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Abstract—Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotation-

off-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general

applications since face images are seldom upright and frontal unless they are taken cooperatively. In this paper, we propose a series of

innovative methods to construct a high-performance rotation invariant multiview face detector, including the Width-First-Search (WFS)

tree detector structure, the Vector Boosting algorithm for learning vector-output strong classifiers, the domain-partition-based weak

learning method, the sparse feature in granular space, and the heuristic search for sparse feature selection. As a result of that, our

multiview face detector achieves low computational complexity, broad detection scope, and high detection accuracy on both standard

testing sets and real-life images.

Index Terms—Pattern classification, AdaBoost, vector boosting, granular feature, rotation invariant, face detection.

Ç

1 INTRODUCTION

IN the past several decades, we have witnessed a burst of
activities in applying robust computer vision systems for

Human-Computer-Interaction (HCI). The face, which con-
tains very important biological information of human being,
is a very interesting object in images and videos. Naturally,
face detection, which locates face regions at the very
beginning, is considered as a fundamental part of any
automatic face processing system. Also, it is a challenging
work since the difficulties of developing a robust face detector
arise from not only the diversities in the nature of human faces
(e.g., the variability in size, location, pose, orientation, and
expression) but also the changes of environment conditions
(e.g., illumination, exposure, occlusion, etc.) [1].

Generally speaking, there are mainly two methodologies
for face detection task: one is knowledge-based and the other
is learning-based. The knowledge-based methodology at-
tempts to depict our prior knowledge about the face pattern
with some explicit rules, such as the intensity of faces, elliptic
face contour, and equilateral triangle relation between eyes
and mouth [2], [3]. Unfortunately, it is impossible to translate
allhumanknowledgeexactly intothoserequiredexplicit rules
that could be accurately comprehended by computers. As a
result, methods of this type often perform poorly when the
rules mismatch unusual faces or match too many background
patches. On the other hand, the learning-based methodology,
of which the representatives include Osuna et al.’s SVM

method [4], Rowley et al.’s ANN method [5] and Schneider-
man and Kanade’s Bayesian-rule method [6], tries to model
the face pattern with distribution functions or discriminant
functions under the probabilistic framework. Methods of
this kind are not limited by our describable knowledge on
faces but determined by the capability of learning model and
training samples, hence being able to deal with more complex
cases compared with the knowledge-based approach. Speci-
fically, the breakthrough of learning-based methodology
happened in 2001 when Viola and Jones proposed a novel
boosted cascade framework [7]. This work showed amazing
real-time speed and high detection accuracy. People usually
attribute the achievements of this work to the fast calculated
Haar-like features via the integral image and the cascade
structure of classifiers learned by AdaBoost. Here, for further
analysis, we decompose their framework into four levels from
top to bottom as shown in Table 1.

Based on the premise that a significant disparity of
occurrence rate between faces and background region in
common images exists, Viola and Jones adopted an asym-
metric cascade model that connected a series of strong
classifiers with AND logic operators and each classifier made
unbalanced decisions for face and nonface categories. Conse-
quently, most of the background region could be rejected
rapidly by the first several classifiers with very little computa-
tion. To learn such strong classifiers, they employed the
AdaBoost algorithm [8], which could efficiently combine
many weak classifiers, acting as a feature selection mechan-
ism, and guarantee a strong generalization bound for final
classification. Finally, on the bottom level, they enumerated a
largenumberofHaar-likefeaturesbasedontheintegral image
and associated them with corresponding stump functions to
form a redundant weak classifier pool, which provided
fundamental discriminability for the AdaBoost algorithm.
All theseactivefactorswereorganizedeffectivelybyViolaand
Jones to yield their distinguished work on face detection [7].

Although the frontal face detection seems to be mature so
far, it is often inadequate to meet the rigorous requirements of
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general applications (e.g., visual surveillance system, digital
equipments that need autofocus on faces, etc.) as human faces
in real-life images are seldom upright and frontal. Naturally,
multiview face detection and rotation invariant face detection
are defined to handle faces with ROP and RIP angles,
respectively, (Fig. 1). However, both are more formidable
problems because of the extension of detectable face range. In
particular, the multiview face detection is more complicated
than rotation invariant one since compared with frontal faces,
profile faces tend to be less informative, more diverse, and
more sensitive to noise. Moreover, as shown in Fig. 1, the
ubiquitous concomitance of ROP and RIP of faces further
compounds the difficulties to learn a face detector.

In recent years, there have been many works that
developed new methods to enhance Viola and Jones’ frame-
work in some aspect. For instance, the detector structure has
been extended to Li et al.’s pyramid model [9], Jones and
Viola’s decision tree [10], and Huang et al.’s Width-First-
Search (WFS) tree [11] in order to cater to the multiview face
detection, while Xiao et al.’s boosting chain [12] and Wu et al.’s
nesting cascade model [13] transformed Viola and Jones’
loose cascade model [7] into a more compact one. On the level
of strong classifier learning, the original AdaBoost algorithm,
which adopts binary-output predictors, was replaced by the
superior Real AdaBoost [14] and Gentle Boost [15] that
employ confidence-rated predictors. Moreover, a finer parti-
tion of the feature spacewas adoptedto alleviate the weakness
of stump function, e.g., Liu and Shum’s histogram method
[16], Wu et al.’s piece-wise function [13], and Mita et al.’s joint
binarizations of Haar-like feature [17]. As for the level of
feature space, there have been works of Lienhart and Maydt’s
extended Haar-like feature set [18], Liu and Shum’s Kullback-
Leibler features [16], Baluja’s pair-wise points [19], Wang and
Ji’s RNDA algorithm [20], and Abramson and Steux’s control
point [21]. More details about these works can be found in the
following sections, where comparisons are made.

In this paper, we aim at constructing a fast and accurate
rotation invariant multiview face detector, which is capable of
detecting faces with pose changes of�=þ 90� ROP (Yaw) and
360� RIP (Roll). Besides, the tolerance to �=þ 30� up-down
(Pitch) change is combined to conform to surveillance
environment. Our main contributions include the Width-
First-Search (WFS) tree structure, the Vector Boosting
algorithm, the sparse features in granular space, and the
weak learner based on the heuristic search method. The
remainder of this paper is organized as follows: Section 2
focuses on the comparison of existed detector structures and
then introduces the WFS tree structure, Section 3 describes the
Vector Boosting algorithm preceded by a brief review of the
classical AdaBoost algorithm, Section 4 first discusses the
effects of different types of features, then proposes sparse
features in granular space and finally embodies the weak

learner that adopts heuristic search method to train weak
hypotheses for Vector Boosting, Section 5 shows related
experiment results, and Section 6 gives the conclusion.

2 WIDTH-FIRST-SEARCH TREE STRUCTURE

2.1 Related Works

Viola and Jones’ cascade structure [7], as shown in Fig. 2a, has
been proven very efficient for dealing with rare event
detection problems such as face detection because of its
asymmetric decision-making process. However, such a
succinct structure does not have enough capacity to handle
multiview or rotation invariant face detection, both of which
involve two distinct tasks: face detection and pose estimation.
Face detection aims to distinguish faces from nonfaces, so it is
inclined to utilize similarities between faces of different poses
for rapid rejection of nonfaces; on the contrary, pose
estimation is to identify the probable pose of a pattern no
matter whether it is a face or not, so it seeks for diversities
between different face poses but ignores the nonfaces.

