Integers \(n \geq 0 \) and all states \(i_0, i_1, \ldots, i_{n-1}, i, j \),
\[
P(X_{n+1} = j \mid X_n = i, X_{n+1} = i_{n-1}, \ldots, X_0 = i_0) = P(X_{n+1} = j \mid X_n = i)
\]
whenever both sides are well-defined, this stochastic process is called a \textit{Markov chain}. It is called a \textit{homogeneous} Markov chain (HMC) if in addition, the right-hand side of (1.1) is independent of \(n \).

Property (1.1) is the \textit{Markov property}. The matrix \(P = [p_{ij}], j \in E \), where
\[
p_{ij} = P(X_{n+1} = j \mid X_n = i),
\]
is the \textit{transition matrix} of the HMC. Since its entries are probabilities, and since a transition from any state \(i \) must be to some state, it follows that
\[
p_{ij} \geq 0, \sum_{k \in E} p_{ik} = 1
\]
for all states \(i, j \). A matrix \(P \) indexed by \(E \) and satisfying the above properties is called a \textit{stochastic matrix}. The state space may be infinite, and therefore such a matrix is in general not of the kind studied in linear algebra. However, the basic operations of addition and multiplication will be defined by the same formal rules. For instance, with \(A = [a_{ij}], j \in E \) and \(B = [b_{ij}], j \in E \), the product \(C = AB \) is the matrix \([c_{ij}], j \in E \), where \(c_{ij} = \sum_{k \in E} a_{ik} b_{kj} \).

The notation \(X = \{x_i\}_{i \in E} \) formally represents a \textit{column} vector, and \(x^T \) is a \textit{row} vector, the transpose of \(x \). For instance, \(y = [y_i]_{i \in E} \) given by \(y^T = x^T \) \(A \) is defined by \(y_i = \sum_{k \in E} a_{ik} x_k \). Similarly, \(z = [z_i]_{i \in E} \) given by \(z = Ax \) is defined by \(z_i = \sum_{k \in E} a_{ik} x_k \).

Proving the Markov property is not, in general, a difficult task, and Theorems 2.1 and 2.2 below will suffice in most situations. However, there are cases outside their scope, and the following one is quite important, both in theory and in applications.

\textbf{Example 1.1. Machine Replacement} Let \(\{U_k\}_{k \geq 0} \) be a sequence of i.i.d. random variables taking their values in \(\{1, 2, \ldots, +\infty\} \). The random variable \(U_k \) can be interpreted as the lifetime of some machine, the \(n \)th one, which is replaced by the \((n+1) \)st one upon failure. Thus at time 0, machine 1 is put in service until it breaks down at time \(U_1 \), whereupon it is immediately replaced by machine 2, which breaks down at time \(U_2 + U_3 \), and so on. The elapsed time in service of the current machine at time \(n \) is denoted by \(X_n \). Thus, the process \(\{X_n\}_{n \geq 0} \) takes its values in \(E = \mathbb{N} \) and increases linearly from 0 at time \(R_k = \sum_{i=1}^k U_i \) to \(U_{k+1} - 1 \) at time \(R_{k+1} - 1 \).

The sequence \(\{R_k\}_{k \geq 0} \) defined in this way, with \(R_0 = 0 \), is called a \textit{renewal sequence}, and \(X_n \) is called the \textit{backward recurrence time} at time \(n \) (see Fig. 2.1.1). There is a rich and useful theory associated with renewal sequences, the so-called \textit{renewal theory}. It will be developed in Chapter 4.

The process \(\{X_n\}_{n \geq 0} \) is an HMC with state space \(E = \mathbb{N} \), and the nonnull entries of its transition matrix are of the form \(p_{i,i+1} \) and \(p_{i,0} = 1 - p_{i,i+1} \), where
\[
p_{i,i+1} = \frac{P(U_1 > i + 1)}{P(U_1 > i)}.
\]

\textbf{Figure 2.1.1. Backward recurrence time} To prove this, one must first verify (1.1), that is, writing \(B = \{X_0 = i_0, \ldots, X_{n-1} = i_{n-1}\} \),
\[
P(X_{n+1} = j, X_n = i, B) = \frac{P(X_{n+1} = j, X_n = i)}{P(X_n = i)}
\]
for sequences \(i_0, \ldots, i_{n-1}, i, j \) such that \(P(B, X_n = i, X_{n+1} = j) > 0 \). In particular, \(j = i+1 \) or 0, and \(i_{n-1} = i - 1, \ldots, i_0 = 0 \).

Let \(v(n) \) be the number of renewal times \(R_k \) in the interval \([1, n]\). Taking, for instance, \(j = i+1 \), and writing \(D = \{X_{n+1} = i_{n+1}, \ldots, X_0 = i_0\} \), we have
\[
P(X_{n+1} = j, X_n = i, B) = \frac{P(X_{n+1} = i + 1, X_n = i, X_{n-1} = i - 1, \ldots, X_{n+1} = 0, D)}{P(X_n = i)}
\]
\[
= \sum_{k=0}^{\infty} P(X_{n+1} = i + 1, X_n = i, X_{n-1} = i - 1, \ldots, X_{n+1} = 0, D, v(n) = k).
\]
The general term in the latter sum equals \(P(U_{k+1} > i + 1, R_k = n-i, D) = P(U_{k+1} > i+1)P(R_k = n-i, D) = P(U_1 > i+1)P(R_k = n-i, D) \). The independence of \(U_k \) has been used for the first equality, and the identity of the distributions of \(U_{k+1} \) and \(U_1 \) for the second one. Therefore,
\[
P(X_{n+1} = i + 1, X_n = i, B) = P(U_1 > i + 1) \left(\sum_{k=0}^{\infty} P(R_k = n - i, D) \right).
\]

Similar computations yield
\[
P(X_n = i, B) = P(U_1 > i) \left(\sum_{k=0}^{\infty} P(R_k = n - i, D) \right).
\]
so that
\[P(X_{n+1} = i + 1 \mid X_n = i, B) = \frac{P(U_1 > i + 1)}{P(U_1 > i)}. \]
The same calculations lead to the same evaluation for \(P(X_{n+1} = i + 1 \mid X_n = i) \). This proves the announced results. \(\square\)

The above example is atypical. Proving the Markov property and computing the transition probabilities are usually much easier. Most of the time, a representation of the state process in terms of a recurrence equation makes things easy (see Theorem 2.1 below). Nevertheless, there are a few tough cases.

Transition Graph

A transition matrix \(P \) is sometimes represented by its transition graph \(G \), a graph having for nodes (or vertices) the states of \(E \). This graph has an oriented edge from \(i \) to \(j \) if and only if \(p_{ij} > 0 \), in which case this edge is adorned with the label \(p_{ij} \).

