1. Top-down / bottom-up parsing of attributed grammar
2. Alpha-beta-gamma processes
3. Discussions on scheduling and decision policy
4. Example on human pose parsing
5. Multi-Armed Bandit problem: exploration vs. exploitation

* Topics discussed in previous chapters.
Parse Graph Derivation

A grammar derivation is created by making a selection for each OR node, starting from the root. Each part encountered is instantiated into a parse graph, which gets its own state variables.

Probability on Parses

\[
p(y|I) \propto p(y)p(I|y) = \frac{1}{Z} \exp(-E(y, I))
\]

\[
E(y, I) = \sum_{w \in V(y)} f^a(v, I) + f^d(v) + f^i(v) + \sum_{(v_i, v_j) \in E(y)} f^{a2}(v_i, v_j) + f^{cd}(v_i, v_j)
\]

- \(f^a(v, I)\): appearance score
- \(f^d(v)\): geometry orientation score
- \(f^{a2}(v_i, v_j)\): geometry articulation score
- \(f^{cd}(v_i, v_j)\): production compatibility score
- \(f^i(v)\): production bias
Part Appearance

Histogram of Oriented Gradients (Dalal and Triggs, CVPR 2005)

Local (block) normalization

Each histogram is normalized with L2-norm of neighboring cells

\[
\begin{align*}
\mathcal{N}_1 &= n = \frac{1}{\sqrt{||b||^2 + \epsilon^2}} \\
\mathcal{N}_2 &= h \rightarrow \frac{1}{2} h (n_1 + n_2 + n_3 + n_4)
\end{align*}
\]
Effect of Local Normalization

Image Segmentation
Image Segmentation (DDMCMC)

Prior

\[p(W) \propto p(K) \prod_{i=1}^{K} p(R_i) p(\ell_i) p(\Theta_i | \ell_i) \]
\[\propto \exp \left\{ -\lambda_k K - \sum_{i=1}^{K} \left[\mu \int_{aR_i} ds + \gamma |R_i| \kappa + \nu |\Theta_i| \right] \right\} \]

Likelihood

\[p(I_{\lambda_k} | R_i; \ell_i, \Theta_i) = N(\mu_i, \Sigma_i) \]

Using Segmentation to Compute Part Contrast

Foreground correctly segmented

Foreground incorrectly segmented
Distance Measure Between Regions

\[d(\mu_0, \mu_1, \Sigma_0, \Sigma_1) = (\mu_0 - \mu_1)^T \Sigma_1^{-1} (\mu_0 - \mu_1) \]

Part Template

Unknown number of adjoining regions is handled by placing region features uniformly around the part boundary.
Edge vs. Region Scores

Largely due to local normalization, edge response has many spurious peaks. Region response, however, is more stable.

![Edge vs. Region Scores](image)

Influence of Region Features on Parsing Results

[Images showing the influence of region features on parsing results]
Potential Functions and Contextual Relations

Contextual relations control the geometric, and syntactic compatibility between parts.

Part Parameterization

Part state is 6-dimensional, for type, position, scale, orientation, and aspect ratio

\[v = (\omega, x, y, \theta, \ell, s) \]
Coordinate Transforms to Proximal and Distal Joints

Relations between parts are transformed to the coordinate system of the joint that connects them.

\[
\begin{bmatrix}
 dx \\
 dy
\end{bmatrix} = T_{ω_3}^p(v_3) - T_{ω_1}^d(v_1)
\]

Inference

Exact inference can be computed using message-passing / dynamic programming
Inference

Recursive relation to compute the maximal scoring (minimal energy) parse.

\[M(v_i|\omega_i) = f_{\omega_i}^q(v_i, I) + f_{\omega_i}^1(v_i) + f_{\omega_i}^c \]
+ \[\sum_{(v_i, v_j) \in R_{\omega_i}} \max_{v_j} \left[f_{\omega_i}^{g_2}(v_i, v_j) + f_{\omega_i}^{c_2}(v_i, v_j) + M(v_j|\omega_j) \right]. \]

\[M(x_1, y_1, \theta_1, z, a|x_0) = \]
\[\max_{(x_2, y_2, \theta_2, x_3, y_3)} \left[f_{x_1}(\omega_1) + f_{x_1}(x_1, x_2) + \sum_{i=2}^{n} \left(f_{x_i}(\theta_i, \theta_{i-1}) + f_{x_i}(x_i, x_{i+1}) \right) + M(x_n, y_n, \theta_n, x_3, y_3) \right] \]

Distance transforms of sampled functions (Felzenszwalb and Huttenlocher, 2004)

\[D_g(x) = \min_{x'}((x - x')^2 + g(x')) \] can be computed in linear time!

We therefore choose the Gaussian potential

\[f_{\omega_i}(x_i, x_j) = -dx^2 \]
Learning

Margin-rescaled structured-output SVM objective function (primal):

\[
\min_{\lambda} \frac{1}{2} ||w||^2 + \frac{C}{|D|} \sum_{i=1}^{|D|} \xi_i \\
\text{s.t. } \lambda^T [\phi(\tilde{p}t_i, I_i) - \phi(pt, I_i)] \geq L(pt, \tilde{p}t_i) - \xi_i \\
\forall pt \in \Omega_\Omega, \forall i.
\]

SO-SVM dual objective (Wolfe dual):

\[
\alpha^* = \arg \max_\alpha \left(\langle L, \alpha \rangle - \frac{1}{2} \langle \alpha, H \alpha \rangle \right) \\
\text{s.t. } \sum_{i \in I_k} \alpha_i = \frac{C}{m}, \forall k, \\
\alpha_i \geq 0, \forall i
\]

\[
w = \sum_i \alpha_i z_i \\
z_i = \phi(\tilde{p}i, I) - \phi(pt, I)
\]

Can be solved by one of many freely available QP solvers.
Adding Constraints

Separation oracle:

\[
\hat{p}_t = \arg \max_{p_t} \lambda^T \phi(p_t, I_t) + L(p_t, \tilde{p}_t)
\]

Problem: what happens if the parameter weight for the α^2 terms are negative?

