STAT232B
Importance and Sequential Importance Sampling

Gianfranco Doretto
Andrea Vedaldi

June 7, 2004
1 Monte Carlo Integration

- **Goal:** computing the following integral

\[\mu = \int_{\chi} h(x)\pi(x) \, dx \]

- **Standard numerical methods:** discretize the domain \(\chi \) by regular grid, evaluate \(h(x)\pi(x) \), and then use the Riemann sum as approximation.

- **Monte Carlo integration:** consider \(\mu = E_{\pi}[h(X)] \), \(X \sim \pi \), draw \(m \) samples \(x^{(1)}, \ldots, x^{(m)} \) from \(\pi \), and compute the **Monte Carlo estimate**:

\[\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} h(x^{(i)}) \]
Monte Carlo Integration: properties of the estimator

- **Rate of convergence:** by the law of large numbers we have
 \[\hat{\mu} \longrightarrow \mu \text{ in } O(m^{-1/2}) \]

- **Unbiasedness:**
 \[E[\hat{\mu}] = E\left[\frac{1}{m} \sum_{i=1}^{m} h(X^{(i)}) \right] = E_\pi[h(X)] \]

- **Variance:**
 \[\text{var}(\hat{\mu}) = \text{var}\left(\frac{1}{m} \sum_{i=1}^{m} h(X^{(i)}) \right) = \frac{1}{m} \text{var}(h(X)) \]
 \[= \frac{1}{m} \int_{\chi} (h(x) - \mu)^2 \pi(x) dx \]
3 Monte Carlo Integration: can we do better?

- Rate of convergence: sorry, this is the best we can do!
- Unbiasedness: hey, you cannot ask more than this!
- Variance: sure there is something we can do: reducing it!
 - is sampling from π the best thing we can do?
 - what if I do not know how to sample from π?

USE IMPORTANCE SAMPLING!
4 Importance sampling

- **Idea:** consider $X \sim g$, such that $\int_{\chi} g(x)dx = 1$, and $g(x) \neq 0 \forall x \in \chi$, so that

\[
\mu = \int_{\chi} h(x)\pi(x)dx = \int_{\chi} \frac{h(x)\pi(x)}{g(x)}g(x)dx = E_g\left[\frac{h(x)\pi(x)}{g(x)}\right]
\]

and the new Monte Carlo estimate is

\[
\tilde{\mu} = \frac{1}{m} \sum_{i=1}^{m} h(x^{(i)}) \frac{\pi(x^{(i)})}{g(x^{(i)})} = \frac{1}{m} \sum_{i=1}^{m} w^{(i)} h(x^{(i)})
\]

where $w^{(i)} = \pi(x^{(i)})/g(x^{(i)})$ are the **importance weights**.
5 Importance Sampling: properties of the estimator

- Rate of convergence:

\[\tilde{\mu} \to \mu \text{ in } O(m^{-1/2}) \]

- Unbiasedness:

\[
E[\tilde{\mu}] = E\left[\frac{1}{m} \sum_{i=1}^{m} \frac{\pi(X^{(i)}) h(X^{(i)})}{g(X^{(i)})} \right] = E_{\pi}[h(X)]
\]

- Variance:

\[
\text{var}(\tilde{\mu}) = \frac{1}{m} \int_{\chi} \left(\frac{h(x)\pi(x)}{g(x)} - \mu \right)^2 g(x) \, dx
\]

Note: minimized if \(g(x) \propto |h(x)\pi(x)| \). In particular, if \(\alpha g(x) = h(x)\pi(x) \), then \(\tilde{\mu} = \alpha \), and \(\text{var}(\tilde{\mu}) = 0! \)
6 Importance Sampling: biased estimator

- Note that:

\[\bar{w} = \frac{1}{m} \sum_{i=1}^{m} w^{(i)} \quad E[\bar{w}] = E\left[\frac{1}{m} \sum_{i=1}^{m} \frac{\pi(X^{(i)})}{g(X^{(i)})} \right] = 1 \]

and one can use also the following estimator:

\[\hat{\mu} = \frac{w^{(1)} h(x^{(1)}) + \cdots + w^{(m)} h(x^{(m)})}{w^{(1)} + \cdots + w^{(m)}} \]

- Biased:

\[E[\hat{\mu}] = E\left[\frac{\sum_{i=1}^{m} w^{(i)} h(X^{(i)})}{\sum_{i=1}^{m} w^{(i)}} \right] = \sum_{i=1}^{m} E\left[\frac{\pi(X^{(i)}) h(X^{(i)})}{g(X^{(i)}) \sum_{i=1}^{m} w^{(i)}} \right] \neq E_{\pi}[h(X)] \]
Advantages of the biased estimator