The transition graph of the Markov chain of Example 1.1 is shown in Figure 2.1.2, where
\[p_i = \frac{P(U_1 = i + 1)}{P(U_1 > i)}. \]

Figure 2.1.2. Transition graph of the backward recurrence chain

1.2 Distribution of an HMC

The random variable \(X_0 \) is called the initial state, and its probability distribution \(\nu \),
\[\nu(i) = P(X_0 = i). \]
is the initial distribution. From Bayes's sequential rule, \(P(X_0 = i_0, X_1 = i_1, \ldots, X_k = i_k) = P(X_0 = i_0)P(X_1 = i_1 \mid X_0 = i_0) \cdots P(X_k = i_k \mid X_{k-1} = i_{k-1}, \ldots, X_0 = i_0) \), and therefore, in view of the homogeneous Markov property and the definition of the transition matrix,
\[P(X_k = i_0, X_1 = i_1, \ldots, X_k = i_k) = \nu(i_0)p_{i_0i_1} \cdots p_{i_{k-1}i_k}. \]

The data (1.5) for all \(k \geq 0 \), all states \(i_0, i_1, \ldots, i_k \), constitute the probability law, or distribution of the HMC. Therefore we have the following result.

Theorem 1.1. Distribution of an HMC
The distribution of a discrete-time HMC is determined by its initial distribution and its transition matrix.

The distribution at time \(n \) of the chain is the vector \(\nu_n \), where
\[\nu_n(i) = P(X_n = i). \]

From Bayes's rule of exclusive and exhaustive causes, \(\nu_{n+1}(j) = \sum_{i \in E} \nu_n(i)p_{ij} \), that is, in matrix form, \(\nu_{n+1} = \nu_n^T p \). Iteration of this equality yields
\[\nu_n^T = \nu_0^T p^n. \]

The matrix \(p^n \) is called the \textbf{n-step transition matrix} because its general term is
\[p_{ij}(m) = P(X_{n+m} = j \mid X_n = i). \]

Indeed, using Bayes's sequential rule and the Markov property, one finds for the right-hand side of the latter equality
\[\sum_{i_1, \ldots, i_{n+m} \in E} p_{i_1i_2} \cdots p_{i_{n+m}j}, \]
and this is the general term of the \(m \)th power of \(P \).

The Markov property (1.1) extends to
\[P(X_{n+1} = j_1, \ldots, X_{n+k} = j_k \mid X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0) = P(X_{n+k} = j_k \mid X_n = i) \]
for all \(i_0, \ldots, i_{n-1}, i, j_1, \ldots, j_k \) such that both sides of the equality are defined (Problem 2.1.2). Writing
\[A = \{X_{n+1} = j_1, \ldots, X_{n+k} = j_k\}, B = \{X_0 = i_0, \ldots, X_{n-1} = i_{n-1}\}, \]
the last equality reads \(P(A \mid X_n = i, B) = P(A \mid X_n = i) \), which is in turn equivalent to
\[P(A \cap B \mid X_n = i) = P(A \mid X_n = i)P(B \mid X_n = i). \]

In words: The future at time \(n \) and the past at time \(n \) are conditionally independent given the present state \(X_n = i \). This shows in particular that the Markov property is independent of the direction of time.

\textbf{Notation} We shall abbreviate \(P(A \mid X_0 = i) \) as \(P_i(A) \). If \(\mu \) is a probability distribution on \(E \), then \(P_\mu(A) = \sum_{i \in E} \mu(i)P_i(A) \) is the probability of \(A \) given that the initial state is distributed according to \(\mu \).
2 Markov Recurrences

2.1 A Canonical Representation

Many HMCs receive a natural description in terms of a recurrence equation driven by white noise.

Theorem 2.1. HMCs Driven by White Noise.

Let \(\{Z_n\}_{n \geq 1} \) be an i.i.d sequence of random variables with values in an arbitrary space \(E \). Let \(Z_n \) be a random variable with values in \(E \), independent of \(\{Z_n\}_{n \geq 1} \). The recurrence equation

\[
X_{n+1} = f(X_n, Z_{n+1})
\]

then defines an HMC.

The phrase white noise comes from signal theory and refers to the driving sequence \(\{Z_n\}_{n \geq 1} \).

Proof. Iteration of recurrence (2.1) shows that for all \(n \geq 1 \), there is a function \(g_n \) such that \(X_n = g_n(X_0, Z_1, \ldots, Z_n) \), and therefore \(P(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0) = P(f(i, Z_{n+1}) = j \mid X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0) = P(f(i, Z_{n+1}) = j) \), since the event \(\{X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0\} \) is expressible in terms of \(X_0, Z_1, \ldots, Z_n \) and is therefore independent of \(Z_{n+1} \). Similarly, \(P(X_{n+1} = j \mid X_n = i) = P(f(i, Z_{n+1}) = j) \). We therefore have a Markov chain, and it is homogeneous, since the right-hand side of the state equality does not depend on \(n \). Explicitly

\[
p_{ij} = P(f(i, Z_i) = j).
\]

\(\Box \)

Not all homogeneous Markov chains are naturally described by the model of Theorem 2.1. A slight modification of Theorem 2.1, however, considerably enlarges its scope.

Theorem 2.2.

Let \(X_n \) be a random variable with values in \(\mathbb{Z} \). Suppose instead that for all \(n \geq 0 \), \(Z_{n+1} \) is conditionally independent of \(Z_n, Z_{n-1}, \ldots, Z_0 \) given \(X_n \), that is, for all \(k, k_1, \ldots, k_n \in E, i_0, i_1, \ldots, i_n \in E,

\[
P(Z_{n+1} = k \mid X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0, Z_n = k_n, \ldots, Z_1 = k_1) = P(Z_{n+1} = k \mid X_n = i),
\]

where the latter quantity is independent of \(n \). Then \(\{X_n\}_{n \geq 0} \) is an HMC, with transition matrix \(P \) given by

\[
p_{ij} = P(f(i, Z_i) = j \mid X_0 = i).
\]

\[\Box\]

Remark 2.1. Not all homogeneous Markov chains receive a "natural" description of the type featured in Theorems 2.1 and 2.2, as Example 1.1 (machine replacement) shows. However, for any transition matrix \(P \) on \(E \), there exists a homogeneous Markov chain \(\{X_n\}_{n \geq 0} \) with this transition matrix and with a representation such as in Theorem 2.1, namely,

\[
x_{n+1} = j \text{ if } X_{n+1} \in \left\{ \sum_{k=0}^{j-1} p_{x_k}, \sum_{k=0}^{j} p_{x_k} \right\},
\]

where \(\{Z_n\}_{n \geq 1} \) is i.i.d, uniform on \([0, 1]\). We can apply Theorem 2.1, and check that this HMC has the announced transition matrix. This artificial representation is useful for simulating small Markov chains and can also be helpful for the theory.

\(\Box \)

2.2 A Few Famous Examples

The examples below will often be used to illustrate the theory.