Unifying or separating these two tasks will lead to different
approaches. Osadchy et al.’s manifold method [22] could be
taken as an example of the unified framework. A convolu-
tional network was trained to map the face patterns to points
on a face manifold, whose parameters indicated the pose
variation, while nonface points were kept far away from the
manifold. In this way, minimizing the energy function
defined on the manifold was essentially a synchronous
procedure to handle both tasks of multiview face detection.
On the other hand, for the separated framework, the entire
face range is usually divided into several individual cate-
gories according to their RIP or ROP angles. Such separated
framework is also known as the view-based approach since
each category usually refers to some certain view of faces.

The most straightforward way to implement a view-based
approach was Wu et al.’s work [13], which trained different
cascades individually for each view and used them in parallel
as a whole like Fig. 2b. Though such a simple parallel-cascade
strategy could achieve rather good performance in multiview
face detection, the unexploited correlation between faces of
different views suggested a large capacity of improvement
through a better designed detector structure.

One way for improvement is the coarse-to-fine strategy. In
[23], Fleuret and Geman employed a scalar tree detector
(Fig. 2c) to adapt to large variation of location and scale of
faces, while Li et al. [9] used pyramid to handle the great
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TABLE 1
Hierarchy of Viola and Jones’ Detector

Fig. 1. Faces of RIP, ROP, respectively, and concomitance of both RIP

and ROP. In this paper, multiview means yaw varies from �90� to þ90�,
including composite pitch varying from �30� to þ30�, while rotation

invariant denotes 360� rolling. Pitch change is omitted in the right figure.



change of appearance in MVFD (Fig. 2d). Though their
structures were of a little difference, they both divided the
complicated entire face space into finer and finer subspaces.
In higher levels of their structure, neighboring views were
assigned to a single node and, thus, corresponding faces were
treated as one ensemble positive class so as to be separated
from the nonfaces. This convenient combination did help to
improve the efficiency and reusability of extracted features
due to the similarities exist in faces of neighboring views,
whereas neglected the inherent diversities between them
(though they were neighboring views). As a result, a sample
that had been identified as a face by a node would have to be
processed by its every child-node, since it had no discrimina-
tion in corresponding views. In other words, the decision was
uniform for child-nodes: either all active or all inactive. Such
an all-pass route selection strategy considerably delayed the
entire face identification procedure of input pattern.

On the contrary, another way for improvement, the
decision tree method [10], put emphasis upon the diversities
between different views. A decision tree was trained as a pose
estimator to tell which view the input pattern belonged to,
which was followed by individually learned cascade detec-
tors for each view, respectively (Fig. 2e). A similar “pose
estimation + detection” approach can be found in [29], which
employed the support vector machine rather than the
decision tree. With the imperative judgments made by the
pose estimator, original complicated MVFD problem was
reduced to several simple individual-views. Nevertheless,
the pose estimation results were somewhat unstable, which

weakened the generalization ability of the whole system. The
instability should partly be attributed to the fact that face pose
change was a continuous process rather than a discrete one. In
fact, there must be a large number of face samples lying close
to those artificially defined category boundaries, and,
intuitively, the training of classifier with these “hard”
boundaries often suffered from these ambiguous samples.
From another point of view, fast and robust pose estimation
applied before face detection is probably a problem that is
even more difficult than the face detection itself.

To sum up, as mentioned at the beginning of this section,
pose estimation focuses on the diversities of different views
whereas face detection requires finding the similarities of
different views to reject nonfaces as quickly as possible. Such
conflict eventually leads to the dilemma that at the beginning
of view-based approach, either treating all faces as a single
class (the pyramid approach) or different individual classes
(the decision tree approach) is unsatisfactory for the MVFD
problem. Fortunately, a moderate approach, the Width-First-
Search (WFS) tree, could be employed to harmonize the two
tasks (pose estimation and face detection), balancing both
aspects between different views (diversity and similarity).

2.2 WFS Tree-Structured Detector

In our approach to the rotation invariant multiview face
detector described in Section 1, first a multiview face detector
is constructed which covers the upright quarter of Roll and
full Yaw, and then three more detectors are obtained by
rotating the upright one by 90�, 180�, and 270� (Fig. 3). Such
reduction from one rotation invariant detector to four
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Fig. 2. Illustrations of different detector structures. (a) is Viola and Jones’ original cascade structure for frontal face detection. Adopting view-based
strategy to cope with the MVFD problem, several detector structures are developed, including (b) Wu et al.’s parallel cascade [13], (c) Fleuret and
Geman’s scalar tree [23], (d) Li et al.’s pyramid [9], (e) Jones and Viola’s decision tree [10], and (f) Huang et al.’s Width-First-Search (WFS) tree [11].
Each leaf node in (d), (e), and (f) is actually an individual cascade as (a). Special attention should be paid to the difference among (c) scalar tree,
(e) decision tree, and (f) WFS tree. Although they have got the similar tree-structures, their decision-making processes are distinct. Take the root
node that splits into three child-nodes for example, the selection of pass route is uniform in scalar tree, exclusive in decision tree, and nonexclusive in
WFS tree. Moreover, the scalar tree and WFS tree are able to make rejection decision at not only the leaf nodes but also the nonleaf ones. More
details can be found in the following section.



quartered ones makes our system highly scalable (e.g., in
applications where inverted faces are rarely encountered, the
rotated detectors can be shut down easily). We further divide
the upright quartered face space into 15 basic views
according to Yaw and Roll variance (Fig. 4), and then
empirically organize them as a tree illustrated in Fig. 5. The
root node comprises all 15 views, which covers the entire
quartered face space. In the coming two layers, according to
Yaw angle, the root branching node is gradually partitioned
into five disjointed ones. At last, in the bottom layer, these
five branching nodes are split into 15 leaves according to
Roll, attaining the finest 15 views. In such a tree-structured
detector, an input pattern is identified as a face if and only if
it passes at least one route from the root node to some certain
leaf node. Therefore, the Width-First-Search (WFS) strategy
is the right way to access every promising node of pass
routes, whose pseudocode is shown as Fig. 6. Notice that for
patterns that correlate with more than one view, the post
pose estimation judges the final result according to the
confidence of each view.

An extraordinary characteristic of the WFS strategy in
Fig. 6 is the determinative vector GðxÞ, each component of
which decides whether the input pattern should be sent to the
corresponding child-node or not. Compared with other
related works listed in the last section, this determinative
vector is much more versatile, neither restricted to be
exclusive as Jones and Viola’s decision tree [10] nor to be
uniform as Fleuret and Geman’s scalar tree [23] and Li et al.’s
pyramid [9]. For instance, in the root branching node of Fig. 5,
an input pattern making GðxÞ ¼ ð1; 1; 0Þ indicates that it may
be a left profile face or a frontal one but cannot be a right
profile one, so in the following layer, it will be sent only to the
left node and the middle one. Another pattern that has
GðxÞ ¼ ð0; 0; 0Þ is classified as outlying from any view of faces
and, thus, will be rejected immediately. In fact, faces of
different views are still considered as dissimilar categories in

branching nodes of the WFS tree. However, these categories
are not exclusive (e.g., as in the decision tree) but compatible
with each other, meanwhile taking nonfaces as their collective
negative class. In this way, the WFS tree not only utilizes the
similarities between faces of different views to recognize
nonfaces, but also reserves their diversities for further
separation. Again take the root branching node in Fig. 5 for
example, Table 2 compares different approaches at the aspect
of pass route selection. The pose estimation made by the
decision tree [10] is equivalent to a 3D determinative vector
with only one nonzero component, and the pyramid structure
[9], as well as the tree structure with scalar outputs [23], can
only give a determinative vector with either all-zero
components or all-one components. As for the WFS tree, it
has the most diverse selections among all these approaches.
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Fig. 3. Reduction of the rotation invariant multiview face detection. In

fact, sparse features in the original multiview face detector are rotated

by 90�, 180�, and 270�, which is equivalent to rotating the input image

but more efficient to compute during detection.

