk are used in forming the partial residuals� The back�tting cycles
are repeated until convergence� Under fairly general conditions� back�tting
can be shown to converge to the minimizer of E�y�F �x��� �Buja et al� �
�
��

��� Extended Additive Models

More generally� one can consider additive models whose elements ffm�x�g
M
�

are functions of potentially all of the input features x� Usually� in this

�

context� the fm�x� are taken to be simple functions characterized by a set
of parameters � and a multiplier �m�

fm�x� �mb�x � �m�� ���

The additive model then becomes

FM �x�
MX
m��

�mb�x � �m�� ���

For example� in single hidden layer neural networks b�x � �� ���tx� where
���� is a sigmoid function and � parameterizes a linear combination of the
input features� In signal processing� wavelets are a popular choice with �
parameterizing the location and scale of a �mother� wavelet b�x � ��� In
these applications fb�x � �m�g

M
� are generally called �basis functions� since

they span a function subspace�
If least�squares is used as a �tting criterion� one can solve for an optimal

set of parameters through a generalized back��tting algorithm with updates

f�m� �mg � argmin
���

E

�
�y � X

k ��m

�kb�x � �k�� �b�x � ��

�
�
�

� ���

Alternatively� one can use a �greedy� forward stepwise approach

f�m� �mg � argmin
���

E �y � Fm���x�� �b�x � ���� ���

where f�k� �kg
m��
� are �xed at their corresponding solution values at earlier

iterations� This is the approach used by Mallat 	 Zhang ��

�� in �matching
pursuit�� There the b�x � �� represent an over complete wavelet�like basis� In
the language of boosting� f�x� �b�x � �� would be called a �weak learner�
and FM �x� ��� the �committee�� If decision trees were used as the weak
learner the parameters � would represent the splitting variables� split points�
the constants in each terminal node� and number of terminal nodes of each
tree�
Note that the back��tting procedure ��� or its greedy cousin ��� only

require an algorithm for �tting a single weak learner ��� to data� This base
algorithm is simply applied repeatedly to modi�ed versions of the original
data

y � y �
X
k ��m

fk�x��

�

In the forward stepwise procedure ��� the modi�ed output at the mth iter�
ation ym only depends on its value ym�� and the solution fm���x� at the
previous iteration

ym ym�� � fm���x�� ���

At each step m� the previous output values ym�� are modi�ed ��� so that
the previous model fm���x� has no explanatory power on the new outputs
ym� One can therefore view this as a procedure for boosting a weak learner
f��x� ��b�x � ��� to form a powerful committee FM �x� ����

��� Classi�cation problems

For the classi�cation problem� we learn from Bayes theorem that all we
need is P �y jjx�� the posterior or conditional class probabilities� One
could transfer all the above regression machinery across to the classi�cation
domain by simply noting that E���y�j�jx� P �y jjx�� where ��y�j� is the
��� indicator variable representing class j� While this works fairly well in
general� several problems have been noted �Hastie� Tibshirani 	 Buja �

��
for constrained regression methods� The estimates are typically not con�ned
to ��� ��� and severe masking problems can occur� A notable exception is
when trees are used as the regression method� and in fact this is the approach
used by Breiman et al� ��
����
Logistic regression is a popular approach used in statistics for overcoming

these problems� For a two class problem� the model is

log
P �y �jx�

P �y �jx�

MX
m��

fm�x�� ���

The monotone logit transformation on the left guarantees that for any values
of F �x�

PM
m�� fm�x� � R� the probability estimates lie in ��� ��� inverting

we get

p�x� P �y �jx�
eF �x�

� � eF �x�
� �
�

Here we have given a general additive form for F �x�� special cases exist
that are well known in statistics� In particular� the linear logistic regres�
sion model �McCullagh 	 Nelder �
�
� for example� and additive logistic
regression model �Hastie 	 Tibshirani �

�� are popular� These models are
usually �t by maximizing the binomial log�likelihood� and enjoy all the as�
sociated asymptotic optimality features of maximum likelihood estimation�
A generalized version of back�tting ���� called �Local Scoring� in �Hastie

	 Tibshirani �

��� is used to �t the additive logistic model� Starting with

�

guesses f��x�� � � � fp�xp�� F �x�
P
fk�xk� and p�x� de�ned in �
�� we form

the working response�

z F �x� �
y � p�x�

p�x��� � p�x��
� ����

We then apply back�tting to the response z with observation weights p�x����
p�x�� to obtain new fk�xk�� This process is repeated until convergence� The
forward stage�wise version ��� of this procedure bears a close similarity to
the LogitBoost algorithm described later in the paper�

� Boosting � an Additive Logistic Regression Model

In this Section we show that the boosting algorithms are stage�wise esti�
mation procedures for �tting an additive logistic regression model� They
optimize an exponential criterion which to second order is equivalent to
the binomial log�likelihood criterion� We then propose a more standard
likelihood�based procedure�

��� An Exponential Criterion

Consider minimizing the criterion

J�F � E�e�yF �x�� ����

for estimation of F �x���

Lemma � shows that the function F �x� that minimizes the L� version of
the exponential criterion is the symmetric logistic transform of P �y �jx�

Lemma � E�e�yF �x�� is minimized at

F �x�
�

�
log

P �y �jx�

P �y ��jx�
� ����

Hence

P �y �jx�
eF �x�

e�F �x� � eF �x�
����

P �y ��jx�
e�F �x�

e�F �x� � eF �x�
� ����

�
E represents expectation� depending on the context� this may be an L� population

expectation� or else a sample average
 Ew means a weighted expectation

Proof

While E entails expectation over the joint distribution of y and x� it is
su�cient to minimize the criterion conditional on x�

E
�
e�yF �x��jx

�
 P �y �jx�e�F �x� � P �y ��jx�eF �x�

�E
�
e�yF �x��jx

�
�F �x�

 �P �y �jx�e�F �x� � P �y ��jx�eF �x�

Setting the derivative to zero the result follows�
�

The usual logistic transform does not have the factor �
� in ����� by mul�

tiplying the numerator and denominator in ���� by eF �x�� we get the usual
logistic model

p�x�
e�F �x�

� � e�F �x�
����

Hence the two models are equivalent�

Corollary � If E is replaced by averages over regions of x where F �x� is
constant �as in the terminal node of a decision tree�� the same result applies

to the sample proportions of y � and y ���

In proposition � we show that the Discrete AdaBoost increments in Algo�
rithm � are Newton�style updates for minimizing the exponential criterion�
This can be interpreted as a stage�wise estimation procedure for �tting an
additive logistic regression model�

Proposition � The Discrete AdaBoost algorithm produces adaptive Newton

updates for minimizing E�e�yF �x��� which are stage�wise contributions to an

additive logistic regression model�

Proof

Let J�F � E�e�yF �x��� Suppose we have a current estimate F �x� and
seek an improved estimate F �x� � cf�x�� For �xed c �and x�� we expand
J�F �x� � cf�x�� to second order about f�x� �

J�F � cf� E�e�y�F �x��cf�x���

	 E�e�yF �x���� ycf�x� � c�f�x������

Minimizing pointwise with respect to f�x� � f��� �g� we �nd

�f�x� argmin
f

Ew��� ycf�x� � c�f�x����jx�

��

 argmin
f

Ew��y � cf�x���jx� ����

 argmin
f

Ew��y � f�x���jx� ����

where w�yjx� exp��yF �x���E exp��yF �x��� and ���� follows from ����
by considering the two possible choices for f�x��
Given �f � f��� �g� we can directly minimize J�F � c �f� to determine c�

�c argmin
c

Ewe
�cy �f�x�

�

�
log
�� e

e

where e Ew���y �� �f�x���� Combining these steps we get the update for F �x�

F �x� � F �x� �
�

�
log
�� e

e
�f�x�

In the next iteration the new contribution �c �f�x� to F �x� augments the
weights�

w�yjx�� w�yjx� � e��c �f�x�y�

followed by a normalization� Since y �f�x� �
 ��y �� �f�x�� � �� we see that
the update is equivalent to

w�yjx�� w�yjx� � exp

�
log

�
�� e

e

	
��y �� �f�x��

	

Thus the function and weight updates are identical to those used in Discrete
AdaBoost�

�

Parts of this derivation for AdaBoost can be found in Schapire 	 Singer
��

��� Newton algorithms repeatedly optimize a quadratic approximation
to a nonlinear criterion� which is the �rst part of the update in AdaBoost�
This L� version of AdaBoost translates naturally to a data version using

trees� The weighted least squares criterion is used to grow the tree�based
classi�er �f�x�� and given �f�x�� the constant c is based on the weighted
training error�
Note that after each Newton step� the weights change� and hence the

tree con�guration will change as well� This adds a nonlinear twist to the
Newton algorithm�

��

Corollary
 After each update to the weights� the weighted misclassi�ca�

tion error of the most recent weak learner is �� �

Proof
This follows by noting that the c that minimizes J�F � cf� satis�es

�J�F � cf�

�c
 �E�e�y�F �x��cf�x��yf�x�� � ����

The result follows since yf�x� is � for a correct classi�cation� and �� for a
misclassi�cation�

�

Schapire 	 Singer ��

�� give the interpretation that the weights are up�
dated to make the new weighted problem maximally di�cult for the next
weak learner�
The Discrete AdaBoost algorithm expects the tree or other �weak learn�

er� to deliver a classi�er f�x� � f��� �g� We now show that the Real
AdaBoost algorithm uses the weighted probability estimates in the termi�
nal nodes of the tree to update the additive logistic model� rather than the
classi�cations themselves� Again we derive the population algorithm� and
then apply it to data�

Proposition
 The Real AdaBoost algorithm �ts an additive logistic re�

gression model by stage�wise optimization of J�F � E�e�yF �x��

Proof
Suppose we have a current estimate F �x� and seek an improved estimate
F �x� � f�x� by minimizing J�F �x� � f�x���

�J�F �x� � f�x��

�f�x�
 �E�e�yF �x�ye�yf�x�jx�

 �E�e�yF �x���y���e
�f�x�jx� �E�e�yF �x���y����e

f�x�jx�

Dividing through by Ee�yF �x� and setting the derivative to zero we get

�f�x�
�

�
log

Ew���y���jx�

Ew���y����jx�
��
�

�

�
log

Pw�y �jx�

Pw�y ��jx�
����

where w�yjx� exp��yF �x���E�exp��yF �x��jx��

��

Careful examination of Schapire 	 Singer ��

�� shows that this update
matches theirs �and the cm in Algorithm � are redundant�� The weights get
updated by

w�yjx�� w�yjx� � e�y
�f�x�

�

Corollary � At the optimal F �x�� the weighted conditional mean of y is ��

Proof

If F �x� is optimal� we have

�J�F �x��

F �x�
 �Ee�yF �x�y � ����

�

We can think of the weights as providing an alternative to residuals for the
binary classi�cation problem� At the optimal function F � there is no further
information about F in the weighted conditional distribution of y� If there
is� we use it to update F �
At iteration M in either the Discrete or Real AdaBoost algorithms� we

have composed an additive function of the form

F �x�
MX
m��

fm�x� ����

where each of the components are found in a greedy forward stage�wise
fashion� �xing the earlier components� Our term �stage�wise� refers to a
similar approach in Statistics�

� Variables are included sequentially in a stepwise regression�

� The coe�cients of variables already included receive no further adjust�
ment�

��� Why Ee
�yF �x��

So far the only justi�cation for this exponential criterion is that it has a
sensible population minimizer� and the algorithm described above performs
well on real data� In addition

� Schapire 	 Singer ��

�� motivate e�yF �x� as a di�erentiable upper�
bound to misclassi�cation error �see Fig� ���

��

� the AdaBoost algorithm that it generates is extremely modular� re�
quiring at each iteration the retraining of a classi�er on a weighted
training database�

Let y� �y � ����� taking values �� �� and parametrize the binomial
probabilities by

p�x�
eF �x�

eF �x� � e�F �x�

The expected binomial log�likelihood is

E	�y�� p�x�� E�y� log�p�x�� � ��� y�� log��� p�x��� ����

 �E log�� � e�yF �x�� ����

� The population minimizers of �E	�y�� p�x�� and Ee�yF �x� coincide�
In fact� the exponential criterion and the �negative� log�likelihood are
equivalent to second order in a Taylor series around F ��

�	�y�� p� 	 exp��yF � � log���� � ����

Graphs of exp��yF � and log���e�yF �x�� �suitably scaled� are shown in
Fig� �� as a function of yF � positive values of yF imply correct clas�
si�cation� Note that � exp��yF � itself is not a proper log�likelihood�
as it does not equal the log of any probability mass function on ���

� Also shown in Fig� � is the indicator function ��F���� which gives
misclassi�cation error�

� There is another way to view the criterion J�F �� It is easy to show
that

e�yF �x�
jy� � p�x�jp
p�x���� p�x��

� ����

with F �x� log�p�x�����p�x���� The right�hand side is known as the
Chi statistic in the statistical literature�

One feature of both the exponential and log�likelihood criteria is that
they are monotone and smooth� Even if the training error is zero� the criteria
will drive the estimates towards purer solutions �in terms of probability
estimates��
Why not estimate the fm by minimizing the squared error E�y�F �x��

�!
If Fm���x�

Pm��
� fj�x� is the current prediction� this leads to a forward

��

Figure �� A variety of loss functions for estimating a function F �x	 for classi�
�cation� The horizontal axis is yF � which is negative for errors and positive for
correct classi�cations� All the loss functions are monotone in yF � The curve la�
beled �Squared Error�p� is �y��p	�� and gives a uniformly better approximation to
misclassi�cation loss than the exponential criterion �Schapire�Singer�� The curve
labeled �Squared Error�F� is �y � F 	�� and increases once yF exceeds �� thereby
increasingly penalizing classi�cations that are �too correct�

��

stage�wise procedure that does an unweighted �t to the response y�Fm���x�
at step m ���� Empirically we have found that this approach works quite
well� but is dominated by those that use monotone loss criteria� We believe
that the non�monotonicity of squared error loss �Fig� �� is the reason� Cor�
rect classi�cations �yF �x�
 �� incur increasing loss for increasing values
of jF �x�j� This makes squared�error loss an especially poor approximation
to misclassi�cation error rate� Classi�cations that are �too correct� are
penalized as much as misclassi�cation errors�

��� Using the log�likelihood criterion

In this Section we explore algorithms for �tting additive logistic regression
models by stage�wise optimization of the Bernoulli log�likelihood� Here we
focus again on the two�class case� and will use a ��� response y� to represent
the outcome� We represent the probability of y� � by p�x�� where

p�x�
eF �x�

eF �x� � e�F �x�
����

Algorithm � gives the details�

LogitBoost �
 classes�

�� Start with weights wi ��N i �� �� � � � � N � F �x� � and probability
estimates pi

�
� �

�� Repeat for m �� �� � � � �M �

�a� Compute the working response and weights

zi
y�i � pi
pi��� pi�

wi pi��� pi�

�b� Estimate fm�x� by weighted least�squares �tting of z to x�

�c� Update F �x�� F �x� � �
�fm�x� and p�x� via �����

�� Output the classi�er sign�F �x�� sign�
PM

m�� fm�x��

Algorithm �� An adaptive Newton algorithm for �tting an additive logistic re�
gression model�

��

Proposition � The LogitBoost algorithm uses adaptive Newton steps for

�tting an additive symmetric logistic model by maximum likelihood�

Proof

Consider the update F �x� � f�x� and the expected log�likelihood

	�F � f� E��y��F �x� � f�x��� log�� � exp��F �x��� ����

Conditioning on x� we compute the �rst and second derivative at f�x� ��

s�x�
�	�F �x� � f�x�

�f�x�
jf�x���

 �E�y� � p�x�jx� ��
�

H�x�
��	�F �x� � f�x�

�f�x��
jf�x���

 ��E�p�x��� � p�x��jx� ����

where p�x� is de�ned in terms of F �x�� The Newton update is then

F �x� � F �x��H�x���s�x�

 F �x� �
�

�

E�y� � p�x�jx�

Ep�x��� � p�x��jx�
����

 F �x� �
�

�
Ew

�
y� � p�x�

p�x���� p�x��
jx

	
����

where w�x� p�x��� � p�x��� Equivalently� the Newton update solves the
weighted least squares criterion

min
f�x�

Ew�x�

�
�

�

y� � p�x�

p�x���� p�x��
� f�x�

	�
����

�

The population algorithm described here translates immediately to an
implementation on data when E��jx� is replaced by a regression method�
such as regression trees �Breiman et al� �
���� While the role of the weights
are somewhat arti�cial in the L� case� they are not in any implementation�
w�x� is constant when conditioned on x� but the w�xi� in a terminal node of
a tree� for example� depend on the current values F �xi�� and will typically
not be constant�
Sometimes the w�x� get very small in regions of �x� perceived �by F �x��

to be pure�that is� when p�x� is close to � or �� This can cause numerical
problems in the construction of z� and led to the following crucial imple�
mentation protections�

��

� If y� �� then compute z y��p
p���p� as

�
p
� Since this number can

get large if p is small� threshold this ratio at zmax� The particular
value chosen for zmax is not crucial� we have found empirically that
zmax � ��� �� works well� Likewise� if y� �� compute z ��

���p� with
a lower threshold of �zmax�

� Enforce a lower threshold on the weights� w max�w� �
machine�zero��

��� Optimizing Ee
�yF �x� by Newton stepping

The L� Real Adaboost procedure �Algorithm �� optimizes Ee
�y�F �x��f�x��

exactly with respect to f at each iteration� Here we explore a �gentler�
version that instead takes adaptive Newton steps much like the LogitBoost
algorithm just described�

Gentle AdaBoost

�� Start with weights wi ��N i �� �� � � � � N � F �x� ��

�� Repeat for m �� �� � � � �M �

�a� Estimate fm�x� by weighted a �t of y to x�

�b� Update F �x�� F �x� � fm�x�

�c� Update wi � wie
�yifm�xi� and renormalize�

�� Output the classi�er sign�F �x�� sign�
PM

m�� fm�x��

Algorithm �� A modi�ed version of the Real AdaBoost algorithm� using Newton
stepping rather than exact optimization at each step

Proposition � The Gentle AdaBoost algorithm uses adaptive Newton steps

for minimizing Ee�yF �x��

Proof

�J�F �x� � f�x��

�f�x�
jf�x��� �E�e�yF �x�yjx�

��J�F �x� � f�x��

�f�x��
jf�x��� E�e�yF �x�jx� since y� �

��

Hence the Newton update is

F �x� � F �x� �
E�e�yF �x�y

E�e�yF �x�jx�

 F �x� �Ewy

where

w�yjx�
e�yF �x�

E�e�yF �x�jx�

�

The main di�erence between this and the Real AdaBoost algorithm is
how it uses its estimates of the weighted class probabilities to update the
functions� Here the update is fm�x� Pw�y �jx� � Pw�y ��jx�� rather

than half the log�ratio as in ����� fm�x�
�
� log

Pw�y��jx�
Pw�y���jx� � Log�ratios can

be numerically unstable� leading to very large updates in pure regions� while
the update here lies in the range ���� ��� Empirical evidence suggests �see
Section �� that this more conservative algorithm has similar performance to
both the Real AdaBoost and LogitBoost algorithms� and often outperforms
them both� especially when stability is an issue�
Freund 	 Schapire ��

�� also propose an AdaBoost algorithm similar

to Gentle Adaboost� except the function fm�x� is multiplied by a constant
�cmfm�x�� which is estimated in a global fashion much like in Discrete Ad�
aBoost� We do not pursue this particular variant further here�
There is a strong similarity between the updates for the Gentle AdaBoost

algorithm and those for the LogitBoost algorithm� Let p P �y �jx�� and

pm
eF �x�

eF �x��e�F �x�
� Then

E�e�yF �x�yjx�

E�e�yF �x�jx�

e�F �x�p� eF �x���� p�

e�F �x�p� eF �x���� p�

p� pm

��� pm�p� pm��� p�
����

The analogous expression for LogitBoost from ���� is

�

�

p� pm
pm��� pm�

����

At pm 	 �
� these are nearly the same� but they di�er as the pm become

extreme� For example� if p 	 � and pm 	 �� ���� blows up� while ���� is
about � �and always falls in ���� ����

�

� Multiclass procedures

Here we explore extensions of boosting to classi�cation with multiple classes�
We start o� by proposing a natural generalization of the two�class symmet�
ric logistic transformation� and then consider speci�c algorithms� In this
context Schapire 	 Singer ��

�� de�ne J responses yj for a J class prob�
lem� each taking values in f��� �g� Similarly the indicator response vector

with elements y�j is more standard in the statistics literature� Assume the
classes are mutually exclusive�

Denition � For a J class problem let Pj�x� P �yj �jx�� We de�ne

the symmetric multiple logistic transformation

Fj�x� logPj�x��
�

J

JX
k��

logPk�x� ����

Equivalently�

Pj�x�
eFj�x�PJ
k�� e

Fk�x�
�
PJ

k�� Fk�x� � ����

The centering condition in ���� is for numerical stability only� it simply pins
the Fj down� else we could add an arbitrary constant to each Fj and the
probabilities remain the same� The equivalence of these two de�nitions is
easily established� as well as the equivalence with the two�class case�
Schapire 	 Singer ��

�� provide several generalizations of AdaBoost

for the multiclass case� we describe their AdaBoost�MH algorithm� since it
seemed to dominate the others in their empirical studies� We then connect
it to the models presented here� We will refer to the augmented variable in
Algorithm � as the �class� variable C� We make a few observations�

� The L� version of this algorithm minimizes
PJ

j��Ee
�yjFj�x�� which

is equivalent to running separate L� boosting algorithms on each of
the J problems of size N obtained by partitioning the N
 J samples
in the obvious fashion� This is seen trivially by �rst conditioning on
C j� and then xjC j� when computing conditional expectations�

� The same is almost true for their tree�based algorithm� We see this
because

�� If the �rst split is on C � either a J �nary split if permitted�
or else J � � binary splits � then the sub�trees are identical to
separate trees grown to each of the J groups� This will always be
the case for the �rst tree�

��

AdaBoost�MH �Schapire � Singer ���	�

The original N observations are expanded into N
 J pairs
��xi� ��� yi��� ��xi� ��� yi��� � � � � ��xi� J�� yiJ �� i �� � � � � N�

�� Start with weights wij ��NJ � i �� � � � � N� j �� � � � � J �

�� Repeat for m �� �� � � � �M �

�a� Estimate the �con�dence rated� classi�er fm�x� j� � �X

��� � � � � J�� �� R from the training data with weights wij�

�b� Set wij � wij exp��yijfm�xi� j��� i �� �� � � � � N� j �� � � � � J �
and renormalize so that

P
i�j wij ��

�� Output the classi�er argmaxjF �x� j� where F �x� j�
P

m fm�x� j��

Algorithm �� The AdaBoost�MH algorithm converts the J class problem into
that of estimating a � class classi�er on a training set J times as large� with an
additional �feature de�ned by the set of class labels�

�� If a tree does not split on C anywhere on the path to a terminal
node� then that node returns a function fm�x� j� gm�x� that
contributes nothing to the classi�cation decision� However� as
long as a tree includes a split on C at least once on every path to
a terminal node� it will make a contribution to the classi�er for
all input feature values�

The advantage"disadvantage of building one large tree using class label
as an additional input feature is not clear� No motivation is provided�
We therefore implement AdaBoost�MH using the more traditional di�
rect approach of building J separate trees to minimize

PJ
j��Ee

�yjFj�x�

We have thus shown

Proposition � The AdaBoost�MH algorithm for a J�class problem �ts J
uncoupled additive logistic models� Gj�x�

�
� logPj�x���� � Pj�x��� each

class against the rest�

In principal this parametrization is �ne� since Gj�x� is monotone in Pj�x��
However� we are estimating the Gj�x� in an uncoupled fashion� and there
is no guarantee that the implied probabilities sum to �� We give some
examples where this makes a di�erence� and AdaBoost�MH performs more
poorly than an alternative coupled likelihood procedure�

��

Schapire and Singer#s AdaBoost�MH was also intended to cover situa�
tions when observations can belong to more than one class� The �MH�
represents �Multi�Label Hamming�� Hamming loss being used to measure
the errors in the space of �J possible class labels� In this context �tting
a separate classi�er for each label is a reasonable strategy� Schapire and
Singer also propose using AdaBoost�MH when the class labels are mutually
exclusive� which is the focus in this paper�
Algorithm � is a natural generalization of algorithm � for �tting the

J�class logistic regression model �����

LogitBoost �J classes�

�� Start with weights wij ��N � i �� � � � � N� j �� � � � � J � Fj�x� �
and Pj�x� ��J �j�

�� Repeat for m �� �� � � � �M �

�a� Repeat for j �� � � � � J �

i� Compute working responses and weights in the jth class

zij
y�ij � pij

pij��� pij�

wij pij��� pij�

ii� Estimate fmj�x� by a weighted least�squares �t of zij to xi

�b� Set fmj�x� � J��
J
�fmj�x� �

�
J

PJ
k�� fmk�x��� and Fj�x� �

Fj�x� � fmj�x�

�c� Update Pj�x� via �����

�� Output the classi�er argmaxjFj�x�

Algorithm �� An adaptive Newton algorithm for �tting an additive multiple
logistic regression model�

Proposition � The LogitBoost algorithm � uses adaptive quasi�Newton steps

for �tting an additive symmetric logistic model by maximum�likelihood

We sketch an informal proof�
Proof

� We �rst give the L� score and Hessian for the Newton algorithm corre�
sponding to a standard multi�logit parametrization Gj�x�� where say

��

GJ�x� �� The expected log�likelihood is

	�G� g�
J��X
j��

E�y�j jx��Gj�x� � gj�x��� log�� �
J��X
k��

eGk�x��gk�x��

sj�x� E�y�j � pj�x�jx�� j �� � � � � J � �

Hj�k�x� �pj�x���jk � pk�x��� j� k �� � � � � J � �

� Our quasi�Newton update amounts to using a diagonal approximation
to the Hessian�

gj�x�
E�y�j � pj�x�jx�

pj�x���� pj�x��
� j �� � � � � J � �

� To convert to the symmetric parametrization� we would note that gJ
�� and set fj�x� gj�x��

�
J

PJ
k�� gk�x�� However� this procedure could

be applied using any class as the base� not just the Jth� By averaging
over all choices for the base class� we get the update

fj�x�

�
J � �

J

	

E�y�j � pj�x�jx�

pj�x���� pj�x��
�
�

J

JX
k��

E�y�k � pk�x�jx�

pk�x��� � pk�x��

�

�

� Simulation studies

In this Section the four �avors of boosting outlined above are applied to
several arti�cially constructed problems� Comparisons based on real data
are presented in Section ��
An advantage of comparisons made in a simulation setting is that all

aspects of each example are known� including the Bayes error rate and the
complexity of the decision boundary� In addition� the population expected
error rates achieved by each of the respective methods can be estimated to
arbitrary accuracy by averaging over a large number of di�erent training
and test data sets drawn from the population� The four boosting methods
compared here are

DAB� Discrete AdaBoost � Algorithm �

��

RAB� Real AdaBoost � Algorithm � for two classes� and Algorithm � �Ad�
aBoost�MH� for more than two classes�

LB� LogitBoost � Algorithms � and ��

GAB� Gentle AdaBoost � Algorithm �

In an attempt to di�erentiate performance� all of the simulated examples
involve fairly complex decision boundaries� The ten predictive features for all
examples are randomly drawn from a ten�dimensional standard normal dis�
tribution x � N����� I�� For the �rst three examples the decision boundaries
separating successive classes are nested concentric ten�dimensional spheres
constructed by thresholding the squared�radius from the origin

r�
��X
j��

x�j � ����

Each class Ck �� k K� is de�ned as the subset of observations

Ck fxi j tk�� r�i � tkg ��
�

with t� � and tK �� The ftkg
K��
� for each example were chosen so as to

put approximately equal numbers of observations in each class� The training
sample size is N K ����� so that approximately ���� training observations
are in each class� An independently drawn test set of ����� observations
was used to estimate error rates for each training set� Averaged results over
ten such independently drawn training"test set combinations were used for
the �nal error rate estimates� The corresponding statistical uncertainties
�standard errors� of these �nal estimates �averages� are approximately a
line width on each plot�
Figure � �top�left� compares the four algorithms in the two�class �K ��

case using a two�terminal node decision tree ��stump�� as the base classi�er�
Shown is error rate as a function of number of boosting iterations� The upper
�black� line represents DAB and the other three nearly coincident lines are
the other three methods �dotted red RAB� short�dashed green LB� and
long�dashed blueGAB�� Note that the somewhat erratic behavior of DAB�
especially for less that ��� iterations� is not due to statistical uncertainty�
For less than ��� iterations LB has a minuscule edge� after that it is a dead
heat with RAB and GAB� DAB shows substantially inferior performance
here with roughly twice the error rate at all iterations�
Figure � �lower�left� shows the corresponding results for three classes

�K �� again with two�terminal node trees� Here the problem is more

��

Figure �� Additive Decision Boundary� In all panels except the the top right� the
solid curve �representing discrete AdaBoost� lies alone above the other three curves�

��

di�cult as represented by increased error rates for all four methods� but
their relationship is roughly the same� the upper �black� line represents DAB
and the other three nearly coincident lines are the other three methods� The
situation is somewhat di�erent for larger number of classes �K � ��� Figure
� �lower�right� shows results for K � which are typical for K � �� As
before� DAB incurs much higher error rates than all the others� and RAB
and GAB have nearly identical performance� However� the performance of
LB relative to RAB and GAB has changed� Up to about �� iterations it
has the same error rate� From �� to about ��� iterations LB#s error rates
are somewhat higher than the other two� After ��� iterations the error
rate for LB continues to improve whereas that for RAB and GAB level o��
decreasing much more slowly� By ��� iterations the error rate for LB is ���

whereas that for RAB and GAB is ����� Speculation as to the reason for
LB#s performance gain in these situations is presented below�
In the above examples a two�terminal�node tree �stump� was used as the

base classi�er� One might expect the use of larger trees would do better for
these rather complex problems� Figure � �top�right� shows results for the
two�class problem� here boosting trees with eight terminal nodes� These
results can be compared to those for stumps in Fig� � �top�left�� Initially�
error rates for boosting eight node trees decrease much more rapidly than
for stumps� with each successive iteration� for all methods� However� the
error rates quickly level o� and improvement is very slow after about ���
iterations� The overall performance of DAB is much improved with the
bigger trees� coming close to that of the other three methods� As before
RAB� GAB� and LB exhibit nearly identical performance� Note that at
each iteration the eight�node tree model consists of four�times the number
of additive terms as does the corresponding stump model� This is why the
error rates decrease so much more rapidly in the early iterations� In terms
of model complexity �and training time�� a ��� iteration model using eight�
terminal node trees is equivalent to a ��� iteration stump model �
Comparing the top�two panels in Fig� � one sees that for RAB� GAB�

and LB the error rate using the bigger trees ������ is in fact �� higher than
that for stumps ������ at ��� iterations� even though the former is four times
more complex� This seemingly mysterious behavior is easily understood by
examining the nature of the decision boundary separating the classes� In
general� the decision boundary between any two classes can be de�ned by
an equation of the form B�x� c� using sign�B�x� � c� to discriminate
between the two classes results in the optimal Bayes rule� It is the goal
of any classi�er to approximate B�x� �which is not necessarily unique� as
closely as possible under whatever constraints �concept bias� are associated