Example 2.1. 1-D Random Walk

Let \(X_0 \) be a random variable with values in \(\mathbb{Z} \). Let \(\{Z_n\}_{n \geq 1} \) be a sequence of i.i.d random variables, independent of \(X_0 \), taking the values \(+1\) or \(-1\), and with the probability distribution

\[
P(Z_n = +1) = p,
\]

where \(p \in (0, 1) \). The process \(\{X_n\}_{n \geq 1} \) defined by

\[
x_{n+1} = X_n + Z_{n+1}
\]

is, in view of Theorem 2.1, an HMC, called the random walk on \(\mathbb{Z} \).

\(\Box \)

Example 2.2. Repair Shop

During day \(n \), \(Z_{n+1} \) machines break down, and they enter the repair shop on day \(n + 1 \). Every day one machine among those waiting for service is repaired. Therefore, denoting by \(X_n \) the number of machines in the shop on day \(n \),

\[
x_{n+1} = X_n - 1 + Z_{n+1},
\]

where \(a^+ = \max(a, 0) \). In particular, if \(\{Z_n\}_{n \geq 1} \) is an i.i.d sequence independent of the initial state \(X_0 \), then \(\{X_n\}_{n \geq 0} \) is a homogeneous Markov chain. In terms of the probability distribution

\[
P(Z_1 = k) = a_k, \quad k \geq 0,
\]

its transition matrix is

\[
P = \begin{pmatrix}
a_0 & a_1 & a_2 & a_3 & \cdots \\
a_0 & a_1 & a_2 & a_3 & \cdots \\
0 & a_0 & a_1 & a_2 & \cdots \\
0 & 0 & a_0 & a_1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]
Indeed, from (2.2) and (2.5),
\[p_{ij} = P((i-1)^{+} + Z_1 = j) = P(Z_1 = j - (i-1)^{+}) = a_{j-(i-1)^{+}}. \]

Example 2.3. Inventory
A given commodity is stocked in order to satisfy a continuing demand. The aggregated demand between time \(n \) and time \(n+1 \) is \(Z_{n+1} \), and it is assumed that \((Z_n)_{n \geq 1} \) is i.i.d. and independent of the initial value \(X_0 \) of the stock. Replenishment of the stock takes place at times \(n+1 \) (that is to say, immediately after time \(n \)) for all \(n \geq 1 \).

\[Z_1 = 1 \quad Z_2 = 4 \quad Z_3 = 2 \quad Z_4 = 1 \quad Z_5 = 1 \quad Z_6 = 3 \quad Z_7 = 2 \]

Figure 2.2.1. A sample path of the inventory Markov chain

A popular management strategy is the so-called \((s, S)\)-strategy, where \(s \) and \(S \) are integers such that \(0 < s < S \). Under this inventory policy, if the level of the stock at time \(n \) is found not larger than \(s \), then it is brought to level \(S \) at time \(n + 1 \). Otherwise, nothing is done. The initial stock \(X_0 \) is assumed not greater than \(S \), and therefore \(\{X_n\}_{n \geq 1} \) takes its value in \(E = \{S, S-1, S-2, \ldots \} \). (See Fig. 2.2.1.) Negative values of the stock are allowed, with the interpretation that an unfilled demand is immediately satisfied upon restocking. With the above rules of operation, the evolution of the stock is governed by the dynamic equation

\[X_{n+1} = \begin{cases} X_n - Z_{n+1} & \text{if } s < X_n \leq S, \\ S - Z_{n+1} & \text{if } X_n < s. \end{cases} \]

(2.7)

In view of (2.7) and Theorem 2.1, \(\{X_n\}_{n \geq 1} \) is a homogeneous Markov chain.

Example 2.4. Branching Process
In this model \(X_n = (Z_n^{(1)}, Z_n^{(2)}, \ldots) \), where the random variables \((Z_n^{(j)})_{n \geq 1, j \geq 1} \) are i.i.d and integer valued. The recurrence equation

\[X_{n+1} = \sum_{k=1}^{X_n} Z_{n+1}^{(k)}, \]

(2.8)

with the convention \(X_{n+1} = 0 \) if \(X_n = 0 \), receives the following interpretation: \(X_n \) is the number of individuals in the \(n \)th generation of a given population (humans, particles, etc.). Individual number \(k \) of the \(n \)th generation gives birth to \(Z_{n+1}^{(k)} \) descendants, and this accounts for (2.8).

If the number \(X_0 \) of ancestors is independent of \((Z_n)_{n \geq 1} \), then according to Theorem 2.1, \(\{X_n\}_{n \geq 0} \) is a homogeneous Markov chain, called a branching process because of the genealogical tree that it generates (see Figure 2.2.2). The branching process is also known as the Galton–Watson process.

![Figure 2.2.2. Sample tree of a branching process](image)

We seek to obtain the probability of extinction of the population. For this we shall introduce \(g \), the common generating function of the variables \(Z_n^{(k)} \). The recurrence equation (2.8) provides a recurrent equation for the generating function of the number of individuals in the \(n \)th generation,

\[\psi_n(z) = E[z^{X_n}]. \]

(2.9)

Indeed,

\[\psi_{n+1}(z) = E[z^{X_{n+1}^{(1)}}] = E[z^{X_n} Z_{n+1}^{(1)}]. \]

where \(Z_{n+1}^{(k)} \) was denoted by \(Z^{(k)} \) for simplicity. Since \(X_n \) is a functional of \(X_0, Z_1, \ldots, Z_n \), it is independent of \(Z_{n+1}^{(1)} \), and therefore, in the latter equality, \(X_n \) is independent of \(Z^{(k)} \).

From a computation made in Chapter 1, Exercise 5.1,

\[E \left[z^{\sum_{k=1}^{X_n} Z_{n+1}^{(k)}} \right] = \psi_n(g(z)). \]

Therefore,

\[\psi_{n+1}(z) = \psi_n(g(z)). \]