Fig. 4. View definition in the upright multiview face detector. The
detector covers the face range of Roll from �45� � þ45� and Yaw from
�90� � þ90�, which is partitioned into 3� 5 nonoverlapped views as
shown above. Additional tolerance to Pitch variance from �30� � þ30�

is embedded into each view.

Fig. 5. Coarse-to-fine partition of face range in the tree-structured
detector. The node with a red circle is a branching node, whose face
range is the union of its child-nodes’. Among them, the root node
contains all 15 views that are figured in the leaf nodes, of which the tilted
10 views are not displayed for clarity. The similar omissions are adopted
for other branching nodes.

Fig. 6. Width-First-Search process in the tree-structured detector to

identify an input pattern whether it is a face or not.



In conclusion, with the help of determinative vectors and
nonexclusive pass route selection mechanism, the WFS tree
structured detector is able to make moderate decision for
the unidentified input pattern: neither too aggressive as
decision tree nor excessively cautious as pyramid or scalar
tree. Capabilities of different approaches in branching node
(Table 2) explain the advantage of WFS tree in the flexibility
of decision-making process.

3 VECTOR BOOSTING ALGORITHM

The Vector Boosting algorithm is developed to learn strong
classifiers which can output the determinative vector GðxÞ
of the WFS tree structure. Before elaborating on this novel
method, we give a brief review on its origin—AdaBoost.

3.1 AdaBoost Algorithm

Boosting algorithm [24], which linearly combines a series of
weak hypotheses to yield a superior classifier, has been
regarded as one of the most significant developments in the
pattern classification field during the past decade. It
essentially employs an additive model to minimize the loss
function of classification in a regressive manner. Conse-
quently, different loss functions lead to different boosting
algorithms. For example, AdaBoost [14], [24] and Gentle
Boost [15] take exponential loss function as the optimization
criterion, while LogitBoost [15] uses Bernoulli log-likelihood
function. Moreover, BrownBoost [25] adopts a much more
sophisticated loss function to enhance the robustness against
outliers (noises) of training data. The classical AdaBoost
algorithm can be formalized as shown in Fig. 7.

It is easy to verify that in the Adaboost algorithm, the
weight of a sample satisfies

wti ¼ w0
i exp �yiFtðxiÞð Þ

Yt
k¼1

Zk;

,
ð1Þ

where yiFtðxiÞ is usually defined as the margin of sample
ðxi; yiÞ w:r:t FtðxÞ. This weight-updating mechanism for
samples is the kernel of AdaBoost, which makes the
optimization procedure always emphasize those incorrectly
classified samples by increasing their weights. By this means,
AdaBoost manages to minimize the expectation of exponen-
tial loss of training samples

Loss F ðxÞð Þ ¼
Xn
i¼1

w0
i exp �yiF ðxiÞð Þ ¼ E e�yF ðxÞ

� �
: ð2Þ

Essentially, (2) has a close relationship with the training
error of the final classifier HðxÞ. It has been proved that the
upper bound of training error is held by the loss defined in
(2), which is equal to the product of every normalization
factor [14]:

1

n

Xn
i¼1

yi 6¼ HðxiÞ½ �½ � �
Xn
i¼1

w0
i exp �yiF ðxiÞð Þ ¼

YT
t¼1

Zt: ð3Þ

Therefore, AdaBoost is actually an iterative procedure to
greedily reduce the upper bound of training error. Although
the generalization bound given in [14] is often too loose to
make sense in practice, this algorithm has shown satisfactory
performance in many practical problems.

3.2 Vector Boosting Algorithm

As extensions of the AdaBoost algorithm, AdaBoost.MH,
AdaBoost.MO, and AdaBoost.MR [14] deal with multiclass
problems with different definitions of loss functions. Ada-
Boost.MH assigns a label set for each sample and adopts the
exponential loss of symmetric difference between the label set
and the output of the strong classifier, and AdaBoost.MO
makes use of the output code technique to generalize
AdaBoost.MH. On the other hand, AdaBoost.MR treats the
multiclass problem as a ranking problem and uses ranking
loss in expectation that the correct labels could receive the
highest ranks. Although these multiclass boosting algorithms
have been successfully applied in many problems, they are
still not directly applicable to the problem corresponding to
branching nodes of the WFS tree, in which faces of different
views are neither coherent nor disperse but nonexclusive.
Therefore, the Vector Boosting algorithm, as a unified
boosting framework, is developed for the learning of
branching nodes, which manipulates different kinds of
multiclass problems by means of the vectorization of
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TABLE 2
Comparison of Different Approaches on

Determinative Vectors for Pass Route Selection

Fig. 7. A generalized version of the AdaBoost algorithm for two-class

problems.



hypothesis output space and the flexible loss function defined
by intrinsic projection vectors.

3.2.1 Convex Objective Region and Exponential Loss

Function

The Vector Boosting algorithm originates from the motiva-
tion of decomposing a complicated multiclass problem into
a set of simple ones, making them share the same features
and calculating their respective outputs. For this purpose, it
assigns different categories with different convex objective
regions in the vector hypothesis output space IRk so as to
make them distinguishable. These convex objective regions
are defined as the intersection of one or more half spaces in
homogeneous coordinates

C ¼ ~z : 8ev 2 V ; ~z � ev 	 0f g
~z ¼ ðz; 1Þ; ev ¼ ðv; bÞ; z 2 IRk; V ¼ fev1; . . . ; evmg: ð4Þ

The extended vector ev, composed of normal vector v and
offset b, specifies a half space that supports the convex
objective region C. We name it intrinsic projection vector as it
plays an important role in the loss function introduced later.
The first column of Fig. 8 gives a naive example to show the
usage of intrinsic projection vectors and the consequent
convex objective regions. Note that it is unnecessary to
require different objective regions to be nonoverlapped or
have their union cover the entire hypothesis output space.
Apparently, a hypothesis output FðxÞ lies in the half space
specified by an intrinsic projection vector ev if their inner
product is nonnegative. So, the margin of a hypothesis output
with regard to an intrinsic projection vector is defined as

margin FðxÞ; evð Þ ¼ eFðxÞ � ev; ð5Þ

where eFðxÞ ¼ ðFðxÞ; 1Þ is the extended hypothesis output in

homogeneous coordinate. Furthermore, a hypothesis output

lies in a convex objective region if and only if its margin with

regard to every intrinsic projection vector is nonnegative.