Positivity Constraints on Parameters

Primal constraints are of the form:

\[
\langle w, z_i \rangle \geq b_i - \zeta_k
\]

Introduce this artificial example for each constrained parameter, for each example
1-slack vs. N-slack

1-slack primal objective:

\[
\min_\lambda \frac{1}{2} \|w\|^2 + C \xi \\
\text{s.t.} \quad \frac{1}{\eta} \lambda^T \left[\sum_i (\phi(p\tilde{t}_i, I_i) - \phi(p_i, I_i)) \right] \geq \frac{1}{\eta} \sum_i L(pt_i, \tilde{t}_i) - \xi_i \\
\forall pt \in \Omega_g, \forall (p_{t_1}, \ldots, p_{t_m}).
\]

1-slack dual objective:

\[
\max_{\alpha \geq 0} \langle L, \alpha \rangle - \frac{1}{2} \langle \alpha, H\alpha \rangle \\
\text{s.t.} \quad \sum_i \alpha_i = C
\]
Constraint Cache with 1-slack

- Keep top-N constraints for each example in a cache, sorted by their inner product with the current model vector.
- Synthesize a new 1-slack constraint by summing the top scoring constraints from each example. If this new constraint causes a violation, add it to H and reoptimize the dual.
- This can dramatically reduce the number of times the separation oracle must be called.

Some Results

State-of-art performance on PARSE and Leeds datasets (published in CVPR13)
Performance Evaluation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>torso</th>
<th>head</th>
<th>u.leg</th>
<th>l.leg</th>
<th>u.arm</th>
<th>l.arm</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARSE</td>
<td>J Ea [13] (2010)</td>
<td>85.4</td>
<td>76.1</td>
<td>73.4</td>
<td>65.4</td>
<td>64.7</td>
<td>46.9</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td>TZN [21] (2012)</td>
<td>97.1</td>
<td>92.2</td>
<td>85.1</td>
<td>76.1</td>
<td>71.0</td>
<td>45.1</td>
<td>74.4</td>
</tr>
<tr>
<td></td>
<td>FMP [25] (2011)</td>
<td>97.6</td>
<td>93.2</td>
<td>83.9</td>
<td>75.1</td>
<td>72.0</td>
<td>48.3</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td>DR [8] (2012)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>77.4</td>
</tr>
<tr>
<td></td>
<td>Ours (AG)</td>
<td>99.5</td>
<td>95.6</td>
<td>81.8</td>
<td>67.0</td>
<td>74.3</td>
<td>54.6</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>Ours (AOG)</td>
<td>100.0</td>
<td>96.2</td>
<td>87.0</td>
<td>75.3</td>
<td>73.2</td>
<td>53.9</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>Ours (AOG+BG)</td>
<td>99.5</td>
<td>97.4</td>
<td>88.4</td>
<td>78.0</td>
<td>74.1</td>
<td>56.1</td>
<td>79.0</td>
</tr>
<tr>
<td></td>
<td>Ours (AOG+BG)^1</td>
<td>99.5</td>
<td>97.4</td>
<td>89.2</td>
<td>78.3</td>
<td>74.6</td>
<td>56.9</td>
<td>79.5</td>
</tr>
<tr>
<td>Leeds</td>
<td>TZN [21] (2012)</td>
<td>95.8</td>
<td>87.8</td>
<td>69.9</td>
<td>60.0</td>
<td>51.9</td>
<td>32.9</td>
<td>61.3</td>
</tr>
<tr>
<td></td>
<td>JBb [14] (2011)</td>
<td>88.1</td>
<td>74.6</td>
<td>74.5</td>
<td>66.5</td>
<td>53.7</td>
<td>37.5</td>
<td>62.7</td>
</tr>
<tr>
<td></td>
<td>Ours (AG)</td>
<td>98.4</td>
<td>92.8</td>
<td>81.2</td>
<td>69.8</td>
<td>61.9</td>
<td>38.2</td>
<td>69.3</td>
</tr>
<tr>
<td></td>
<td>Ours (AOG)</td>
<td>98.8</td>
<td>92.7</td>
<td>83.9</td>
<td>74.4</td>
<td>64.0</td>
<td>41.1</td>
<td>71.8</td>
</tr>
<tr>
<td></td>
<td>Ours (AOG+BG)</td>
<td>98.3</td>
<td>92.7</td>
<td>83.7</td>
<td>73.1</td>
<td>66.0</td>
<td>41.4</td>
<td>71.9</td>
</tr>
<tr>
<td></td>
<td>Ours (AOG+BG)^1</td>
<td>98.3</td>
<td>92.7</td>
<td>86.8</td>
<td>78.2</td>
<td>70.2</td>
<td>45.1</td>
<td>75.2</td>
</tr>
</tbody>
</table>