Iterating this equality, we obtain

\[\psi_{n+1}(z) = \psi_0(g^{(n+1)}(z)), \]
where \(g^{(n)} \) is the \(n \)th iterate of \(g \). If there is only one ancestor, then \(\psi_0(z) = z \), and therefore
\[
\psi_{n+1}(z) = g^{(n+1)}(z) = g(g^{(n)}(z)),
\]
that is,
\[
\psi_{n+1}(z) = g(\psi_n(z)).
\tag{2.10}
\]
In particular, since \(\psi_n(0) = P(X_n = 0) \), we have
\[
P(X_{n+1} = 0) = g(P(X_n = 0)).
\tag{2.11}
\]
An equality that we shall use to discuss extinction. The event \(E = \text{"an extinction occurs"} \) is an "at least one generation is empty," that is,
\[
E = \bigcup_{n=1}^{\infty} \{X_n = 0\}.
\]
Also, since \(X_n = 0 \) implies \(X_{n+1} = 0 \), the family \(\{X_n = 0\} \) is nondecreasing, and by monotone sequential continuity,
\[
P(E) = \lim_{n \uparrow \infty} P(X_n = 0).
\tag{2.12}
\]
The generating function \(g \) is continuous, and therefore from (2.11) and (2.12), the probability of extinction necessarily satisfies equation
\[
P(E) = g(P(E)).
\tag{2.13}
\]
Let \(Z \) be any of the random variables \(Z^{(k)} \). It was shown in Chapter 1, Theorem 5.1, that including the trivial cases where \(P(Z = 0) = 1 \) or \(P(Z \geq 2) = 0 \),
(a) if \(E[Z] \leq 1 \), the only solution of \(x = g(x) \) in \([0, 1] \) is 1, and therefore \(P(E) = 1 \).
(b) if \(E[Z] > 1 \), there are two solutions of \(x = g(x) \) in \([0, 1] \), 1 and \(x_0 \) such that \(x_0 < 1 \). From the strict convexity of \(f : [0, 1] \rightarrow [0, 1] \), it follows that the sequence \(y_0 = 0 \) and \(y_{n+1} = g(y_n) \) converges to \(x_0 \). Therefore, when the mean number of descendants \(E[Z] \) is strictly larger than 1, then \(P(E) \) is in \((0, 1) \), and in particular, there is a nonnull probability of extinction.

Here is a small example. Suppose that
\[
g(z) = \frac{1}{4} + \frac{1}{4}z + \frac{1}{2}z^2.
\]
That is, the probabilities of having 0, 1, or 2 sons are respectively \(\frac{1}{4} \), \(\frac{1}{2} \), and \(\frac{1}{2} \). In particular, \(E[Z] = 1.25 > 1 \), and \(P(E) \) is the solution strictly between 0 and 1 of
\[
x = \frac{1}{4} + \frac{1}{4}x + \frac{1}{2}x^2,
\]
that is, \(P(E) = \frac{1}{2} \).

Example 2.5. Stochastic Automata
A finite automaton \((E, A, f)\) can read sequences of letters from a finite alphabet \(A \) written on some infinite tape. It can be in any state of a finite set \(E \), and its evolution is governed by a function \(f : E \times A \rightarrow E \), as follows. When the automaton is in state \(i \in E \) and reads letter \(a \in A \), it switches from state \(i \) to state \(j = f(i, a) \) and then reads on the tape the next letter to the right.

![Figure 2.2.3. The automaton: the recognition process and the Markov chain](image)
2. Discrete-Time Markov Models

An automaton can be represented by its transition graph \(G \) having for nodes the states of \(E \). There is an oriented edge from the node (state) \(i \) to the node \(j \) if and only if there exists \(a \in A \) such that \(j = f(i, a) \), and this edge then receives label \(a \). If \(j = f(i, a_1) = f(i, a_2) \) for \(a_1 \neq a_2 \), then there are two edges from \(i \) to \(j \) with labels \(a_1 \) and \(a_2 \); or, more economically, one such edge with label \((a_1, a_2) \). More generally, a given oriented edge can have multiple labels of any order.

Consider, for instance, the automaton with alphabet \(A = \{0, 1\} \) corresponding to the transition graph of Figure 2.2.3a. As the automaton, initialized in state 0, reads the sequence of Figure 2.2.3b from left to right, it is successively driven through the states (including the initial state 0)

\[0100123100123123010. \]

Rewriting the sequence of states below the sequence of letters, it appears that the automaton is in state 3 after it has seen three consecutive 1's. This automaton is therefore able to recognize and count such blocks of 1's. However, it does not take into account overlapping blocks (see Fig. 2.2.3b).

If the sequence of letters read by the automaton is \(\{A_n\}_{n \geq 1} \), the sequence of states \(\{X_n\}_{n \geq 0} \) is then given by the recurrence equation \(X_{n+1} = f(X_n, A_{n+1}) \) and therefore, if \(\{A_n\}_{n \geq 1} \) is i.i.d and independent of the initial state \(X_0 \), then \(\{X_n\}_{n \geq 1} \) is, according to Theorem 2.1 an HMC.

\[\diamond \]

Example 2.6. The Urn of Ehrenfest
This simplified model of diffusion through a porous membrane was proposed in 1907 by the Austrian physicists Tatiana and Paul Ehrenfest to describe in terms of statistical mechanics the exchange of heat between two systems at different temperatures. Their model also considerably helped our understanding of thermodynamic irreversibility (we shall discuss this in Section 2.3 of Chapter 4).

There are \(N \) particles that can be either in compartment \(A \) or in compartment \(B \). Suppose that at time \(n \geq 0 \), \(X_n = i \) particles are in \(A \). One then chooses a particle at random, and this particle is moved at time \(n + 1 \) from where it is to the other compartment. Thus, the next state \(X_{n+1} \) is either \(i - 1 \) (the displaced particle was found in compartment \(A \)) with probability \(\frac{i}{N} \), or \(i + 1 \) (it was found in \(B \)) with probability \(\frac{N-i}{N} \).

This model pertains to Theorem 2.2. For all \(n \geq 0 \),

\[X_{n+1} = X_n + Z_{n+1}, \quad (2.14) \]

where \(Z_n \in \{-1, +1\} \) and \(P(Z_{n+1} = -1 | X_n = i) = \frac{i}{N} \). The nonzero entries of the transition matrix are therefore

\[p_{i,i+1} = \frac{N-i}{N}, \quad p_{i,i-1} = \frac{i}{N}, \quad (2.15) \]

We refer to (2.15).

3 First-Step Analysis

3.1 Absorption Probability

Many functions of homogeneous Markov chains, in particular probabilities of absorption by a closed set \(A \) is called closed if \(\sum_{i \in A} P_{i j} = 1 \) for all \(i \in A \) and average times before absorption, can be evaluated by a technique called first-step analysis. This technique, which is the motor of most computations in Markov chain theory, is best illustrated by the following example.