Ideally, a perfectly learned hypothesis maps every input

pattern onto its corresponding objective region. Therefore,

enlightened by the exponential loss adopted in AdaBoost

algorithm, to penalize input patterns who have not been

mapped onto the correct objective regions, the loss function in

the Vector Boosting algorithm is defined as follows:

Loss FðxÞð Þ ¼E
X
evj2V ðxÞ exp �margin FðxÞ; evj� �� �0@ 1A

¼E
X
evj2V ðxÞ exp �eFðxÞ � evj� �0@ 1A;

ð6Þ

where V ðxÞis the intrinsic projection vector set of pattern x.

The second and the third columns in Fig. 8 draw the loss

function of each class individually. In the training process,

the expectation in (6) becomes the sum of losses absorbed

from training samples as follows:

LossðFðxÞÞ ¼ 1

n

Xn
i¼1

X
evj2V ðxiÞ exp �evj � eFðxiÞh i8<:

9=;; ð7Þ

where n is the number of training samples. It is easy to find

that a training sample with q intrinsic projection vectors is

equivalent to q training samples each with one intrinsic

projection vector: ðxi; fev1; . . . ; evqgÞ Ðeq fðxi; ev1Þ; . . . ; ðxi; evqÞg.
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Fig. 8. A naive example of a three-class problem. Three rows correspond to three classes, respectively. The first column shows their different
objective regions, which are convex sets and defined by intrinsic projection vectors (white arrows). According to (4), CA ¼ fðx; yÞ; x 	 0g,
CB ¼ fðx; yÞ; y 	 0g, and CC ¼ fðx; yÞ : x � 0; y � 0g. The second and the third columns draw their losses in 2D output space for each category by
surface and contour, which are expð�xÞ for Class A, expð�yÞ for Class B, and expðxÞ þ expðyÞ for Class C. The fourth and the fifth columns draw their
posterior probabilities also by surface and contour, which are employed to explicitly calculate the decision boundaries in Section 3.2.4.



Based on this observation, in practice a training sample with

more than one intrinsic projection vector will be expanded

into a set of samples each with only one intrinsic projection

vector. Without loss of generality, throughout the formaliza-

tion of optimization procedure in the next section, we employ

a minified loss function based on the expanded training

samples as

dLossðFðxÞÞ ¼ 1

m

Xm
i¼1

exp �evi � eFðxiÞ� �
¼

n

m
� 1

n

Xm
i¼1

exp �evi � eFðxiÞ� �
¼ n

m
LossðFðxÞÞ; n � m;

ð8Þ

where n is the number of original training samples while m
is the number of expanded ones. As soon as the training
samples and their intrinsic projection vectors are given, the
minification n=m is determined. Therefore, using the
minified loss function in (8) instead of the original one in
(7) will make no difference on the final optimization results.

3.2.2 Optimization Procedure

Like other boosting algorithms, the Vector Boosting em-
ploys an additive model to minimize the loss function
defined in the previous section. Suppose a strong hypothesis
FðxÞ has been obtained in the additive model, the next step
is to learn an optimal weak hypothesis fðxÞ to add in.
According to the minified loss function in (8), the overall
training loss turns into

dLoss FðxÞ þ fðxÞð Þ ¼ 1

m

Xm
i¼1

exp � evi � eFðxiÞ þ vi � fðxiÞ
� �h i

¼
Xm
i¼1

e�evi�eFðxiÞ
m

exp �vi � fðxiÞ½ � /
Xm
i¼1

wi exp �vi � fðxiÞ½ �;

ð9Þ

where evj ¼ ðvj; bjÞ and wi / e�evi�eFðxiÞ=m (wi is the
precalculated weight for xi). This equation indicates that
the loss absorbed from xi by FðxÞ actually works as a
prior weight of the sample during the optimization of
the new weak hypothesis fðxÞ. Thus, the optimal weak
hypothesis should be

f
ðxÞ ¼ arg min
fðxÞ

Loss FðxÞ þ fðxÞð Þð Þ

¼ arg min
fðxÞ

Xm
i¼1

wi exp �vi � fðxiÞð Þ
( )

:
ð10Þ

This is indeed a weight-updating mechanism similar to other
boosting algorithms. In this way, the Vector Boosting can be
formalized as shown in Fig. 9. Notice that weights of training

samples are always normalized to be a probability, even for
w0 initialized at the very beginning before any weak
hypothesis is adopted. As the initial hypothesis output

F0ðxÞ is zero, for any sample ðxi; eviÞ, its prior probability at
the first round is determined only by the offset bi as

w0
i / exp �evi � eF0ðxiÞ

� �
¼ e�ðvi;biÞ�ð0;...;0;1Þ ¼ e�bi ; ð11Þ

which is distinct from the classical AdaBoost algorithm [14].

3.2.3 Bound of Training Error

From the view of the defined objective regions, a training

sample ðxi; !iÞ is correctly classified by FðxÞ if and only if

FðxiÞ 2 Cð!iÞ, where Cð!iÞ is the objective region of

category !i. Here, we adopt a characteristic function

Bðxi; !iÞ ¼ 0; if 8evij 2 V ð!iÞ; eFðxiÞ � evij 	 0
1; else;

�
ð12Þ

where V ð!iÞ is the projection vector set that defines Cð!iÞ.
Then, the training error of FðxÞ is

Perror ¼
1

n

Xn
i¼1

FðxiÞ 62 Cð!iÞ½ �½ � ¼ 1

n

Xn
i¼1

Bðxi; !iÞ: ð13Þ

Since Bðxi; !iÞ �
Pevij2V ð!iÞ expð�eFðxiÞ � evijÞ, the training

error in (13) has an upper bound that

Perror �
1

n

Xn
i¼1

X
evij2V ð!iÞ exp �eFðxiÞ � evij� �8<:

9=; ¼ Loss FðxÞð Þ:

ð14Þ

The equation on the right side holds due to the definition of

training loss in (7).
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Fig. 9. k-dimensional Vector Boosting algorithm.



On the other hand, after the T th round of boosting
procedure, sample weights should satisfy

1 ¼
Xm
i¼1

wTi ¼
Xm
i¼1

wT�1
i exp �vi � fT ðxiÞð Þ

ZT

¼
Xm
i¼1

w0
i

YT
j¼1

exp �vi � f jðxiÞ
� �

Zj
¼

Pm
i¼1

exp �evi � eFT ðxiÞ
� �
QT
j¼0

Zj

:

ð15Þ

Associating it with (8), we have

YT
j¼0

Zj ¼
Xm
i¼1

exp �evi � eFT ðxiÞ
� �

¼m� dLoss FT ðxÞð Þ ¼ n� Loss FT ðxÞð Þ:

ð16Þ

Using (16) to replace the right part of (14), we have:

Perror �
1

n

YT
j¼0

Zj: ð17Þ

Hence, the training error of Vector Boosting is bounded
by the product of every normalization factor. Like other
boosting algorithms, the Vector Boosting algorithm can
train a strong classifier with low training error by greedily
minimizing the normalization factor Zt of each round.

