
1

Ch 3 Markov Chain Basics 

In this chapter, we introduce the background of MCMC computing

Topics:

1. What is a Markov chain?
2. Some examples for simulation, approximate counting, Monte Carlo integration, optimization.
3. Basic concepts in MC design: transition matrix, positive recurrence, ergodocity.

Reading materials:   Bremaud Ch 2.1-2.4, Ch 3.3-3.4.

Stat 232B: Statistical Computing and Inference in Vision and Image Science,                                                  S.C.  Zhu

What is Markov Chain?

A Markov chain is a mathematical model for stochastic systems whose states, discrete
or continuous, are governed by a transition probability. The current state in a Markov 
chain only depends on the most recent previous states, e.g. for a 1st order Markov chain. 

xt-1 xt xt+1

y p p , g

The Markovian property means “locality” in space or time, such as Markov random 
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fields and Markov chain. Indeed, a discrete time Markov chain can be viewed as a
special case of the Markov random fields (causal and 1-dimensional).

A Markov chain is often denoted by (Ω, ν, K) for state space, initial and transition prob.
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What is Monte Carlo ?

Monte Carlo is a small hillside town in Monaco (near Italy) with casino since 1865 like 
Los Vegas in the US. It was picked by a physicist Fermi (Italian born American) who 
was among the first using the sampling techniques in his effort building the first man-

d  l  t  i  1942made nuclear reactors in 1942.

What is in common between a Markov chain and the Monte Carlo casino?

They are both driven by random variables --- using dice.
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Monte Carlo casino

What is Markov Chain Monte Carlo ?

MCMC is a general purpose technique for generating fair samples from a probability
in high-dimensional space, using random numbers (dice) drawn from uniform probability
in certain range.                A Markov chain is designed to have π(x) being its stationary 
(or invariant) probability.

xt-1 xt xt+1

zt-1 zt zt+1

Markov chain
states

Independent
trials of dice
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trials of dice

This is a non-trivial task when π(x) is very complicated in very high dimensional spaces !
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What is Sequential Monte Carlo ?

Discuss the difference between MCMC and SMC here.

Common:  represent a probability distribution by a set of examples with
weights (equal or not).
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Discussion: how is this related to search? 

MCMC as a general purpose computing technique

Task 1: Simulation: draw fair (typical) samples from a probability which governs a system.

ionconfigurataissπ(x)x

Task 2: Integration / computing in very high dimensions, i.e. to compute

Task 3: Optimization with an annealing scheme

ion.configurataiss,π(x)~x

π(x)argmaxx* =

∫== (x)dsπ(x)(x)]E[c ff
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Task 4: Learning:   
unsupervised learning with hidden variables (simulated from posterior) 
or MLE learning of parameters p(x; θ) needs simulations as well.

π(x)argmaxx* =
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Task 1: Sampling and simulation
For many systems, their states are governed by some probability models. e.g. in 
statistical physics, the microscopic states of a system follows a Gibbs model given the 
macroscopic constraints. The fair samples generated by MCMC will show us what 
t t   t i l f th  d l i  t   I  t  i i  thi  i  ft  ll d states are typical of the underlying system.  In computer vision, this is often called 

"synthesis" ---the visual appearance of the simulated images, textures, and shapes, 
and it  is a way to verify the sufficiency of the underlying model. 

Suppose a system state x follows some global constraints.
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Hi(s) can be a hard (logic) constraints (e.g. the 8-queen problem), macroscopic
properties (e.g. a physical gas system with fixed volume and energy), or statistical
observations (e.g the Julesz ensemble for texture). 

Ex. 1  Simulating noise image

We define a “noise” pattern as a set of images with fixed mean and variance.
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This image example is a “typical image” of the Gaussian model. 
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Ex. 2  Simulating typical textures by MCMC

}k   |h|   , h )h(Ilim  :I {  )(h   texturea cc
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H are histograms of Gabor filters  i e  marginal distributions of f (I) 

Iobs Isyn ~ Ω(h) k=0 Isyn ~ Ω(h) k=1

Hc are histograms of Gabor filters, i.e. marginal distributions of f (I) 

(Zhu et al, 1996-01)Isyn ~ Ω(h) k=3 Isyn ~ Ω(h) k=7Isyn ~ Ω(h) k=4

Task 2: Scientific computing 

In scientific computing, one often needs to compute the integral in very high dimensional 
space. p

Monte Carlo integration,
e.g. 

1. estimating the expectation by empirical mean. 
2. importance sampling

Approximate counting (so far, not used in computer vision)
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e.g.
1. how many non-self-intersecting paths are in a 2 n x n lattice of length N? 
2. estimate the value of π by generating uniform samples in a unit square. 
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Ex 3: Monte Carlo integration

Often we need to estimate an integral in a very high dimensional space Ω,

We draw N samples from π(x), 

Then we estimate C by the sample mean
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For example, we estimate some statistics for a Julesz ensemble π(x;θ), 

Ex 4: Approximate counting in polymer study

For example, what is the number K of Self-Avoiding-Walks in an n x n
lattice?