Example 3.1. Gambler's Ruin
Two players \(A \) and \(B \) play "heads or tails" where heads occur with probability \(p \in (0, 1) \) and the successive outcomes form an i.i.d sequence. Calling \(X_n \) the fortune in dollars of player \(A \) at time \(n \), then \(X_{n+1} = X_n + Z_{n+1} \), where \(Z_{n+1} \in \{-1, +1\} \) with probability \(p \) (resp., \(q = 1 - p \)), and \(\{Z_n\}_{n \geq 1} \) is i.i.d. In other words, \(A \) bets \$1 on heads at each toss and \(B \) bets \$1 on tails. The respective initial fortunes of \(A \) and \(B \) are \(a \) and \(b \). The game ends when a player is ruined, and therefore the process \(\{X_n\}_{n \geq 1} \) is a random walk as described in Example 2.1, except that it is restricted to \(E = \{0, \ldots, a, a + 1, \ldots, a + b = c\} \). The duration of the game is \(T \), the first time \(n \) at which \(X_n = 0 \) or \(c \), and the probability of winning for \(A \) is \(u(a) = P(X_T = c | X_0 = a) \).

\[c = a + b \]

![Figure 2.3.1. The basic random walk and the gambler's ruin](image)

Instead of computing \(u(a) \) alone, first-step analysis computes

\[u(i) = P(X_T = c | X_0 = i) \]

for all states \(i \in [0, c] \), and for this, it first generates a recurrence equation for the \(u(i) \)'s by breaking down event "A wins" according to what can happen after the first step (the first toss) and using the rule of exclusive and exhaustive causes. If \(X_0 = i \in [1, c - 1] \), then \(X_1 = i + 1 \) (resp., \(X_1 = i - 1 \)) with probability \(p \) (resp., \(q \)), and the probability of ruin of
Example 3.4. Gambler’s Ruin
This example continues Example 3.1. The average duration $m(i) = E[T \mid X_0 = i]$ of the
game when the initial fortune of player A is i satisfies the recurrence equation

$$m(i) = 1 + pm(i + 1) + qm(i - 1)$$

(3.4)

for $i \in [1, c - 1]$. Indeed, the coin will be tossed at least once, and then with probability p
(resp., q) the fortune of player A will be $i + 1$ (resp., $i - 1$), and therefore $m(i + 1)$ (resp.,
$m(i - 1)$) more tosses will be needed on average before one of the players goes broke. The
boundary conditions are

$$m(0) = 0, \quad m(c) = 0.$$

(3.5)

In order to solve (3.4) with the boundary conditions (3.5), write (3.4) in the form $-1 =
p(m(i + 1) - m(i)) - q(m(i) - m(i - 1))$. Defining

$$y_i = m(i) - m(i - 1),$$

we have, for $i \in [1, c - 1]$,

$$-1 = py_{i+1} - qy_i$$

(3.6)

and

$$m(i) = y_1 + y_2 + \cdots + y_i.$$

(3.7)

We now solve (3.6) with $p = q = \frac{1}{2}$. From (3.6),

$$-1 = \frac{1}{2} y_2 - \frac{1}{2} y_1,$$

$$-1 = \frac{1}{2} y_3 - \frac{1}{2} y_2,$$

$$\vdots$$

$$-1 = \frac{1}{2} y_i - \frac{1}{2} y_{i-1},$$

and therefore, summing up,

$$-(i - 1) = \frac{1}{2} y_i - \frac{1}{2} y_1,$$

that is, for $i \in [1, c]$,

$$y_i = y_1 - 2(i - 1).$$

Reporting this expression in (3.7), and observing that $y_1 = m(1)$, we obtain

$$m(i) = im(1) - 2[1 + 2 + \cdots + (i - 1)] = im(1) - i(i - 1).$$

The boundary condition $m(c) = 0$ gives $cm(1) = c(c - 1)$ and therefore, finally,

$$m(i) = i(c - i).$$

(3.8)

4 Topology of the Transition Matrix

4.1 Communication

All the properties defined in the present section are topological in the sense that they concern
only the naked transition graph (without the labels).

Definition 4.1. Communication
State j is said to be accessible from state i if there exists $M \geq 0$ such that $p_{ij}(M) > 0$. In
particular, a state i is always accessible from itself, since $p_{ii}(0) = 1$. States i and j are said to communicate if i is accessible from j and j is accessible from i, and this is denoted by $i \leftrightarrow j$.

For $M \geq 1$, $p_{ij}(M) = \sum_{k=1}^{M} p_{ik} \cdots p_{kj}$, and therefore $p_{ij}(M) > 0$ if and only
if there exists at least one path i, i, \ldots, i, j from i to j such that

$$p_{ii} p_{ij} \cdots p_{M-1,j} > 0,$$

or, equivalently, if there is an oriented path from i to j in the transition graph G. Clearly,

$$i \leftrightarrow i$$ \quad (reflexivity),

$$i \leftrightarrow j \Rightarrow j \leftrightarrow i$$ \quad (symmetry),

$$i \leftrightarrow j, j \leftrightarrow k \Rightarrow i \leftrightarrow k$$ \quad (transitivity).

Therefore, the communication relation \leftrightarrow is an equivalence relation, and it generates a
partition of the state space E into disjoint equivalence classes called communication classes.

Definition 4.2. Closed Sets
A state i such that $p_{ii} = 1$ is called closed. More generally, a set C of states such that for
all $i \in C$, $\sum_{j \in C} p_{ij} = 1$ is called closed.

Example 4.1.
The transition graph of Figure 2.4.1 has 3 communication classes: $\{1, 2, 3, 4\}, \{5, 7, 8\}$, and
$\{6\}$. State 6 is closed. The communication class $\{5, 7, 8\}$ is not closed, but the set $\{5, 6, 7, 8\}$
is.

Observe in this example that there may exist oriented edges linking two different communication
classes E_k and E_ℓ. However, all the oriented edges between two communication classes have the same orientation (all from E_k to E_ℓ or all from E_ℓ to E_k). Why?
2. Discrete-Time Markov Models

Figure 2.4.1. A transition graph with 3 communication classes

Definition 4.3. Irreducibility

If there exists only one communication class, then the chain, its transition matrix, and its transition graph, are said to be irreducible.

4.2 Period

Consider the random walk on \(\mathbb{Z} \) (Example 2.1). Since \(p \in (0, 1) \), it is irreducible. Observe that \(E = C_0 + C_1 \), where \(C_0 \) and \(C_1 \), the set of even and odd relative integers respectively, have the following property. If you start from \(i \in C_0 \) (resp., \(C_1 \)), then in one step you can go only to a state \(j \in C_1 \) (resp., \(C_0 \)). The chain \(\{X_n\} \) passes alternately from one class to the other. In this sense, the chain has a periodic behavior, corresponding to the period 2. More generally, we have the following.

Theorem 4.1. Cyclic Structure

For any irreducible Markov chain, one can find a unique partition of \(E \) into \(d \) classes \(C_0, C_1, \ldots, C_{d-1} \) such that for all \(k, i \in C_k \),

\[
\sum_{j \in C_{k+1}} p_{ij} = 1
\]

where by convention \(C_d = C_0 \), and where \(d \) is maximal (that is, there is no other such partition \(C'_0, C'_1, \ldots, C'_{d-1} \) with \(d' > d \)).

Proof: A direct consequence of Theorem 4.3 below.

The number \(d \geq 1 \) is called the period of the chain (resp., of the transition matrix, of the transition graph). The classes \(C_0, C_1, \ldots, C_{d-1} \) are called the cyclic classes.

The chain therefore moves from one class to the other at each transition, and this cyclically, as shown in Figure 2.4.2.

Example 4.2.

The chain with the transition graph depicted in Figure 2.4.3 is irreducible and has period \(d = 3 \), with the cyclic classes \(C_0 = \{1, 2\}, C_1 = \{4, 7\}, C_3 = \{3, 5, 6\} \).