3.2.4 Decision Boundary

Fig. 10 illustrates the power of a strong hypothesis FðxÞ,
which is learned with Vector Boosting under the configura-
tions depicted in Fig. 8 to solve the naive 3-class problem.
According to the distributions of samples, these three
categories are fairly well separated in the 2D hypothesis
output space. But, for classification task, one more thing must
be clarified: What are the optimal decision boundaries for
different categories in the hypothesis output space. Directly
adopting objective regions as the decision boundaries makes
sense in the analysis of training error bound, but this

straightforward criterion might be unsuitable to practical
cases. For example, the objective regions may have nonempty
intersection (e.g., Class A and Class B in Fig. 8) and there may
be some area in the output space corresponding to none of the
objective regions. In fact, analytical decision boundaries in
Vector Boosting are nontrivial due to the flexibility of intrinsic
projection vectors and the complexity of the consequent loss
function. However, with a sustainable assumption, an
approximate optimal decision boundary is achievable.

Derived from the deduction in [15], the loss function in
(6) can be considered as the expectation over the joint
distribution of input pattern x and class label !. It is
sufficient for optimization procedure in Fig. 9 to minimize
the criterion conditionally on variable x as

E
X
evj2V ðxÞexpð�eFðxÞ � evjÞ���x

0@ 1A¼Z X
evj2V ðxÞexpð�eFðxÞ � evjÞ

0@ 1A
pð!jxÞd! ¼

Xc
i¼1

P ð!ijxÞ
X

evj2V ð!iÞ expð�eFðxÞ � evjÞ
8<:

9=;;
ð18Þ

where c is the number of categories. Notice that this
conditional expectation has been rewritten as the sum
weighted by the posterior probabilities of each category.
During the optimization procedure in the Vector Boosting
algorithm, the derivative of the conditional loss function with
respect to FðxÞ approaches zero as more and more weak
hypotheses are adopted into the strong hypothesis. Thus,
the derivative can be assumed as 0 if the hypothesis is
adequately optimized.

@E
P

evj2V ðxÞ expð�eFðxÞ � evjÞ���x
0@ 1A

@FðxÞ

¼
Xc
i¼1

P ð!ijxÞ
X

evj2V ð!iÞ �e�
eFðxÞ�evjvj� 	8<:

9=; ¼ �AP ¼ 0;

ð19Þ

where

A ¼
P

evj2eV ð!1Þ

e�
eFðxÞ�evjvj � � � P

evj2V ð!cÞ e�eFðxÞ�evjvj
" #

and the column vector

P ¼
P ð!1jxÞ

..

.

P ð!cjxÞ

264
375:

In addition, since the sum of all posterior probabilities is
1, one more equation could be added into (19) as an
additional constraint, resulting in a linear equation set with
c unknowns as

A

1T


 �
P ¼ A0P ¼ 0 � � � 0 1½ �T ; ð20Þ

where matrix A0 has kþ 1 rows and c columns (k is the
dimension of the hypothesis output space and c is the
number of categories). If c ¼ kþ 1 and A0 is nonsingular,
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Fig. 10. The results of strong hypothesis learned by Vector Boosting for
the naive three-class problem depicted in Fig. 8. In this experiment,
Class A and Class B are left and right profile face categories, while
Class C is the nonface category. The size of training sample is 24� 24
and FðxÞ : IR576 ! IR2.



the solution of P in (20) is unique. Take the naive
configuration in Fig. 8 for example, we have:

P ¼
P ð!AjxÞ
P ð!BjxÞ
P ð!C jxÞ

24 35 and A0 ¼
e�FxðxÞ 0 �eFxðxÞ

0 e�FyðxÞ �eFyðxÞ
1 1 1

24 35;
ð21Þ

where FxðxÞ is the output of FðxÞ on x-axis and FyðxÞ is that
on y-axis. The solution is:

P ð!C jxÞ ¼
1

1þ exp 2FxðxÞÞ þ expð2FyðxÞ
� � ;

P ð!AjxÞ ¼ exp 2FxðxÞð ÞP ð!C jxÞ;
P ð!BjxÞ ¼ exp 2FyðxÞ

� �
P ð!C jxÞ;

ð22Þ

which are illustrated in the fourth and the fifth columns of
Fig. 8. Accordingly, optimal decision boundaries are curves
shown in the contour map of each posterior probability
rather than borderlines of objective regions.

3.3 Brief Summary

Essentially, the Vector Boosting algorithm is a generalized
framework for multiclass problems with additive regression
model. Its loss function is defined based on intrinsic
projection vectors of different categories. With proper
configuration of those vectors, the Vector Boosting could be
transformed into many other existing boosting algorithms
due to their consistent loss functions. For instance, if the
output space is one-dimensional, and intrinsic projection
vectors for two classes are (1, 0) and (�1, 0), respectively, the
loss function of Vector Boosting becomes that of the classical
AdaBoost. Similarly, the Vector Boosting can be transformed
into AdaBoost.MH, AdaBoost.MO, and AdaBoost.MR [14].
Moreover, if configuring an objective region as a closed
convex set rather than an open one, the global minimum of
loss function for its corresponding category will transfer from
infinite to an inner point of the close convex set (Fig. 11), and
the loss function in (7) will be equivalent to that of ExpLev
algorithm introduced by Duffy and Helmbold [26]. This
implies that Vector Boosting algorithm is not only a
classification framework, but also of high potential to deal
with regression problems upon the widely-adopted expo-
nential loss criterion.

Practically, to learn branching nodes of the WFS tree,
similar configurations as Fig. 8 are adopted, in which
different face categories are assigned with orthogonal
intrinsic projection vectors and the nonface category with

opposite ones. As an example, Table 3 shows the setting for
the root node. In this way, different face categories are
irrelevant in the loss function of Vector Boosting but share a
common opposite, the nonface category, which accords
with the nonexclusive pass route selection criterion pro-
posed in the WFS tree. Differently, as long as face views are
allocated with different label sets, AdaBoost.MH, Ada-
Boost.MO, and AdaBoost.MR will have to pay much effort
to separate them, which is absolutely unnecessary in the
WFS tree. A comparative experiment between the Vector
Boosting and AdaBoost.MH is given in Section 5.

After the transformation from the hypothesis outputs to
the posterior probabilities as (22), optimal thresholds can be
found according to the required detection rate or false
alarm rate. In this way, a strong classifier that outputs
determinative vectors for branching nodes can be learned,
and the transformed posterior probabilities can be treated
as the output confidences for the selection of corresponding
pass route in Fig. 6.

4 LEARNING SPARSE GRANULAR FEATURES FOR

DOMAIN-PARTITION WEAK HYPOTHESES

Conventional feature extraction methods in face detection,
such as Rowley et al.’s ANN [5], are directly based on high-
dimensional input patterns. Although discriminative low-
dimensional feature space could be obtained by means of
PCA, LDA, or RNDA [20], they usually involve full scale
vector inner product that is computational intensive. One of
the key issues in Viola and Jones’ system [7] which leads to
their success is the integral image, which helps to compute
Haar-like features much more efficiently. However, their
Haar-like features are often deficient in distinguishing
complicated and irregular patterns such as profile faces due
to their rigorous structural constraints. To alleviate this
difficulty, Li et al. [9] and Lienhart and Maydt [18] employ
extended Haar-like features that include relatively shiftable
and rotated ones, respectively. Further more, Baluja et al. [19]
and Abramson and Steux [21] adopt pixel-based features to
achieve more flexible form and sparser presentation com-
pared with Haar-like features. Both of them use logic
operators (i.e., whether or not pixel A is brighter than pixel
B) to discriminate input patterns, avoiding normalization of
mean and standard deviation of samples which is necessary
for Haar-like features. As a result, these pixel-based features
are extremely fast to compute but unfortunately not dis-
criminative and robust enough. In our face detection system, a
set of novel features are sparsely represented in the granular
space of the input image, and an efficient weak learning
algorithm is introduced which adopts heuristic search
method in pursuit of discriminative sparse granular features.
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Fig. 11. Global minimum of loss function for a category that has closed

objective region. White arrows are its intrinsic projection vectors and

black point is at the global minimum.

TABLE 3
Configuration for the Training of Root Node in the WFS Tree



4.1 Sparse Features Represented in Granular Space

The granular space as shown in Fig. 12 is made up of four
bitmaps: I0, I1, I2, and I3. Denote the scale variable as
s ðs ¼ f0; 1; 2; 3gÞ, each granular bitmap Is is the result of
smooth filtering in way of averaging over 2s � 2s patches of
the original image. Therefore, a granule Isðx; yÞ can be
specified by the x-offset, y-offset, and the scale s. In such a
granular space, a sparse feature is represented as the linear
combination of several granules as

� ¼
X
i

�iIsiðxi; yiÞ; �i 2 f�1;þ1g; si 2 f0; 1; 2; 3g; ð23Þ

where the combining coefficient ai is restricted to be binary
value for the sake of computational efficiency (Fig. 13). Once
the granular space is constructed, calculating a granule needs
to access memory only once rather than four times for a
rectangle of Haar-like features. Therefore, compared with the
Haar-like features [7] as well as their extended versions in [9],
[18], the sparse granular features are highly scalable: they can
be more versatile while keeping the same computation load,
or more economic to compute if keeping similar structural
complexity. Moreover, in order to increase robustness and
discriminability of sparse granular features, the integral
image is retained to apply the normalization of mean and
standard deviation like Haar-like features. Based on such
normalized features, stronger weak classifiers could be
learned instead of logic-operator approaches with those
unnormalized features in [19], [21].

4.2 Domain-Partition-Based Weak Learner for
Vector Boosting Algorithm

Weak learner in boosting algorithms aims to train a proper
weak hypothesis to reduce the training loss of strong
classifier as it holds the upper bound of training error. In
our approach, a weak hypothesis could be decoupled into
two parts: the first part is extracting a sparse granular
feature from input pattern; the second part is calculating the
prediction result through a piece-wise function. In the
following parts, a weak hypothesis fðx; �; �Þ with input
pattern x is characterized by two parameters: � for sparse
feature and � for piece-wise function.

4.2.1 Learning Piece-Wise Functions for Selected

1D Features in Vector Boosting Algorithm

The piece-wise function �, illustrated in Fig. 14b, divides the

1D feature space into a set of disjoint bins with equal widths,

and outputs a constant value (scalar or vector) for samples

falling into the same bin. Actually, it is a straightforward

implementation of domain partition based hypothesis in [14],

which is superior to stump function (shown in Fig. 14a)

adopted in [7] since it is capable to fit likelihoods more

precisely through finer partition granularity. Three para-

meters are necessary to determine the partition of a chosen

1D feature space: the lower bound, the upper bound, and the

granularity. The first two are estimated through distributions

of training samples on the chosen feature, and the last one,

granularity, is predefined by experience.
Denote the samples that are grouped into the jth bin as

Sj ¼ fðxi; eviÞj�ðxiÞ 2 binjg; ð24Þ

where �ðxiÞ is the extracted feature value of xi and binj is

the jth bin after domain partition.
Let cj be the constant output for binj and recall (9), we

have the minified loss function as

dLossðFðxÞ þ fðxÞÞ /
Xm
i¼1

wi exp �vi � fðxiÞð Þ

¼
X
j

X
ðxi;~viÞ2Sj

wi expð�vi � cjÞ;
ð25Þ

where FðxÞ is the previously learned strong hypothesis,

fðxÞ is the newly adopted weak hypothesis, and wi is the

weight of sample xi w:r:t FðxÞ. In particular, the loss

received for binj is

lossjðcjÞ /
X

ðxi;~viÞ2Sj
wi expð�vi � cjÞ ð26Þ

which is a convex function with regard to cj. Hence, the

optimal constant outputs for each bin can be calculated with

some proper optimization algorithm such as Newton-step

method. Besides, the newly received loss given in (25) tells

the fitness of the new weak hypothesis fðxÞ if added into

the original strong hypothesis FðxÞ, which guides the

heuristic search method for the selection of discriminative

features in the next section.
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Fig. 12. Granular space of a gray image (s denotes the scale of

granules).

Fig. 13. Two examples of sparse features. White blocks are positive

granules while black ones are negative. Calculating each granule needs

to access memory only once.

Fig. 14. Stump function versus piece-wise function. The stump function
only divides the 1D feature space into two parts with an adjustable
threshold, giving binary outputs, while the piece-wise function partitions
the feature space in finer granularity and outputs various values for each
bin. (a) Stump function. (b) Piece-wise function.



4.2.2 Heuristic Search for Sparse Granular Features

Although the loose constraint in (23) endows sparse granular
features with great versatility, it also brings in a serious
problem in practice: the astronomical figure of all possible
features. To address this issue, a heuristic-search-based
feature selection mechanism is developed to efficiently
construct a compact and effective sparse granular feature
set as follows.

The heuristic search is a classical optimization algorithm
in artificial intelligence theory [28]. Two lists are maintained
during its search process: A closed list for expanded
elements to avoid duplicated expansions and an open list
for unexpanded elements for further expansion. Roughly, it
is formalized as shown in Fig. 15, in which elements in two
lists are various sparse granular features defined in (23).

The fitness evaluation of a sparse granular feature, which
reflects the heuristic knowledge integrated into the search
process, essentially guides the expansion of elements in open
set and thus dominates the whole search process. Reasonably,
to improve the previously learned strong hypothesis in
Vector Boosting algorithm, features that achieve low training
losses with the optimal piece-wise functions are more
favorable. Besides, sparseness of features should also be
taken into consideration since it determines the computa-
tional complexity, and is closely related to the structural risk
which affects the generalization ability. In addition, intui-
tively, a sparse granular feature with fewer granules is more
likely to evolve into a better one by adding new granules.
Therefore, the heuristic search method should prefer sparse
granular features with smaller training losses and lower
complexities.

Denote the incremental logarithmic loss reduction of
fðxÞ w:r:t FðxÞ as

J fðxÞ;FðxÞð Þ ¼ � log Loss FðxÞ þ fðxÞð Þð Þ þ log Loss FðxÞð Þð Þ
ð27Þ

and then the fitness function of sparse granular feature � is
empirically defined as:

Fitnessð�Þ ¼ J fðx; �; �
Þ;FðxÞð Þ � �k�k1; ð28Þ

where �
 is the optimal piece-wise function learned for �
(see Section 4.2.1), k�k1 is the number of granules in �, and �
is a small penalty coefficient that is set as 0.001 in
experiments. With this fitness function, a promising sparse
feature �
 can be selected from the open list. To expand it

into a new feature set �
, we employ three different

operators, add (29), delete (30), and replace (31), which are

loading in a new granule, deleting an existed one and replacing

an existed one with a new one, respectively. These operators

generate lots of features with small variations from the

original sparse granular feature, and better features are

likely to be found in those generated ones. Denote the

granule set of �
 as P , a granule in P and its corresponding

coefficient as pin and �in, another granule that does not

belong to P and its corresponding coefficient as pout and

�out, and the neighboring granule set of pin as NbðpinÞ, add,

delete, and replace operators can be formalized as follows:

�a ¼ �aj�a¼�
þ�outpoutf g; pout =2 P; �out¼f�1;þ1g;
ð29Þ

�d ¼ �dj�d ¼ �
 � �inpinf g; pin 2 P; ð30Þ

�r ¼ �rj�r ¼ �
 � �inpin þ �outpoutf g;
pin 2 P; pout 2 NbðpinÞ; �out ¼ �in:

ð31Þ

Due to the large number of generated features, it is
infeasible to take all of them as the new feature set �


inserted into the open list. Practically, an alternative way is
to select only the best one of each set to make up this
expanded feature set

�
 ¼ �
i

����
i ¼ arg max
�2�i

F itnessð�Þð Þ; i ¼ a; d; r
( )

: ð32Þ

In this way, in each round of the heuristic search three
new promising features can be generated and after a certain
number of rounds a discriminative feature set is obtained.

4.3 Brief Summary

For a weak hypothesis fðx; �; �Þ, Section 4.2.1 describes how
to optimize a piece-wise function � for a selected sparse
granular feature �, and Section 4.2.2 introduces the heuristic
search method that is capable to construct a compact and
effective feature set for the Vector Boosting algorithm. One
thing that has not been clarified in the heuristic search
(Fig. 15) is the initialization of the open list OL. Experi-
mentally, we enumerate many Haar-like features in the
granular space, and select a small part of them to constitute
the open list (Fig. 16). The fitness function defined in (28) is
employed again to filter out unpromising Haar-like features
as the first-round selection. In summary, the entire process
of weak learner in granular space for the Vector Boosting
algorithm can be formalized as shown in Fig. 17.
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Fig. 15. Heuristic search method for sparse granular features.

Fig. 16. Some Haar-like features in granular space for the initialization of

open list in heuristic search method. Notice that each granule is a square

rather than a rectangle, so the total number of enumerated Haar-like

features in granular space is much less than that in integral image [7].



5 EXPERIMENTS

5.1 WFS Tree Structure and Vector Boosting
Algorithm

In order to demonstrate that the WFS tree structure is able to
make moderate decisions for an input pattern in branching
nodes with the nonexclusive-vector strong classifiers learned
by the Vector Boosting algorithm as claimed in Section 2 and
Section 3, a comparison is made among four approaches,
including the WFS tree, the pyramid [9], the parallel cascades
[13], and the AdaBoost.MH algorithm [14]. The task is to
learn a strong hypothesis that computes a 3D determinative
vector as the first layer of the face detector. All patterns are
divided into four categories: three face classes (left profile,
frontal, and right profile) and a nonface class. Every
approach makes use of the same Haar-like feature set and
the same domain-partition-based weak hypothesis (piece-
wise function). To reject nonfaces as quickly as possible while
preserving most of the faces, we reimplement the four
approaches and fix the detection rate at 0.98 during the
boosting procedure, illustrating their asymptotic false alarm
rates on the testing set in Fig. 18.

According to this comparative experiment, among the four
approaches, the WFS tree achieves the best performance since
it requires the fewest weak classifiers to reach the same false
alarm rate. In fact, such gain should be mainly attributed to
the Vector Boosting algorithm. By means of assigning the
three face views with orthogonal intrinsic projection vectors
as shown in Table 3, which makes their objective regions
overlapped and their targets compatible, the Vector Boosting
algorithm manages to exploit similarities between faces of
different views for the sake of fast background rejection,
meanwhile keeping back their diversities for further identi-
fication. Contrastively, the pyramid approach treats all the
three face views as one ensemble positive class, and therefore
employs the classical 2-class AdaBoost algorithm to learn a
binary strong classifier, which suffers from the diversities

between different views. Differently, the parallel-cascade
approach learns three binary classifiers to distinguish three
face views from nonfaces individually, which ignores the
valuable similarities between different face views. As for the
AdaBoost.MH algorithm, since it regards three face classes
and the nonface class as four mutually distinct ones, it puts
considerable emphasis on the differentiation of the three face
views. However, separating face views is indeed unnecessary
here as the main task in the first layer is to reject nonfaces as
quickly as possible, which inevitably slowdowns the con-
vergence speed of false alarm rate.

5.2 Sparse Granular Features

Practically, two more constraints on sparse granular
features are employed during the heuristic search proce-
dure: one is requiring the sum of combining coefficients in
(23) to be 0, and the other is restricting the number of
granules in a feature up to a maximum. The first constraint
makes the features “balanced” so that no zero-mean
normalization is needed, and the second one controls the
scale and complexity of the whole sparse granular feature
set. Essentially, varying the maximum number of granules
trades off between the structural risk, empirical risk and
computational efficiency of resulted sparse granular fea-
tures. So, finding a proper maximum granule number is an
important issue in heuristic search process. In this experi-
ment, five strong classifiers are learned with classical
AdaBoost algorithm to distinguish faces of a certain view
(e.g., frontal faces) from backgrounds. Each adopts a
different type of feature to construct the weak hypothesis:
sparse features of maximum granule number 4, 6, 8, and 10,
as well as Haar-like features applied in [7]. Similar with the
previous experiment, we set the detection rate at 0.98 and
compare the asymptotical testing false alarm rates of each
type of features on different classification problems. The
results are illustrated in Fig. 19.

Compared to Haar-like features applied in [7], our sparse
granular features achieve higher classification accuracy. Due
to the flexible combination rules of sparse granular features,
even the simplest form of the maximum granule number 4
outperforms the rigid Haar-like features. However, increas-
ing the maximum granule number to enlarge the possible
feature set cannot always improve the learned weak
classifiers (compare maximum granule numbers 8 and 10).
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Fig. 17. Weak learner with sparse granular features and piece-wise

functions for the Vector Boosting algorithm.

Fig. 18. Comparison of false alarm rates on testing set. The detection

rate of testing face samples is adjusted to 0.98 for each approach.



On one hand, as a result of rising maximum granule number,
the combination explosion of all possible features makes the
heuristic search algorithm become inadequate to find optimal
ones. On the other hand, more complex sparse granular
features indicate higher structural risks and possibly lower
generalization ability in classification. Taking the computa-
tional efficiency (Fig. 20) into consideration, in practice, we
choose 8 as the maximum granule number in learning of our
multiview face detector described in the following section.

5.3 Multiview Face Detection

For the training of MVFD, we collect and manually label
30,000 frontal faces, 25,000 half-profile ones, and 20,000 full-
profile ones, which are taken in various conditions
(different poses, illuminations, and expressions). Many
faces involve up/down rotation up to 30� so that the
learned detector can tolerate enough Pitch variance of faces
to cater to surveillance applications. These faces are rotated,
flipped, and resized into 24� 24 patches to obtain training
samples of all 15 views. With these samples, we train a
quartered upright multiview face detector with the WFS
tree structure in Fig. 5, and the training procedure is
formalized in Fig. 21. The first four sparse grnular features
in the root node learned by the Vector Boosting algorithm
and the heuristic search method are shown in Fig. 22. To

achieve the required extremely low false alarm rate F , in
fact, each leaf node in Fig. 5 is extended to a cascade. Hence,
the exact number of nodes is larger than that shown in
Fig. 5. Experimentally, there are 234 nodes in 18 layers as a
whole that constituting this multiview face detector.