Denote the set of SAWs by

An example of n=10.    (Persi Diaconis)

Th  ti t d b  b  K th  
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The estimated number by Knuth was 

The truth number is 
(Note that there are a variety of different definitions of SAWs: Start from the lower-left corner, the ending could be of 
(i) any lengths, (ii) fixed length n, or (iii) ending at the upper-right corner. The number above is for case (iii).    
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Ex 4: Approximate counting in polymer study

Computing K by MCMC simulation

Sampling SAWs ri by random walks (roll over when it fails).
3

3
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2

Task 3: Optimization and Bayesian inference  
A basic assumption, since Helmholtz (1860), is that biologic and machine vision 

compute the most probable interpretation(s) from input images. 

Let I be an image and X be a semantic representation of the world.

In statistics, we need to sample from the posterior and keep multiple solutions.
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π

X
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Example 5:  Robot Localization

Prior P(x)

Likelihood
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L(x;z)

Posterior
P(x|z)

Example 5: Robot Localization

p(Robot Location)

Sampling as Representation

p(Robot Location)

Y
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X
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1. The state space Ω in computer vision often has a large number of sub-spaces of 
varying dimensions and structures, because of the diverse visual patterns in images.

Traversing Complex State Spaces

2   Each sub-space is a product of  2.  Each sub-space is a product of  
some partition (coloring) spaces ---- what go with what?
some object spaces ---- what are what?

partition
spaces

pΩ
pΩ

object particles

3.  The posterior has low entropy, the effective volume of the search space is relatively small !
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iΩ
1CΩ 1CΩ

2CΩ 2CΩ
2CΩ

3CΩ 3CΩ

object spaces

Summary

1. MCMC is a general purpose technique for sampling from complex 
probabilistic models.

2. In high dimensional space, sampling is a key step for 
(a) modeling (simulation, synthesis, verification)
(b) learning (estimating parameters)
(c) estimation (Monte Carlo integration, importance sampling)
(d) optimization (together with simulated annealing).
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2. As Bayesian inference have become a major framework in computer
vision, the MCMC technique is a useful tool of increasing importance
for more and more advanced vision models.  
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A Toy Example

Suppose there are 5 families in an island. Suppose there is 1,000,000 token as their currency, and 
we normalize them to 1. Let the state x be the wealth over the years. Each family will trade with some 
other families for goods. For example, family 1 will spend 60% of their income to buy from family 2, 

d  40% i  d    Th  ti  i  h  ill th  f t  b  di t ib t d  th  

1 4
0.4 0.3

0.7

and save 40% income, and so on.  The question is: how will the fortune be distributed among the 
families after a number of years?     To put the question in the other way, suppose we mark one token 
In a special color (say, red). After a number of years, who will own this token? 
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A Markov chain formulation

(Ω,  K or P,   νοο)
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K

1. State space 2. Transition kernel. 3. Initial probability.
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Target Distribution

1 40.4 0.3

0.7

year
1 1.0       0.0      0.0       0.0       0.0 0.0       0.0       1.0       0.0      0.0

2 0.4       0.6      0.0       0.0       0.0 0.0       0.3       0.0       0.7      0.0

52

3

0.3

0.5
0.3

0.50.6 0.50.1 0.6

0.2
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3 0.46     0.24    0.30     0.0       0.0 0.15     0.0       0.22     0.21    0.42

4 … …

5

6 0.23    0.21    0.16    0.21    0.17 0.17   0.16    0.16     0.26    0.25

0.17  0.20    0.13    0.28    0.21 0.17    0.20    0.13    0.28    0.21

Invariant probabilities

Under certain conditions for the finite state Markov chains, the Markov 
chain state converges to an invariant probability 

In Bayesian inference, we are given a target probability μ, our objective
is to design a Markov chain kernel P so that P has a unique invariant 
probability μ. 

There are infinity number of P’s that have the same invariant probability.
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Questions

1. What are the conditions for P?
(stochastic, irreducible, aperiodic, global/detailed balance,(stochastic, irreducible, aperiodic, global/detailed balance,
ergodicity and positive recurrence, …)

2. How do we measure the effectiveness (i.e. convergence) ?
(first hitting time, mixing time)

3. How do we diagnose convergence?
(exact sampling techniques for some special chains)

Choice of K

Markov Chain Design:

(1) K is an irreducible (egordic) stochastic matrix (each row sum to 1).

(2) K is aperiodic (with only one eigen-value to be 1).
(3) Detailed balance 

There are almost infinite number of ways to construct K given a π.

2N equations with N x N unknowns (global balance), or
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Different Ks have different performances.

N2/2+N equations with r x r unknowns (detailed balance) 
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Communication Class
A state j is said to be accessible from state i if there exists M such Kij(M)>0

Communication relation        generates a partition of the sate space into disjoint 
equivalence classes called communication classes.
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Definition: 
A Markov chain is irreducible if its matrix K has only one communication class.