Consider now an irreducible chain of period \(d \) with the cyclic classes \(C_0, C_1, \ldots, C_d \).

Renumbering the states of \(E \) if necessary, the transition matrix has the block structure below (where \(d = 4 \), to be explicit),

\[
P = \begin{pmatrix}
 C_0 & C_1 & C_2 & C_3 \\
 C_0 & 0 & A_0 & 0 \\
 C_2 & 0 & 0 & A_1 \\
 C_3 & A_3 & 0 & 0
\end{pmatrix}
\]
and therefore P^2, P^3, and P^4 also have a block structure corresponding to C_0, C_1, C_2, C_3:

\[
P^2 = \begin{pmatrix}
0 & 0 & B_0 & 0 \\
0 & 0 & 0 & B_1 \\
B_2 & 0 & 0 & 0 \\
0 & B_3 & 0 & 0
\end{pmatrix}, \\
P^3 = \begin{pmatrix}
0 & 0 & D_0 & 0 \\
D_1 & 0 & 0 & 0 \\
0 & D_2 & 0 & 0 \\
0 & 0 & D_3 & 0
\end{pmatrix}, \\
P^4 = \begin{pmatrix}
E_0 & 0 & 0 & 0 \\
0 & E_1 & 0 & 0 \\
0 & 0 & E_2 & 0 \\
0 & 0 & 0 & E_3
\end{pmatrix}.
\]

We observe two phenomena: block-shifting and the block-diagonal form of P^4. This is, of course, general: P^d has a block-diagonal form corresponding to the cyclic classes $C_0, C_1, \ldots, C_d - 1$:

\[
P^d = \begin{pmatrix}
C_0 & C_1 & \cdots & C_{d-1} \\
C_1 & E_0 & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
C_{d-1} & 0 & \cdots & E_{d-1}
\end{pmatrix}.
\] (4.1)

The d-step transition matrix P^d is also a stochastic matrix, and obviously the P-cyclic classes $C_0, C_1, \ldots, C_{d-1}$ are all in different P^d-communication classes, as the diagonal block structure shows.

The question is this: Is there, in C_0 for instance, more than one P^d-communication class? The answer is no, and therefore matrix E_0 in (4.1) is an irreducible stochastic matrix. To see this, take two different states $i, j \in C_0$. Since they P-communicate (P was assumed irreducible), there exist $m > 0$ and $n > 0$ such that $p_{ij}(m) > 0$ and $p_{ji}(n) > 0$. But since P has period d, necessarily $m = Md, n = Nd$ for some $M > 0$ and $N > 0$. Therefore, $p_{ij}(Md) > 0$ and $p_{ji}(Nd) > 0$. But $p_{ij}(Md)$ is the (i, j) term of $(P^{Md})^k$, and similarly for $p_{ji}(Nd)$. We therefore have proven that i and j P^d-communicate.

Also (Problem 2.4.7), the restriction of P^d to any cyclic class is aperiodic.

For an arbitrary transition matrix, not necessarily irreducible, the formal notion of period is the following.

Definition 4.4. Arithmetic Definition of Period

The period d_i of state $i \in E$ is, by definition,

\[
d_i = \gcd(n \geq 1 : p_{ii}(n) > 0),
\] (4.2)

with the convention $d_i = +\infty$ if there is no $n \geq 1$ with $p_{ii}(n) > 0$. If $d_i = 1$, the state i is called aperiodic.

Theorem 4.2. Period Is a Class Property

If states i and j communicate they have the same period.

Proof. As i and j communicate, there exist integers N and M such that $p_{ij}(M) > 0$ and $p_{ji}(N) > 0$. For any $k \geq 1$,

\[
p_{ii}(M + nk + N) \geq p_{ij}(M)(p_{jj}(k))^n p_{ji}(N)
\]

Therefore, for any $k \geq 1$ such that $p_{jj}(k) > 0$, we have $p_{ii}(M + nk + N) > 0$ for all $n \geq 1$. Therefore, d_i divides $M + nk + N$ for all $n \geq 1$, and in particular, d_i divides k. We have therefore shown that d_i divides all k such that $p_{jj}(k) > 0$, and in particular, d_i divides d_j. By symmetry, d_j divides d_i, and therefore, finally, $d_i = d_j$.

\[\square\]

We can therefore speak of the period of a communication class or of an irreducible chain.

The important result concerning periodicity is the following.

Theorem 4.3. Lattice Theorem

Let P be an irreducible stochastic matrix with period d. Then for all states i, j there exist $m \geq 0$ and $n_0 \geq 0$ (m and n_0 possibly depending on i, j) such that

\[
p_{ij}(m + nd) > 0, \forall n \geq n_0.
\] (4.3)

Proof. First observe that it suffices to prove this for $i = j$. Indeed, there exists m such that $p_{ii}(m) > 0$, because j is accessible from i, the chain being irreducible, and therefore, if for some $n_0 \geq 0$ we have $p_{ii}(nd) > 0$ for all $n \geq n_0$, then $p_{ij}(m + nd) \geq p_{ii}(m)p_{ij}(nd) > 0$ for all $n \geq n_0$. The gcd of the set $A = \{k \geq 1 : p_{jj}(k) > 0\}$ is d, and A is closed under addition. The set A therefore contains all but a finite number of the positive multiples of d (see Theorem 1.1 of the Appendix). In other words, there exists n_0 such that $n > n_0$ implies $p_{jj}(nd) > 0$.

\[\square\]

5 Steady State

5.1 Stationarity

We now introduce the central notion of the stability theory of discrete-time HMCs.

Definition 5.1. Stationary Distribution

A probability distribution π satisfying

\[
\pi^T = \pi^T P
\] (5.1)

is called a stationary distribution of the transition matrix P, or of the corresponding HMC.

The global balance equation (5.1) says that for all states i,

\[
\pi(i) = \sum_{j \in E} \pi(j)p_{ji}.
\] (5.2)
5 Steady State

and, for the boundary states,

\[\pi(0) = \pi(1) \frac{1}{N}, \quad \pi(N) = \pi(N - 1) \frac{1}{N}.\]

Leaving \(\pi(0)\) undetermined, one can solve the balance equations for \(i = 0, 1, \ldots, N\) successively, to obtain

\[\pi(i) = \pi(0) \binom{N}{i} i.

The value of \(\pi(0)\) is then determined by writing that \(\pi\) is a probability vector:

\[1 = \sum_{i=0}^{N} \pi(i) = \pi(0) \sum_{i=0}^{N} \binom{N}{i} = \pi(0) 2^N.

This gives for \(\pi\) the binomial distribution of size \(N\) and parameter \(\frac{1}{2}:

\[\pi(i) = \frac{1}{2^N} \binom{N}{i}.

(5.4)

This is the distribution one would obtain by placing independently each particle in the compartments, with probability \(\frac{1}{2}\) for each compartment.

5.2 Examples

Example 5.1. Two-State Markov Chain

Take \(E = \{1, 2\}\) and define the transition matrix

\[P = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix},\]

where \(\alpha, \beta \in (0, 1)\). The global balance equations are

\[\begin{align*}
\pi(1) &= \pi(1)(1 - \alpha) + \pi(2) \beta, \\
\pi(2) &= \pi(1) \alpha + \pi(2)(1 - \beta).
\end{align*}\]

This is a dependent system which reduces to the single equation \(\pi(1) \alpha = \pi(2) \beta\), to which must be added \(\pi(1) + \pi(2) = 1\) expressing that \(\pi\) is a probability vector. We obtain

\[\begin{align*}
\pi(1) &= \frac{\beta}{\alpha + \beta}, \\
\pi(2) &= \frac{\alpha}{\alpha + \beta}.
\end{align*}\]

Example 5.2. The Urn of Ehrenfest

The corresponding HMC was described in Example 2.6. The global balance equations are, for \(i \in [1, N - 1]\),

\[\pi(i) = \pi(i - 1) \left(1 - \frac{i - 1}{N}\right) + \pi(i + 1) \frac{i + 1}{N}.

Example 5.3. Symmetric Random Walk

A symmetric random walk on \(\mathbb{Z}\) cannot have a stationary distribution. Indeed, the solution of the balance equation

\[\pi(i) = \frac{1}{2} \pi(i - 1) + \frac{1}{2} \pi(i + 1),

for \(i \geq 0\), with initial data \(\pi(0)\) and \(\pi(1)\), is

\[\pi(i) = \pi(0) + (\pi(1) - \pi(0)) i.

Since \(\pi(i) \in [0, 1]\), necessarily \(\pi(1) - \pi(0) = 0\). Therefore, \(\pi(i)\) is a constant, necessarily 0 because the total mass of \(\pi\) is finite. Thus for all \(i \geq 0\), and therefore, in view of the global balance equation, for all \(i\), \(\pi(i) = 0\), a contradiction if we want \(\pi\) to be a probability distribution.

Example 5.4. Stationary Distributions May Be Many

Take the identity as transition matrix. Then any probability distribution on the state space is a stationary distribution.

Recurrence equations can be used to obtain the stationary distribution when the latter exists and is unique. Generating functions sometimes usefully exploit the dynamics.
Example 5.5. Repair Shop
This example continues Example 2.2. For any complex number \(z \) with modulus not larger than 1, it follows from the recurrence equation (2.4) that

\[
z_0 \cdot z^{X_{n+1}} = (z^{X_n})^{z_{n+1}} = z^{X_n} - l(X_n=0) + z^{l(X_n=0)}
\]

and therefore

\[
z_0 \cdot z^{X_{n+1}} = z^{X_0} - z^{l(X_0=0)} = (z - 1)l(X_0=0)
\]

from the independence of \(X_n \) and \(z_{n+1} = E[z_{n+1}z_n^{X_{n+1}}] = E[z_{n+1}]g_z(z) \), where \(g_z(z) \) is the generating function of \(Z_{n+1} \), and \(E[1|X_n=0] = 1 - P(X_n=0) \).

Therefore,

\[
z_0 \cdot z^{X_{n+1}} = z^{X_0} - z^{l(X_0=0)} = (z - 1)l(X_0=0)
\]

This gives the generating function \(g_z(z) = \sum_{i=0}^{\infty} \pi(i)z^i \), as long as \(\pi(0) \) is available. To obtain \(\pi(0) \), differentiate (5.5):

\[
g_z(z)(z - g_z(z)) + g_z(z)(1 - g_z(z)) = \pi(0)(g_z(z) + (z - 1)g_z(z))
\]

and let \(z = 1 \), to obtain, taking into account the equalities \(g_z(1) = g_z(1) = 1 \) and \(g_z(1) = E[Z] \),

\[
\pi(0) = 1 - E[Z].
\]

Since \(\pi(0) \) must be nonnegative, this immediately gives the necessary condition \(E[Z] \leq 1 \).

Actually, one must have, if the trivial case \(Z_{n+1} = 1 \) is excluded,

\[
\]

Indeed, if \(E[Z] = 1 \), implying \(\pi(0) = 0 \), it follows from (5.5) that

\[
g_z(z)(z - g_z(z)) = 0
\]

for all \(x \in [0, 1] \). But excluding the case \(Z_{n+1} = 1 \) (that is, \(g_z(x) = x \)), the equation \(g_z(x) = 0 \) has only \(x = 1 \) for a solution when \(g_z(x) = E[Z] \leq 1 \) (see Chapter 1, Theorem 5.1).

Therefore, \(g_z(x) = 0 \) for all \(x \in [0, 1] \), and consequently \(g_z(x) = 0 \) on \([z] < 1 \). This leads to a contradiction, since the generating function of an integer-valued random variable cannot be identically null.

We shall prove later that \(E[Z] < 1 \) is also a sufficient condition for the existence of steady state. For the time being, we learn from (5.5) and (5.6) that, if the stationary distribution exists, then its generating function is given by the formula

\[
\sum_{i=0}^{\infty} \pi(i)z^i = (1 - E[Z])(z - g_z(z))
\]

Example 5.6. Birth and Death with Two Reflecting Barriers
The Ehrenfest model is a special case of a birth-and-death HMC with reflecting barriers at 0 and \(N \). The state space of such a chain is \(E = \{0, 1, \ldots, N\} \), and its transition matrix is

\[
P = \begin{pmatrix}
0 & 1 & & & & \\
 & q_1 & r_1 & p_1 & & \\
 & & q_2 & r_2 & p_2 & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
 & & & & & \\
& & & & & \\
1 & 0 & & & &
\end{pmatrix}
\]

where \(p_i > 0, q_i > 0, \) and \(p_i + q_i + r_i = 1 \) for all states \(i \in [1, N - 1] \). The global balance equations for the states \(i \in [1, N - 1] \) are

\[
\pi(i) = \pi(i-1) + r_i \pi(i) + q_{i+1} \pi(i+1).
\]

and for the boundary states,

\[
\pi(0) = \pi(1)q_1, \quad \pi(N) = \pi(N - 1)p_{N-1}.
\]

Of course, \(\pi \) must be a probability, whence

\[
\sum_{i=0}^{N} \pi(i) = 1.
\]

Writing \(r_i = 1 - p_i + q_i \) and regrouping terms gives for \(i \in [2, N - 1] \),

\[
\pi(i + 1)q_{i+1} - \pi(i)p_i = \pi(i)q_i - \pi(i - 1)p_{i-1}
\]

and

\[
\pi(1)q_1 = \pi(0), \quad \pi(2)q_2 = \pi(1)p_1 = \pi(1)q_1 - \pi(0).
\]