With this powerful WFS tree structured detector, an
exhaustive search procedure is applied to detect faces in an
image. After that, positive responses are clustered accord-
ing to their positions, sizes, and poses. With some simple
criterions such as nonoverlapping, these clusters are
merged as the final results of face detection as shown in
Fig. 24. It is assured that every successful detection properly
describes the corresponding face: the size is not too small or
too large, the difference of RIP angle is no more than
15 degrees, and the difference of ROP angle is no more than
one view. To compare with the previous works which gave
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Fig. 19. Asymptotic testing false alarm rates of different types of features with the detection rate at 0.98. From left to right, the binary classification
problems are frontal upright faces versus backgrounds, frontal tilted by 30� faces versus backgrounds, and full profile upright faces versus
backgrounds. They are three typical views of all 15 ones defined in Fig. 1, corresponding to original form, RIP, and ROP, respectively.

Fig. 20. Computational efficiency of different types of features. The
processing time is the average time spent on each frame of a QVGA
(320� 240) video sequence. Each frame is scaled from its origin down to
40� 30 with scale ratio 1.26 (cubic root of 2) for sparse granular
features. As for the Haar-like features, their templates are scaled with
the same ratio instead of scaling the image. Fig. 21. Training algorithm of WFS tree structured detector.



full testing results (e.g., Schneiderman and Kanade’s
Bayesian-rule approach [6], Wu et al.’s parallel cascade
structure [13], and Huang et al.’s WFS tree + Haar-like
feature [11]), we test our multiview face detector on the
CMU profile testing set. Some other related works such as
Jones and Viola’s decision tree method [10] and Li et al.’s
pyramid method [9] are not under consideration due to lack
of their full testing results on this standard testing set. To
trade off between detection rate and false alarm to give a
whole ROC curve, we adopt a control parameter that
correspondingly adjusts the threshold of strong classifier in
each node. The testing results are drawn in Fig. 23a as ROC
curves, in which our sparse feature + WFS tree-based
MVFD system achieves the best performance. Some detec-
tion results are shown in Fig. 24b.

5.4 Rotation Invariant Multiview Face Detection

Since the upright detector covers the range of RIP from
�45� to þ45� and ROP from �90� to þ90�, to deal with the
face space, three more detectors are generated by means of
rotating the upright one by 90�, 180�, and 270�, respectively
(Fig. 3). The four detectors, working in parallel as a whole,
constitute a rotation invariant multiview face detector. Since
so far there is no standard testing set for this problem, we
only show some detection results in Fig. 24a.

In the root node of WFS tree (Fig. 5), disabling the first and
the third branches (i.e., left profile and right profile faces) will
lead to a rotation invariant frontal face detector. To compare
with Rowley’s ANN method [5] and Jones’s decision tree
method [10], we tested this detector on the CMU rotate testing
set. The results are shown in Fig. 23b, in which our sparse
feature + WFS tree approach again outperforms other works.
Some detection results are shown in Figs. 24c and 24d.

5.5 Discussion on Time Complexity of the
Algorithm

Similar with previous related works, our face detection
framework includes two parts: offline learning and online
detecting. Understandably, the offline learning process is
time-consuming. In particular, searching for appropriate
sparse granular features in the vast feature space is still time-
consuming although the heuristic search method is adopted.
Fortunately, we can use the incremental feature selection
technique [27] to significantly improve the efficiency of
feature selection procedure. Approximately, training a single
cascade detector for frontal faces requires only two days on a
P4-3.0GHz PC. As for the WFS tree-based multiview face
detector, since classifiers after branching nodes could be
trained in parallel, the entire training procedure of the WFS
tree spends about two weeks if three PCs are employed.

When detecting faces, instead of scaling templates (as what
is done with Haar-like features), we scale the image itself to
seek faces of different sizes. Experimentally, as the preproces-
sing stage before applying sparse granular features, it costs
only10 ms to scale an image of QVGA size (320� 240) down to
the size 40� 30 with step scale ratio 1.26 (cubic root of 2),
including the computation of integral image in each scale.
Compared with the scale template approach that spends
4 � 5 ms in preprocessing, the scale image approach is a little
slower but can extract more accurate sparse granular features.
In fact, as shown in Fig. 20, although the sparse granular
features require more preprocessing time (shown as the
processing time at zero weak classifier), the running time per
sparse granular feature is less than that per Haar-like feature.
Therefore, as the number of weak classifiers increases, the
sparse granular features quickly exceed the Haar-like features
in computational efficiency. According to the experiments,
on common video sequences of QVGA size (320� 240), our
MVFD achieves a speed of about 10 fps and the rotation
invariant MVFD runs at a speed of about 3 � 4 fps.

6 CONCLUSION

In this paper, to address the problem of detecting rotation
invariant multiview faces with high speed and accuracy, we
develop the WFS tree structure for the construction of face
detector, which partitions the complicated detection task
into individual-view-based ones in terms of coarse-to-fine
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Fig. 22. The first four sparse granular features in the root node learned
by the Vector Boosting algorithm and heuristic search method. They are
illustrated as linear features: white blocks indicate positive granules
while black ones denote negative granules. As each granule is, in fact,
the average of pixels in the corresponding patch, granules of different
sizes are drawn in different gray levels.

Fig. 23. ROC curves for comparison on standard testing sets. (a) is the ROC curves on CMU profile testing set [6] (441 multiview faces in

208 images). (b) is the ROC curves on CMU rotate testing set [5] (223 frontal faces with different RIP angles in 50 images).



strategy and organizes them moderately compared with the
decision tree approach [10] and the pyramid approach [9].
The experiments on several standard testing sets have
shown that our approach achieves significant improve-
ments in both speed and accuracy over previous published
methods for face detection.

Two innovative methods are proposed for the learning of
each node of the tree: the Vector Boosting algorithm and the
sparse granular feature concept. The Vector Boosting algo-
rithm is a general framework to handle various multiclass
problems with the additive regression model in [15]. Intrinsic
projection vectors are employed to define the objective
regions of each category and thus determine the exponential
loss function. It is an extension for classical AdaBoost
algorithm from which both AdaBoost.MH and AdaBoost.MR
can be derived. The flexibility originating from intrinsic
projection vectors enables the Vector Boosting algorithm to
deal with many complicated classification, even regression
problems. Sparse granular features are defined in the
granular space of an image. They are more capable to match
complex and irregular patterns than original Haar-like
features in [7] while maintaining similar computational load.

To seek enough discriminative sparse granular features in
such a tremendous space for a weak learner, a heuristic search
method is proposed for the construction of a compact and
effective feature set. Besides, with the adaptive mapping of
piece-wise functions, the weak learner succeeds in training
very efficient weak hypotheses, which strongly supports the
Vector Boosting algorithm on the learning of strong classi-
fiers. Based on the flexibility of the Vector Boosting algorithm
and the scalability of sparse granular features observed in the
challenging face detection task, we argue that both of them
are of high potential in other fields of pattern recognition and
computer vision.
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