Irreducibility

If there exists only one communication class then we call its transition graph to be irreducible (ergodic).
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Irreducible MC
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Periodic Markov Chain

For any irreducible Markov chain, one can find a unique partition of graph G into d classes:

Periodic Markov Chain

⎟
⎞

⎜
⎛ 0101

An example: The Markov Chain has period 3 and it 
alternates at three distributions:

⎟
⎟
⎟

⎠
⎜
⎜
⎜

⎝

=
001
100K

1

3 2

(1   0   0) (0   1   0) (0   0   1)

An irreducible stochastic matrix K has period d, then
K h   i ti  l  b t Kd h  d i ti  lK has one communication class, but Kd has d communication classes.
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Stationary Distribution

There maybe many stationary distributions w.r.t K.y y y

Even there is a stationary distribution, Markov chain may not 
always converge to it.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

001
100
010

K )
3
1

3
1

3
1(

001
100
010

)
3
1

3
1

3
1( =

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Stat 232B: Statistical Computing and Inference in Vision and Image Science,                                                  S.C.  Zhu

)010(
001
100
010

)001( =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛1

3 2

Markov Chain Design

Given a target distribution π, we want to design an irreducible 
and aperiodic K

and        has small

The easiest would be:
⎟
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
=

π

π
MK then any
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But in general x is in a big space and we don’t know the landscape of 
π, though we can compute each π(x).
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Sufficient Conditions for Convergence

Irreducible (ergodic):

Detailed balance implies stationarity:

Detailed Balance:
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The Perron-Frobenius Theorem

For any primitive (irreducibility + aperiodicity) r x r stochastic matrix P, P has eigen-values

Each eigen-value has left and right eigen-vectors 
With

Then 

Where m2 is the algebraic multiplicity of λ2, i.e. m2 eigen-values that have the same 
modulus.

Then obviously, the convergence rate is
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The Perron-Frobenius Theorem

Now, why do we need irreducibility and aperiodicity?

1, If P is not irreducible, and has C communication classes.
then the first eigen value 1 has C algebraic and geometric multiplicities (eigen-vectors)
Thus it does not have a unique invariant probability.

2, If P is irreducible but has period d >1, then there are d distinct eigen values 
with modius 1, namely, the d-th roots of unity. 

Convergence measures

The first hitting time of a state i by a Markov chain MC is

}μ~ xi, x1;n inf{(i)τ 00nhit =≥=

The mixing time of a Markov chain MC is

The first return time of a state i by a Markov chain MC is

00t

i}  xi,  x1;n inf{(i)τ 0nret ==≥=
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The mixing time of a Markov chain MC is

}μ    ε,|μ-Pμ|  {minτ 0TV
n

0nmix ∀≤=
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Convergence study

There is a huge literature on convergence analysis, most of these are pretty much
irrelevant for us in practice. Here we introduce a few measures.

The TV-norm is 

|μ(A)(A)μ|sup|μ(i)(i)μ||μμ| n
AΩi

n2
1

TVn −=−=− ∑
∈

||)(|PP| 21TV21 νννν −≤− PC
1 |)()(|)( PPPC
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)||KL(μP)||KL(μ νν ≤

TV,2
1 |),(),(|max)( •−•= yPxPPC

yx

Positive Recurrent

A state i is is said to be a recurrent state if it has 
Otherwise it is a transient state.

1))(( =∞<ip retτ

Furthermore, if 
Then it is called a positively recurrent state,
otherwise it is a null-recurrent state. 

Usually, the positive recurrence is a condition for spaces with infinite states.

∞<)]([ iE retτ
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Ergodicity theorem

For an irreducible, positive recurrent Markov chain with stationary probability µ,
in a state space Ω, let f(x) be any real vauled function with finite mean with 
respect to µ  then for any initial probability  almost surely we haverespect to µ, then for any initial probability, almost surely we have

[f(x)]Ef(x)μ(x))f(xlim μ
Ωx

N

1i
iN

1

n
∑∑
∈=∞→

==

To summarize, we have the following conditions for the Markov kernel K to be ergogic 

0:  stochastic      --- each row sums to 1.
1   i d ibl      h  1 i ti  l
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1:  irreducible     --- has 1 communication class
2:  aperiodic       --- any power of K has 1 communication class
3:  globally balanced
4:  positive recurrent

Some MCMC developments related to vision

Metropolis 1946

Hastings 1970

Waltz 1972 (labeling)

Rosenfeld  Hummel  Zucker 1976 (relaxation) Hastings 1970Rosenfeld, Hummel, Zucker 1976 (relaxation)

Geman brothers 1984, (Gibbs sampler)
Miller, Grenander,1994

Heat bath
Kirkpatrick 1983

Swendsen-Wang 1987 (clustering)
Green 1995

Swendsen-Wang Cut 2003 DDMCMC 2001-2005
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Special cases

When the underlying graph G is a chain structure, then things are much simpler
and many algorithms become equivalent.

Dynamic programming (Bellman 1957)
= Gibbs sampler (Geman and Geman 1984)
= Belief propagation (Pearl, 1985)
= exact sampling 
= Viterbi (HMM 1967)