��

with the classi�er� As discussed above� boosting produces an additive model
whose components �basis functions� are represented by the base classi�er�
If a boundary function B�x� for a particular problem happens to be well
approximated by such an additive model then performance is likely to be
good� if not� high error rates are a likely result�
With stumps as the base classi�er each basis function involves only a

single �splitting� predictor variable

fk�x� ck��sk��xj�k��tk����� ����

Here j�k� is the split variable� tk the split point � and sk �� is the
direction �� right son� � left son� associated with the kth term� The
boosted model is a linear combination of such single variable functions� Let

gj�xj�
X

j�k��j

fk�xj�� ����

That is� each gj�xj� is the sum of all �stump� functions involving the same
�jth� predictor� with gj�xj� � if none exist� Then the model produced by
boosting stumps is additive in the original features

F �x�
pX

j��

gj�xj�� ����

Examination of ���� and ��
� reveals that an optimal decision boundary
for the above examples is also additive in the original features� fj�xj�
x�j�const� Thus� in the context of decision trees� stumps are ideally matched
to these problems� larger trees are not needed� However boosting larger
trees need not be counter productive in this case if all of the splits in each
individual tree are made on the same predictor variable� This would also
produce an additive model in the original features ����� However� due to
the forward greedy stage�wise strategy used by boosting� this is not likely to
happen if the decision boundary function involves more than one predictor�
each individual tree will try to do its best to involve all of the important
predictors� Owing to the nature of decision trees� this will produce models
with interaction e	ects� most terms in the model will involve products in
more than one variable� Such non�additive models are not as well suited
for approximating truly additive decision boundaries such as ���� and ��
��
This is re�ected in increased error rate as observed in Fig� ��
It should be noted that if B�x� c describes a decision boundary� any

monotone transformation of both sides describes the same boundary� This

��

fact makes boosting stumps more general than one might at �rst think� For
example� suppose B�x�

Qp
j�� f�xj� with all quantities being strictly posi�

tive� Such a boundary is very complex involving interactions to the highest
order� However� $B�x� logB�x�

Pp
j�� log fj�xj� is an additive function

�in the original variables� and $B�x� log c describes the same boundary�
Thus� boosting stumps would be optimal in spite of the apparent complexity
of this B�x�� More generally if any monotone transformation of the deci�
sion boundary de�nition renders it approximately additive� boosting stumps
should be competitive� Also note that the �naive� Bayes procedure� which is
often highly competitive� produces decision boundary estimates that� after
logarithmic transformation� are additive in the original predictors� Boosting
decision stumps is considerably more �exible than most implementations of
�naive� Bayes�
The above discussion suggests that if the decision boundary separating

pairs of classes were inherently non�additive in the original predictor vari�
ables� then boosting stumps would be less advantageous than using larger
trees� A tree with m terminal nodes can produce basis functions with a
maximum interaction order of min�m� �� p� where p is the number of pre�
dictor features� These higher order basis functions provide the possibility
to more accurately estimate those B�x� with high order interactions� The
purpose of the next example is to verify this intuition� There are two classes
�K �� and ���� training observations with the fxig

	���
� drawn for a ten�

dimensional normal distribution as in the previous examples� Class labels
were randomly assigned to each observation with log�odds

log

�
Pr�y � jx�

Pr�y �� jx�

	
 ��

X
j��

xj

� �

X
l��

����lxl

�
�

Approximately equal numbers of observations are assigned to each of the
two classes� and the Bayes error rate is ������ The decision boundary for
this problem is a complicated function of the �rst six predictor variables
involving all of them in second order interactions of equal strength� As in
the above examples� test sets of ����� observations was used to estimate
error rates for each training set� and �nal estimates were averages over ten
replications�
Figure � �top�left� shows test�error rate as a function of iteration number

for each of the four boosting methods using stumps� As in the previous
examples� RAB and GAB track each other very closely� DAB begins very
slowly� being dominated by all of the others until around ��� iterations�
where it passes below RAB and GAB� LB mostly dominates� having the

��

Figure �� Interactive Decision Boundary

�

lowest error rate until about ��� iterations� At that point DAB catches up
and by ��� iterations it may have a very slight edge� However� none of these
boosting methods perform well with stumps on this problem� the best error
rate being �����
Figure � �top�right� shows the corresponding plot when four terminal

node trees are boosted� Here there is a dramatic improvement with all
of the four methods� For the �rst time there is some small di�erentiation
between RAB and GAB� At nearly all iterations the performance ranking
is LB best� followed by GAB� RAB� and DAB in order� At ��� iterations
LB achieves an error rate of ������ Figure � �lower�left� shows results when
eight terminal node trees are boosted� Here� error rates are generally further
reduced with LB improving the least �������� but still dominating� The
performance ranking among the other three methods changes with increasing
iterations� DAB overtakes RAB at around ��� iterations and GAB at about
��� becoming fairly close to LB by ��� iterations with an error rate of ������
Although limited in scope� these simulation studies suggest several trends�

They explain why boosting stumps can sometimes be superior to using larger
trees� and suggest situations where this is likely to be the case� that is when
decision boundaries B�x� can be closely approximated by functions that are
additive in the original predictor features� When higher order interactions
are required stumps exhibit poor performance� These examples illustrate
the close similarity between RAB and GAB� In all cases the di�erence in
performance between DAB and the others decreases when larger trees and
more iterations are used� sometimes overtaking the others� More generally�
relative performance of these four methods depends on the problem at hand
in terms of the nature of the decision boundaries� the complexity of the base
classi�er� and the number of boosting iterations�
The superior performance of LB in Fig� � �lower�right� appears to be

a consequence of the multi�class logistic model �Algorithm ��� All of the
other methods use the asymmetric AdaBoost�MH strategy �Algorithm ��
of building separate two�class models for each individual class against the
pooled complement classes� Even if the decision boundaries separating all
class pairs are relatively simple� pooling classes can produce complex deci�
sion boundaries that are di�cult to approximate �Friedman �

��� By con�
sidering all of the classes simultaneously� the symmetric multi�class model
is better able to take advantage of simple pairwise boundaries when they
exist �Hastie 	 Tibshirani �

��� As noted above� the pairwise boundaries
induced by ���� and ��
� are simple when viewed in the context of additive
modeling� whereas the pooled boundaries are more complex� they cannot be
well approximated by functions that are additive in the original predictor

��

variables�
The decision boundaries associated with these examples were deliber�

ately chosen to be geometrically complex in an attempt to illicit performance
di�erences among the methods being tested� Such complicated boundaries
are not likely to often occur in practice� Many practical problems involve
comparatively simple boundaries �Holte �

��� in such cases performance
di�erences will still be situation dependent� but correspondingly less pro�
nounced�

� Some experiments with data

In this section we show the results of running the four �tting methods�
LogitBoost� Discrete AdaBoost� Real AdaBoost� and Gentle AdaBoost on
a collection of datasets from the UC�Irvine machine learning archive� plus
a popular simulated dataset� The base learner is a tree in each case� with
either � terminal nodes ��stumps�� or � terminal nodes� For comparison�
a single CART decision tree was also �t� with the tree size determined by
��fold cross�validation�
The datasets are summarized in Table �� The test error rates are shown

in Table � for the smaller datasets� and in Table � for the larger ones� The
vowel� sonar� satimage and letter datasets come with a pre�speci�ed test
set� The waveform data is simulated� as described in �Breiman et al� �
����
For the others� ��fold cross�validation was used to estimate the test error�
It is di�cult to discern trends on the small data sets �Table �� because

all but quite large observed di�erences in performance could be attributed
to sampling �uctuations� On the vowel� breast cancer� ionosphere�

sonar� and waveform data� purely additive �two�terminal node tree� models
seem to perform comparably to the larger �eight�node� trees� The glass
data seems to bene�t a little from larger trees� There is no clear di�erenti�
ation in performance among the boosting methods�
On the larger data sets �Table �� clearer trends are discernible� For the

satimage data the eight�node tree models are only slightly� but signi�cantly�
more accurate than the purely additive models� For the letter data there
is no contest� Boosting stumps is clearly inadequate� There is no clear
di�erentiation among the boosting methods for eight�node trees� For the
stumps� LogitBoost� Real AdaBoost� and Gentle AdaBoost have comparable
performance� distinctly superior to Discrete Adaboost� This is consistent
with the results of the simulation study �Section ���
Except perhaps for Discrete AdaBoost� the real data examples fail to

��

Table �� Datasets used in the experiments

Data set � Train � Test � Inputs � Classes

vowel ��� ��� � ��
breast cancer ��� ��fold CV � �
ionosphere ��� ��fold CV �� �
glass ��� ��fold CV � �
sonar �� ��fold CV � �
waveform � � �� �

satimage ���� � �� �
letter �� � �� ��

demonstrate performance di�erences between the various boosting methods�
This is in contrast to the simulated data sets of Section �� There LogitBoost
generally dominated� although often by a small margin� The inability of
the real data examples to discriminate may re�ect statistical di�culties in
estimating subtle di�erences with small samples� Alternatively� it may be
that the their underlying decision boundaries are all relatively simple �Holte
�

�� so that all reasonable methods exhibit similar performance�

� Additive Logistic Trees

In most applications of boosting the base classi�er is considered to be a prim�
itive� repeatedly called by the boosting procedure as iterations proceed� The
operations performed by the base classi�er are the same as they would be in
any other context given the same data and weights� The fact that the �nal
model is going to be a linear combination of a large number of such classi�ers
is not taken into account� In particular� when using decision trees� the same
tree growing and pruning algorithms are generally employed� Sometimes al�
terations are made �such as no pruning� for programming convenience and
speed�
When boosting is viewed in the light of additive modeling� however� this

greedy approach can be seen to be far from optimal in many situations� As
discussed in Section � the goal of the �nal classi�er is to produce an accurate
approximation to the decision boundary function B�x�� In the context of
boosting� this goal applies to the �nal additive model� not to the individual
terms �base classi�ers� at the time they were constructed� For example� it
was seen in Section � that if B�x� was close to being additive in the original

��

Table �� Test error rates on small real examples

Method � Terminal Nodes � Terminal Nodes

Iterations 	� ��� ��� 	� ��� ���

Vowel CART error� �
��

LogitBoost �	� �	�� �	�� �	�� �	�� �	��
Real AdaBoost �	
	 �	
� �	�� ���
 ���
 ���

Gentle AdaBoost �		
 �	�� �	�� �	�	 ���
 ���

Discrete AdaBoost �	
 �		 �	
 �	�� �	�� �	��

Breast CART error� ���	

LogitBoost ���� ��� ���� ��� ��� ���
Real AdaBoost ��� ��� ���� ��� ��� ���
Gentle AdaBoost ��� ��� ���� ��� ��� ���
Discrete AdaBoost ���� ���� ���� ��� ��	 ���

Ion CART error� ���

LogitBoost ���� ���� ���� ��
� ��
 ��

Real AdaBoost ��
� ��

 ��
� ��	� ��	� ��	�
Gentle AdaBoost ���	 ���� ���� ��

 ��
 ��

Discrete AdaBoost ���� ���� ���� ��
� ��
 ��

Glass CART error� ����

LogitBoost ��

 ��	� ��

 ��� ��� ���
Real AdaBoost ���
 ���� ��	� ��� ��� ���
Gentle AdaBoost ���
 ��
� ��	� ���� �� ���
Discrete AdaBoost ���	 ���	 ���� ��� ��� ���

Sonar CART error� �	�

LogitBoost ��� ��� ���� ��
 ��	� ��	�
GA ��	� ��
 ���� ��� ��� ���
SA ��� ��� ��� ��	� ��	� ��	�
Discrete AdaBoost ��	� ���� ��� ��
 ���� ����

Waveform CART error� �
�

LogitBoost ���
 ���	 ���
 ���� ���� ����
Real AdaBoost ��� ���� ���	 ���	 ���� ����
Gentle AdaBoost ���� ���� ��� ���	 ���	 ���

Discrete AdaBoost ���� ���	 ���� ���
 ��� ���

��

Table �� Test error rates on larger data examples�

Method Terminal Iterations Fraction

Nodes �� 	� ��� ���

Satimage CART error � ����

LogitBoost � ���� ���� ���� ����
Real AdaBoost � ���� ���
 ���� ����
Gentle AdaBoost � ���� ���� ���� ����
Discrete AdaBoost � ���� ��	
 ���� ����

LogitBoost � ���
 ���	 ���� ����
Real AdaBoost � ���	 ���� ���� ����
Gentle AdaBoost � ���
 ��� ���	 ����
Discrete AdaBoost � ���� ���� ���� ����

Letter CART error � ����

LogitBoost � ��	� ���� ��	� ���	 ��

Real AdaBoost � ���� ���� ��
� ��	� ���
Gentle AdaBoost � ���
 ���� ��	� ���	 ���
Discrete AdaBoost � ��� ���
 ���
 ���	 ���

LogitBoost � ���	 ���� ��
 �� ��
Real AdaBoost � ��
� ���� �� ��� ��
Gentle AdaBoost � ��
� ���� ��� ���� ��
Discrete AdaBoost � ���� ���	 ��	 ���� ��

��

predictive features� then boosting stumps was optimal since it produced an
approximation with the same structure� Building larger trees increased the
error rate of the �nal model because the resulting approximation involved
high order interactions among the features� The larger trees optimized error
rates of the individual base classi�ers� given the weights at that step� and
even produced lower unweighted error rates in the early stages� But� after
a su�cient number of boosts� the stump based model achieved superior
performance�
More generally� one can consider an expansion of the of the decision

boundary function in a functional ANOVA decomposition �Friedman �

��

B�x�
X
j

fj�xj� �
X
j�k

fjk�xj � xk� �
X
j�k�l

fjkl�xj � xk� xl� � ��� ����

The �rst sum represents the closest function to B�x� that is additive
in the original features� the �rst two represent the closest approximation
involving at most two�feature interactions� the �rst three represent three�
feature interactions� and so on� If B�x� can be accurately approximated
by such an expansion� truncated at low interaction order� then allowing the
base classi�er to produce higher order interactions can reduce the accuracy
of the �nal boosted model� In the context of decision trees� higher order
interactions are produced by deeper trees�
In situations where the true underlying decision boundary function ad�

mits a low order ANOVA decomposition� one can take advantage of this
structure to improve accuracy by restricting the depth of the base deci�
sion trees to be not much larger than the actual interaction order of B�x��
Since this is not likely to be known in advance for any particular problem�
this maximum depth becomes a �meta�parameter� of the procedure to be
estimated by some model selection technique� such as cross�validation�
One can restrict the depth of an induced decision tree by using its stan�

dard pruning procedure� starting from the largest possible tree� but requiring
it to delete enough splits to achieve the desired maximum depth� This can
be computationally wasteful when this depth is small� The time required to
build the tree is proportional to the depth of the largest possible tree be�
fore pruning� Therefore� dramatic computational savings can be achieved by
simply stopping the growing process at the maximum depth� or alternatively
at a maximum number of terminal nodes� The standard heuristic arguments
in favor of growing large trees and then pruning do not apply in the context
of boosting� Shortcomings in any individual tree can be compensated by
trees grown later in the boosting sequence�

��

If a truncation strategy based on number of terminal nodes is to be
employed� it is necessary to de�ne an order in which splitting takes place�
We adopt a �best� �rst� strategy� An optimal split is computed for each
currently terminal node� The node whose split would achieve the greatest
reduction in the tree building criterion is then actually split� This increases
the number of terminal nodes by one� This continues until a maximum num�
ber M of terminal notes is induced� Standard computational tricks can be
employed so that inducing trees in this order requires no more computation
than other orderings commonly used in decision tree induction�
The truncation limit M is applied to all trees in the boosting sequence�

It is thus a meta�parameter of the entire boosting procedure� An optimal
value can be estimated through standard model selection techniques such as
minimizing cross�validated error rate of the �nal boosted model� We refer

Figure �� Coordinate functions for the additive logistic tree obtained by boosting
with stumps� for the two�class nested sphere example from Section ��

to this combination of truncated best��rst trees� with boosting� as �addi�
tive logistic trees� �ALT�� This is the procedure used in all of the simulated
and real examples� One can compare results on the latter �Tables � and ��
to corresponding results reported by Dietterich ��

�� Table �� on common
data sets� Error rates achieved by ALT with very small truncation values
are seen to compare quite favorably with other committee approaches us�
ing much larger trees at each boosting step� Even when error rates are the
same� the computational savings associated with ALT can be quite impor�
tant in data mining contexts where large data sets cause computation time
to become an issue�
Another advantage of low order approximations is model visualization�

In particular� for models additive in the original features ���� � the contri�

��

bution of each feature xj can be viewed as a graph of gj�xj� ���� plotted
against xj� Figure � shows such plots for the ten features of the two�class
nested spheres example of Fig� �� The functions are shown for the �rst class
concentrated near the origin� the corresponding functions for the other class
are the negatives of these functions�
The plots in Fig� � clearly show that the contribution to the log�odds

of each individual feature� for given values of the other features� is approxi�
mately quadratic� except perhaps for the extreme values where there is little
data� They indicate that observations with feature values closer to the ori�
gin have increased odds of being from the �rst class� Their sum is clearly
indicative of the additive quadratic nature of the decision boundary ����
and ��
��
When there are more than two classes plots similar to Fig� � can be

made for each class� and analogously interpreted� Higher order interactions
models are more di�cult to visualize� If there are at most two�feature inter�
actions� the two�variable contributions can be visualized using contour or
perspective mesh plots� Beyond two�feature interactions� visualization tech�
niques are even less e�ective� Even when non�interaction �stump� models
do not achieve the highest accuracy� they can be very useful as descriptive
statistics owing to the interpretability of the resulting model�

	 Weight trimming

In this section we propose a simple idea and show that it can dramatically re�
duce computation for boosted models without sacri�cing accuracy� Despite
its apparent simplicity this approach does not appear to be in common use�
At each boosting iteration there is a distribution of weights over the train�
ing sample� As iterations proceed this distribution tends to become highly
skewed towards smaller weight values� A larger fraction of the training sam�
ple becomes correctly classi�ed with increasing con�dence� thereby receiving
smaller weights� Observations with very low relative weight have little im�
pact on training of the base classi�er� only those that carry the dominant
proportion of the weight mass are in�uential� The fraction of such high
weight observations can become very small in later iterations� This suggests
that at any iteration one can simply delete from the training sample the
large fraction of observations with very low weight without having much
e�ect on the resulting induced classi�er� However� computation is reduced
since it tends to be proportional to the size of the training sample� regardless
of weights�

��

At each boosting iteration� training observations i whose weight wi is
less than a threshold wi � t��� are not used to train the classi�er� We
take the value of t��� to be the �th quantile of the weight distribution
over the training data at the corresponding iteration� That is� only those
observations that carry the fraction ��� of the total weight mass are used for
training� Typically � � ������ ���� so that the data used for training carries
from
� to

 percent of the total weight mass� Note that the weights for
all training observations are recomputed at each iteration� Observations
deleted at a particular iteration may therefore re�enter at later iterations if
their weights subsequently increase relative to other observations�

Figure �� The left panel shows the test error for the letter recognition problem

as a function of iteration number� The black solid curve uses all the training

data� the blue dashed curve uses a subset based on weight thresholding� The

right panel shows the percent of training data used for both approaches�

Figure � �left panel� shows test�error rate as a function of iteration num�
ber for the letter recognition problem described in Section �� here using
Gentle AdaBoost and eight node trees as the base classi�er� Two error rate
curves are shown� The black solid one represents using the full training
sample at each iteration �� ��� whereas the blue dashed curve represents
the corresponding error rate for � ���� The two curves track each other

��

very closely especially at the later iterations� Figure � �right panel� shows
the corresponding fraction of observations used to train the base classi�er as
a function of iteration number� Here the two curves are not similar� With
� ��� the number of observations used for training drops very rapidly
reaching roughly � of the total at �� iterations� By �� iterations it is down
to about � where it stays throughout the rest of the boosting procedure�
Thus� computation is reduced by over a factor of �� with no apparent loss
in classi�cation accuracy� The reason why sample size in this case decreases
for � � after ��� iterations� is that if all of the observations in a particular
class are classi�ed correctly with very high con�dence �Fk
 �� � log�N��
training for that class stops� and continues only for the remaining classes�
At ��� iterations� �� classes remained of the original �� classes�
The last column labeled fraction in Table � shows the average fraction

of observations used in training the base classi�ers over the ��� iterations�
for all boosting methods and tree sizes� For eight�node trees� all methods
behave as shown in Fig� �� With stumps� LogitBoost uses considerably less
data than the others and is thereby correspondingly faster�
This is a genuine property of LogitBoost that sometimes gives it an ad�

vantage with weight trimming� Unlike the other methods� the LogitBoost
weights wi pi�� � pi� do not in any way involve the class outputs yi�
they simply measure nearness to the currently estimated decision boundary
FM �x� �� Discarding small weights thus retains only those training obser�
vations that are estimated to be close to the boundary� For the other three
procedures the weight is monotone in �yiFM �xi�� This gives highest weight
to currently misclassi�ed training observations� especially those far from the
boundary� If after trimming the fraction of observations remaining is less
than the error rate� the subsample passed to the base learner will be highly
unbalanced containing very few correctly classi�ed observations� This imbal�
ance seems to inhibit learning� No such imbalance occurs with LogitBoost
since near the decision boundary� correctly and misclassi�ed observations
appear in roughly equal numbers�
As this example illustrates� very large reductions in computation for

boosting can be achieved by this simple trick� A variety of other examples
�not shown� exhibit similar behavior with all boosting methods� Note that
other committee approaches to classi�cation such as bagging �Breiman �

��
and randomized trees �Dietterich �

��� while admitting parallel implemen�
tations� cannot take advantage of this approach to reduce computation�

�

 Concluding remarks

In order to understand a learning procedure statistically it is necessary to
identify two important aspects� its structural model and its error model�
The former is most important since it determines the function �concept�
space of the approximator� thereby characterizing the class of concepts that
can be accurately approximated �learned� with it� The error model speci�es
the distribution of random departures of sampled data from the structural
model� It thereby de�nes the criterion to be optimized in the estimation of
the structural model�
We have shown that the structural model for boosting is additive on the

logistic scale with the base �weak� learner as basis elements� This under�
standing alone explains many of the properties of boosting� It is no surprise
that a large number of such �jointly optimized� basis elements de�nes a
much richer class of learners than one of them alone� It reveals that in the
context of boosting all base �weak� learners are not equivalent� and there
is no universally best choice over all situations� As illustrated in Section �
the base learners need to be chosen so that the resulting additive expansion
matches the particular decision boundary encountered� Even in the limited
context of boosting decision trees the interaction order� as characterized by
the number of terminal nodes� needs to be chosen with care� Purely ad�
ditive models induced by decision stumps are sometimes� but not always�
the best� However� we conjecture that boundaries involving very high order
interactions are likely to be encountered rarely in practice� This motivates
our additive logistic trees �ALT� procedure described in Section ��
The error model for two�class boosting is the obvious one for binary

variables� namely the Bernoulli distribution� We show that the AdaBoost
procedures maximize a criterion that is closely related to expected log�
Bernoulli likelihood� having the identical solution in the distributional �L��
limit of in�nite data� We derived a more direct procedure for maximizing
this log�likelihood �LogitBoost� and show that it exhibits properties nearly
identical to those of Real AdaBoost�
In the multi�class case� the AdaBoost procedures maximize a separate

Bernoulli likelihood for each class versus the others� This is a natural choice
and is especially appropriate when observations can belong to more than
one class �Schapire 	 Singer �

��� In the more usual setting of a unique
class label for each observation� the symmetric multinomial distribution is
a more appropriate error model� We develop a multi�class LogitBoost pro�
cedure that maximizes the corresponding log�likelihood by quasi�Newton
stepping� We show through simulated examples that there exist settings

��

where this approach leads to superior performance� although none of these
situations seems to have been encountered in the set of real data examples
used for illustration� the performance of both approaches had quite similar
performance over these examples�
The concepts developed in this paper suggest that there is very little� if

any� connection between �deterministic� weighted boosting and other �ran�
domized� ensemble methods such as bagging �Breiman �

�� and random�
ized trees �Dietterich �

��� In the language least squares regression� the
latter are purely �variance� reducing procedures intended to mitigate insta�
bility� especially that associated with �large� decision trees� Boosting on the
other hand seems fundamentally di�erent� It appears to be a purely �bi�
as� reducing procedure� intended to increase the �exibility of stable �highly
biased� weak learners by incorporating them in a jointly �tted additive ex�
pansion�
The distinction becomes less clear when boosting is implemented by �nite

random importance sampling instead of weights� The advantages"disadvantages
of introducing randomization into boosting by drawing �nite samples is not
clear� If there turns out to be an advantage with randomization in some sit�
uations� then the degree of randomization� as re�ected by the sample size�
is an open question� It is not obvious that the common choice of using the
size of the original training sample is optimal in all �or any� situations�
One fascinating issue not covered in this paper is the fact that boosting�

whatever �avor� seldom seems to over�t� no matter how many terms are
included in the additive expansion� Some possible explanations are�

� As the LogitBoost iterations proceed� the overall impact of changes in�
troduced by fm�x� reduces� Only observations with appreciable weight
determine the new functions � those near the decision boundary� By
de�nition these observations have F �x� near zero and can be a�ected
by changes� while those in pure regions have large values of jF �x�j are
are less likely to be modi�ed�

� The stage�wise nature of the boosting algorithms do not allow the
full collection of parameters to be jointly �t� and thus have far lower
variance than the full parameterization might suggest� In the Machine�
Learning literature this is explained in terms of VC dimension of the
ensemble compared to that of each weak learner�

� Classi�ers are hurt less by over�tting than other function estimators
�e�g� the famous risk bound of the ��nearest�neighbor classi�er �Cover
	 Hart �
�����

��

Whatever the explanation� the empirical evidence is strong� the introduc�
tion of boosting by Schapire� Freund and colleagues has brought an exciting
and important set of new ideas to the table�

Acknowledgements

We thank Andreas Buja for alerting us to the recent work on text classi�ca�
tion at AT	T laboratories� and Bogdan Popescu for illuminating discussions
on PAC learning theory� Jerome Friedman was partially supported by the
Department of Energy under contract number DE�AC�����SF����� and by
grant DMS�
������ of the National Science Foundation� Trevor Hastie was
partially supported by grants DMS�
����
� and DMS�
������ from the Na�
tional Science Foundation� and grant ROI�CA��������� from the National
Institutes of Health� Robert Tibshirani was supported by the Natural Sci�
ences and Engineering Research Council of Canada�

References

Breiman� L� ��

��� %Bagging predictors#� Machine Learning
� �

Breiman� L� ��

��� Prediction games and arcing algorithms� Technical Re�
port Technical Report ���� Statistics Department� University of Cali�
fornia� Berkeley� Submitted to Neural Computing�

Breiman� L�� Friedman� J�� Olshen� R� 	 Stone� C� ��
���� Classi�cation
and Regression Trees� Wadsworth� Belmont� California�

Buja� A�� Hastie� T� 	 Tibshirani� R� ��
�
�� %Linear smoothers and additive
models �with discussion�#� Annals of Statistics ��� ��������

Cover� T� 	 Hart� P� ��
���� %Nearest neighbor pattern classi�cation#� Proc�
IEEE Trans� Inform� Theory pp� ������

Dietterich� T� ��

��� %An experimental comparison of three methods for
constructing ensembles of decision trees� bagging� boosting� and ran�
domization#� Machine Learning �� �����

Freund� Y� ��

��� %Boosting a weak learning algorithm by majority#� Infor�
mation and Computation �
����� ��������

Freund� Y� 	 Schapire� R� ��

��� Experiments with a new boosting algo�
rithm� in %Machine Learning� Proceedings of the Thirteenth Interna�
tional Conference#� pp� ��������

��

Friedman� J� ��

��� %Multivariate adaptive regression splines �with discus�
sion�#� Annals of Statistics ������ ������

Friedman� J� ��

��� Another approach to polychotomous classi�cation�
Technical report� Stanford University�

Friedman� J� 	 Stuetzle� W� ��
���� %Projection pursuit regression#� Journal
of the American Statistical Association ��� ��������

Hastie� T� 	 Tibshirani� R� ��

��� Generalized Additive Models� Chapman
and Hall�

Hastie� T� 	 Tibshirani� R� ��

��� %Classi�cation by pairwise coupling#�
Annals of Statistics � �to appear��

Hastie� T�� Tibshirani� R� 	 Buja� A� ��

��� %Flexible discriminant analysis
by optimal scoring#� Journal of the American Statistical Association

	�� ����������

Holte� R� ��

��� %Very simple classi�cation rules perform well on most com�
monly used datasets#� Machine Learning ��� ���
��

Kearns� M� 	 Vazirani� U� ��

��� An Introduction to Computational Learn�
ing Theory� MIT Press�

Mallat� S� 	 Zhang� Z� ��

��� %Matching pursuits with time�frequency dic�
tionaries#� IEEE Transactions on Signal Processing ��� ��
�������

McCullagh� P� 	 Nelder� J� ��
�
�� Generalized Linear Models� Chapman
and Hall�

Schapire� R� ��

��� %The strength of weak learnability#� Machine Learning

����� �
������

Schapire� R� 	 Singer� Y� ��

��� Improved boosting algorithms using
con�dence�rated predictions� in %Proceedings of the Eleventh Annual
Conference on Computational Learning Theory#�

��

