Stat 232B-CS266B:
Statistical Computing and Inference
in Vision and Cognition
MW 3:30-4:45 pm, Spring 2020, Online
This graduate level course introduces a broad range of advanced algorithms for statistical inference and learning on hierachical models. More specifically, this course will focus on grammatical models in the form of probabilistic And-Or Graphs, including i) Spatial AOG for object recognition and scene understanding; ii) Attribute-AOG for human pose and attribute inference; iii) Temporal-AOG for event understanding and behavior predictions; iv) Causal-AOG for causal-effects in human-object/scene interactions; and v) the joint STC-AOG for comprehensive scene and event parsing across multi-cameras. the lecture will covers topics on:
Prerequisites
Reference books
Instructors
Grading Plan: 4 units, letter grades
| Project 1: Sampling And-Or Graph models | 20% |
Project 2: Parameter learning of And-Or Graph |
20% |
| Project 3: Structure Learning of And-Or Graph | 20% |
| Project 4: Generalized Earley Parser for online parsing and prediction | 20% |
| Project 5: Inside-outside Algorithm for neural-symbol inference and learning | 20% |
Tentative List of Topics [draft textbook, lecture notes, reading materals are distributed in CCLE]
Chapter 1 Introduction
1. Overview of regimes of models from Stat232A
2. Hierarchical STC-AOG representation and applications
3. Project design and requirements
Chapter 2 Spatial And-Or Graph
1. Terminology: basics of grammars, vocabulary, relations, parse graph, language
2. Characteristics of image grammars
3. And-Or graph for knowledge representation
4. Some examples
Chapter 3 Learning And-Or Graph
1. Parametric learning: EM algorithm, pursuit of contextural relations
2. Structure learning: Block pursuit, AOG fragment pursuit
3. Structure-parametric learning: Full-AOG and pruning
Chapter 4 Inference and parsing algorithms
1. Traditional parse algorithms: CYK, Earley parser, chart parsing
2. Inside-Outside: inferring and learning SCFG
3. Alpha-beta-gamma scheduling
4. Examples on object parsing
Chapter 5 Attributed And-Or Graph
1. Attribute grammar
2. Example I: parsing man-made object and scenes
3. Example II: geometric attribute for scene parsing
4. Example III: appearance attributes for human parsing
Chapter 6 Temporal And-Or Graph
1. Atomic actions
2. Representing events by T-AOG
3. Learning and pursuit T-AOG from videos and demonstrations
4. Event parsing and intent prediction with generalized Earley parser.
Chapter 7 Fluent and Causal-And-Or Graph
1. Fluents of objects and scenes, and causal relations
2. Perceptual causality
3. Pursueing causal relations
4. Learning the causal-AOG: Pursuit and transfer
Chapter 8 Joint parsing and integration
1. Scene centric parsing of object, scene and event
2. Examples: cross-view parsing of scenes and humans
3. Advanced topics: explanation and exploration with Logic + AOG + DNN.