

CYK algorithm
 Input: a sentence X = w₁ ··· w_n and the grammar G with S being the root. Let w_{ij} = w_ix_{i+1} ··· w_{i+j-l} be the substring of X of length j starting with w_t. Then, we have X = w_{1n}. Output: verify whether S ⇒ X, if yes, construct all possible parse trees. The algorithm: for every w_{ij} and every rule R ∈ G, it determines if R ⇒ w_{ij} and the probability if necessary. Define a auxiliary 4-tuple variable for each rule R_k ∈ G: v_k = (k, probability, pointer Left, pointer Right) CYK table with the entries V[i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1 storing the auxiliary variables of the rules which can explain substring w_{ij}. Start with substrings of length 1:w_{i1} = w_i, 1 ≤ i ≤ n, set V[i, 1] = {v_k = (k, Prob(R_k w_{i1}), NULL, NULL) R_k ⇒ w_{i1}, R_k ∈ G} Continue with substrings of length j = 2, 3, ···, n − i + 1 For w_{ij} consider all possible two-part partitions w_{ij} = w_{iw}w_{i+m} j −m, 1 ≤ m ≤ j set v i, j] = {v_k = (k, Prob(R_k w_{ij}), v_{ki}, v_{kn}) R_k ⇒ R_{ki}R_{kn}, R_{ki} ⇒ w_{im}, R_{kn} ≈ w_{int} w_{it+m} j −m, 1 ≤ m ≤ j set v i, j] = {v_k = (k, Prob(R_k w_{ij}), v_{ki}, v_{kn}) R_k ⇒ R_{ki}R_{kn}, R_{ki}, ≠ w_{im}, R_{kn} ∈ G}
The algorithm has three nested loops each of which has the range at most 1 to n.
With each loop, it check all the rules. So, the worst case of running time is
Stat 2325 Stat 30 centre and inference, S.C. Zhu

	1 h 1 a 1	
S->A B C	• a1b1c1	
S->D E F	 a1b1c2 	
A->a1 A->a2	• a1b2c1	
B->b1 B->b2	• a1b2c2	
C->c1 C->c2	• a2b1c1	
D->a1 D->a2	• a2b1c2	
E->b1 E->b2	• a2b2c1	
F->c1 F->c2	 a2b2c2 	

	State set 1	State set 2	State set 3
₀ ->.E1 Predicted			
₀ E1->.A B C			
0			
₀ A->.a1			
₀ A->.a2			
₀ ->.E2			
^{o->.L2} Predicted			
₀ E2->.D			
_o D->.d			

	State set 1	State set 2	State set 3
₀ ->.E1 Predicted ₀ E1->.A B C ₀ A->.a1 ₀ A->.a2	Scanned $_0A$ ->a1. Completed $_0E1$ ->A. B C Predicted $_1B$ ->.b1 $_1B$ ->.b2		
₀ ->.E2 Predicted ₀ E2->.D ₀ D->.d	Shifted 1D->.d		

	State set 1	State set 2	State set 3
₀ ->.E1 Predicted ₀ E1->.A B C ₀ A->.a1 ₀ A->.a2	Scanned ₀ A->a1. Completed ₀ E1->A. B C Predicted ₁ B->.b1 ₁ B->.b2	Shifted 2B->.b1 2B->.b2	
_o ->.E2 Predicted _o E2->.D _o D->.d	Shifted ₁ D->.d	Scanned ${}_{1}D->d$. Completed ${}_{0}E2->D$. ${}_{0}->E2$.	

	State set 1	State set 2	State set 3
₀ ->.E1 Predicted ₀ E1->.A B C ₀ A->.a1 ₀ A->.a2	Scanned ₀ A->a1. Completed ₀ E1->A. B C Predicted ₁ B->.b1 ₁ B->.b2	Shifted 2B->.b1 2B->.b2	Scanned $_2$ B->b2. Completed $_0$ E1->A B. C Predicted $_3$ C->.c1 $_3$ C->.c2
₀ ->.E2 Predicted ₀ E2->.D ₀ D->.d	Shifted 1D->.d	Scanned $_{1}$ D->d. Completed $_{0}$ E2->D. $_{0}$ ->E2.	

Parsing rectangular scenes by grammar

How much does top-down improve bottom-up?