Therefore, \(\pi(1)q_1 = \pi(0) \), and for \(i \in [2, N - 1] \),

\[
\pi(i)q_i = \pi(i-1)p_{i-1}.
\]

This gives

\[
\pi(1) = \pi(0) \frac{1}{q_1},
\]

and for \(i \in [2, N] \),

\[
\pi(i) = \pi(0) \frac{p_1 p_2 \cdots p_{i-1}}{q_1 q_2 \cdots q_i}.
\]
The unknown $\pi(0)$ is obtained by $\sum_{i=0}^{N} \pi(i) = 1$, that is,
\[
\pi(0) \left(1 + \frac{1}{q_1} + \frac{p_1}{q_1 q_2} + \cdots + \frac{p_1 p_2 \cdots p_{N-1}}{q_1 q_2 \cdots q_{N-1} q_N} \right) = 1. \tag{5.10}
\]

Example 5.7. Birth and Death with One Reflecting Barrier

The model is the same as above, except that the state space is $E = \mathbb{N}$, and therefore the upper barrier is at infinity. The same computations as above lead to the expression (5.9) for the general solution of $P^T \mathbf{P} = \pi^T$, which depends on the initial condition $\pi(0)$. For this solution to be a probability, we must have $\pi(0) > 0$. Also, writing $\sum_{i=1}^{\infty} \pi(i) = 1$,
\[
\pi(0) \left(1 + \frac{1}{q_1} + \sum_{j=1}^{\infty} \frac{p_1 p_2 \cdots p_j}{q_1 q_2 \cdots q_{j+1}} \right) = 1. \tag{5.11}
\]
Thus a stationary distribution exists if and only if
\[
\sum_{j=1}^{\infty} \frac{p_1 p_2 \cdots p_j}{q_1 q_2 \cdots q_{j+1}} < \infty. \tag{5.12}
\]
In this case $\pi(i)$ is given by the expressions in (5.9), where $\pi(0)$ is determined by (5.11).

6 Time Reversal

6.1 Reversed Chain

The notions of time-reversal and time-reversibility are very productive, in particular in the theory of Markov chains, and especially in Monte Carlo simulation (Chapter 7) and queuing theory (Chapter 9).

Let $\{X_n\}_{n \geq 0}$ be an HMC with transition matrix \mathbf{P} and admitting a stationary distribution π such that
\[
\pi(i) > 0 \quad (6.1)
\]
for all states i. Define the matrix \mathbf{Q}, indexed by E, by
\[
\pi(i)q_{ij} = \pi(j)p_{ji}. \quad (6.2)
\]
This matrix is stochastic, since
\[
\sum_{j \in E} q_{ij} = \sum_{j \in E} \frac{\pi(j)}{\pi(i)} p_{ji} = \frac{1}{\pi(i)} \sum_{j \in E} \pi(j)p_{ji} = \frac{\pi(i)}{\pi(i)} = 1,
\]
where the third equality uses the balance equations. Its interpretation is the following: Suppose that the initial distribution of $\{X_n\}$ is π, in which case for all $n \geq 0$, $i \in E$,
\[
P(X_n = i) = \pi(i). \quad (6.3)
\]

Then, from Bayes's retroduction formula,
\[
P(X_n = j \mid X_{n+1} = i) = \frac{P(X_{n+1} = i \mid X_n = j)P(X_n = j)}{P(X_{n+1} = i)},
\]
that is, in view of (6.2) and (6.3),
\[
P(X_n = j \mid X_{n+1} = i) = q_{ji}. \tag{6.4}
\]
We see that \mathbf{Q} is the transition matrix of the initial chain when time is reversed.

The following is a very simple observation that will be promoted to the rank of a theorem in view of its usefulness and also for the sake of easy reference.

Theorem 6.1. Reversal Test

Let \mathbf{P} be a stochastic matrix indexed by a countable set E, and let π be a probability distribution on E. Let \mathbf{Q} be a stochastic matrix indexed by E such that for all $i, j \in E$,
\[
\pi(i)q_{ij} = \pi(j)p_{ji}. \tag{6.5}
\]
Then π is a stationary distribution of \mathbf{P}.

Proof. For fixed $i \in E$, sum equalities (6.5) with respect to $j \in E$ to obtain
\[
\sum_{j \in E} \pi(i)q_{ij} = \sum_{j \in E} \pi(j)p_{ji}.
\]
But the left-hand side is equal to $\pi(i)\sum_{j \in E} q_{ij} = \pi(i)$, and therefore, for all $i \in E$,
\[
\pi(i) = \sum_{j \in E} \pi(j)p_{ji}. \quad \square
\]

Example 6.1. Extension of a Stationary Chain to Negative Times

Time reversal can also be used to extend to negative times a chain $\{X_n\}_{n \geq 0}$ in steady state corresponding to a stationary distribution π such that $\pi(i) > 0$ for all $i \in E$. See Problem 2.6.2.

6.2 Time Reversibility

Definition 6.1. Reversible Chain

One calls reversible a stationary Markov chain with initial distribution π (a stationary distribution) assumed positive if for all $i, j \in E$,
\[
\pi(i)p_{ij} = \pi(j)p_{ji}. \tag{6.6}
\]

In this case, $q_{ij} = p_{ji}$, and therefore the chain and the time-reversed chain are statistically the same, since the distribution of a homogeneous Markov chain is entirely determined by its initial distribution and its transition matrix (Theorem 1.1). Equations (6.6) are called the detailed balance equations. The following is an immediate corollary of Theorem 6.1.
Corollary 6.1. Detailed Balance Test
Let P be a transition matrix on the countable state space E, and let π be some probability distribution on E. If for all $i, j \in E$, the detailed balance equations (6.6) are satisfied, then π is a stationary distribution of P.

Example 6.2. The Urn of Ehrenfest
This example continues Examples 2.6 and 5.2. Recall that we obtained the expression

$$\pi(i) = \frac{1}{2N^n} \binom{N}{i}$$

for the stationary distribution. Checking the detailed balance equations

$$\pi(i)p_{i,i+1} = \pi(i+1)p_{i+1,i}$$

is immediate.

Example 6.3. The Generalized Mouse
The reason for the title of this example is that it is an abstract form of the motion of a mouse in a maze; see Example 3.2. However, the professionals call this a random walk on a graph.

Consider a finite nonoriented graph and call E the set of vertices, or nodes, of this graph. Call d_i the number of edges “adjacent” to node i. Transform this graph into an oriented graph by splitting each edge into two oriented edges of opposite directions, and make it a transition graph by associating to the oriented edge from i to j the transition probability $\frac{1}{d_i}$ (see Fig. 2.6.1).

Figure 2.6.1. A random walk on a graph

It will be assumed, as is the case in Figure 2.6.1, that $d_i > 0$ for all states i. A stationary distribution (in fact, the stationary distribution, as we shall see later, in Chapter 3) is given by

$$\pi(i) = \frac{d_i}{\sum_{j\in E} d_j}.$$