- $\hat{\mu}$ may have smaller mean square error than $\tilde{\mu}$
- Need to know π only up to a constant factor c. Therefore we can use the weights

$$w^{(i)} = \frac{c\pi(x^{(i)})}{g(x^{(i)})}$$
8 Importance Sampling: an estimator independent of h

- **Goal:** computing $E_{\pi}[h(X)]$ for some arbitrary h, when sampling from π is difficult

- **Solution:** design g and use importance sampling

- **Recap:**
 - Ideal case:
 \[
 (x^{(1)}, \ldots, x^{(m)}) \sim \pi \rightarrow \hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} h(x^{(i)})
 \]

 - Importance sampling solution:
 \[
 (x^{(1)}, \ldots, x^{(m)}) \sim g \rightarrow \hat{\mu} = \frac{\sum_{i=1}^{m} w^{(i)} h(x^{(i)})}{\sum_{i=1}^{m} w^{(i)}}
 \]
9 Efficiency of Importance Sampling

- Define the coefficient of variation as
 \[cv^2(w) = \frac{\sum_{j=1}^{m} (w(j) - \bar{w})^2}{(m - 1)\bar{w}^2} \]

- Define the effective sample size as
 \[ESS(m) = \frac{m}{1 + cv^2(w)} \]

- As a first order approximation
 \[\frac{\text{var}_\pi(\hat{\mu})}{\text{var}_g(\hat{\mu})} \approx \frac{1}{1 + cv^2(w)} = \frac{ESS(m)}{m}, \]
Interpretation of the efficiency

- Since
 \[
 \text{var}_\pi(\hat{\mu}) \propto \frac{1}{m}
 \]
 then
 \[
 \text{var}_g(\hat{\mu}) \propto \frac{1}{\text{ESS}(m)}
 \]

- \textit{m samples drawn from } g \textit{ are worth } \text{ESS}(m) \textit{ samples drawn from } \pi

- \textbf{If}, \ g(x) \approx \pi(x) \Rightarrow \text{weights are similar} \Rightarrow cv^2(w) \text{ is small} \Rightarrow \text{ESS}(m) \approx m

- \textbf{Rule of thumb: keep } cv^2(w) \text{ small}
Sequential Importance Sampling: dealing with high dimensional spaces

- **Goal**: computing $E_\pi[h(X)]$, with $X = (X_1, ..., X_n) \sim \pi$ for $n \gg 1$.

- **Basic idea**: decompose $\pi(x)$

$$
\pi(x) = \pi(x_1)\pi(x_2|x_1) \cdots \pi(x_n|x_1, ..., x_{n-1})
$$

and sample from the **conditionals**:

$$
\begin{align*}
&x_1^{(j)} \sim \pi(x_1), \\
&x_2^{(j)} \sim \pi(x_2|x_1^{(j)}), \\
&\vdots \\
&x_n^{(j)} \sim \pi(x_n|x_1^{(j)}, ..., x_{n-1}^{(j)})
\end{align*}
\rightarrow (x_1^{(j)}, x_2^{(j)}, ..., x_n^{(j)}).
$$
12 Sequential Importance Sampling: dealing with high dimensional spaces

- **Problem**: cannot sample from $\pi(x_t|x_1, \ldots, x_{t-1})$.

- **Idea**: generalize importance sampling: sample from a sequence of trial distributions $g_1(x_1), g_2(x_2|x_1), \ldots, g_n(x_n|x_1, \ldots, x_{n-1})$, such that:

 $$g(x) = g_1(x_1)g_2(x_2|x_1) \cdots g_n(x_n|x_1, \ldots, x_{n-1})$$

 and

 $$w(x) = \frac{\pi(x_1)\pi(x_2|x_1) \cdots \pi(x_n|x_1, \ldots, x_{n-1})}{g_1(x_1)g_2(x_2|x_1) \cdots g_n(x_n|x_1, \ldots, x_{n-1})}$$

If $x_t = (x_1, \ldots, x_t)$ is the **partial sample**), then the **partial weight** is

$$w_t(x_t) = w_{t-1}(x_{t-1}) \frac{\pi(x_t|x_{t-1})}{g_t(x_t|x_{t-1})} = w_{t-1}(x_{t-1}) \frac{\pi(x_t)}{\pi(x_{t-1})g_t(x_t|x_{t-1})}$$
13 Sequential Importance Sampling

- **Problem**: cannot even compute the marginal $\pi(x_t)$.

- **Idea**: introduce another layer of auxiliary distributions $\pi_1(x_1), \pi_2(x_2), \ldots, \pi_n(x_n)$ such that

 $$\pi_t(x_t) \approx \pi(x_t), \quad t = 1, \ldots, n - 1 \quad \text{and} \quad \pi_n(x_n) = \pi(x_n).$$
14 **SIS step**

1: **for** $t = 2, \ldots, n$ **do**
2: draw $x_t \sim g_t(x_t|x_{t-1})$
3: let $x_t \leftarrow (x_t, x_{t-1})$
4: compute the **incremental weight**

$$u_t \leftarrow \frac{\pi_t(x_t)}{\pi_{t-1}(x_{t-1}) g_t(x_t|x_{t-1})} = \frac{\pi_t(x_{t-1})}{\pi_{t-1}(x_{t-1})} \frac{\pi_t(x_{t-1})}{g_t(x_{t-1}|x_{t-1})}$$

5: compute the **partial weight** $w_t \leftarrow w_{t-1} u_t$.
6: **end for**

where

<table>
<thead>
<tr>
<th>distribution</th>
<th>notation</th>
<th>approximates</th>
</tr>
</thead>
<tbody>
<tr>
<td>trial</td>
<td>$g_t(x_t</td>
<td>x_1, \ldots, x_{t-1})$</td>
</tr>
<tr>
<td>auxiliary</td>
<td>$\pi_t(x_1, \ldots, x_t)$</td>
<td>$\pi(x_1, \ldots, x_t)$</td>
</tr>
</tbody>
</table>
The choice of the trial distribution

- **1-step-look-ahead:**

 \[g_t(x_t|x_{t-1}) \propto \pi_t(x_t|x_{t-1}) \]

 simpler incremental weight \(u_t = \pi_t(x_{t-1})/\pi_{t-1}(x_{t-1}) \), with no dependence on \(x_t \), and no correction ratio

- **(s + 1)-step-look-ahead:**

 \[g_t(x_t|x_{t-1}) \propto \int \pi_{t+s}(x_{t+s}, \ldots, x_t|x_{t-1})dx_{t+1} \cdots dx_{t+s} \]

 tries to make use of as much future information as possible. It is computationally impractical for high \(s \).
16 The normalizing constant

- If we know $\pi(x_t)$ only up to a normalizing constant, which means that we know $q_t(x_t) = Z_t \pi(x_t)$. Then, the incremental weight is

$$u_t = \frac{q_t(x_t)}{q_{t-1}(x_{t-1}) g_t(x_t|x_{t-1})} = \frac{Z_t \pi_t(x_t)}{Z_{t-1} \pi_{t-1}(x_{t-1}) g_t(x_t|x_{t-1})}$$

- The final weight become

$$w_n = \prod_{t=1}^{n} u_t = \frac{Z_n}{Z_1} \frac{\pi_n(x_n)}{g(x_1) \cdots g_n(x_n|x_{n-1})}$$

- It is possible to estimate the normalizing constant by

$$E[w_n] = \frac{Z_n}{Z_1}$$
The parallel SIS framework

- **Goal:** draw m samples $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}$, from π to estimate $E_{\pi}[h(\mathbf{X})]$.

- **Sequential approach:** repeat m sequential sampling processes to sample $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}$.

- **Parallel approach:** start m independent sequential sampling processes in parallel meaning that:

 for $t = 1, \ldots, n$ do: generate m i.i.d. samples $x_{t}^{(j)}$ from $g_{t}(\cdot|x_{t-1}^{(j)}), j = 1, \ldots, m$ to produce the collection

 \[\{(x_{t}^{(1)}, x_{t-1}^{(1)}), \ldots, (x_{t}^{(m)}, x_{t-1}^{(m)})\} \].
Speeding up the SIS: uses of the estimated weights

The estimates of the weights are used to “diagnose and repair” the collection of samples by one of the following techniques:

- **Rejection control**: handle a **specific sample** $x_t^{(j)}$ by discarding it and starting from scratch if its weight is too small.

- **Resampling**: handle the **whole collection** $\{x_t^{(1)}, \ldots, x_t^{(m)}\}$ by replacing low weighted samples with copies of the high weighted ones.

- **Partial rejection control**: handle a **specific sample** $x_t^{(j)}$ by backtracking and resampling it if its weight is too small.
Case study: self-avoiding random walk

A self-avoiding random walk (SAW) of length n is fully characterized by the points $\mathbf{x} = (x_1, \ldots, x_n)$, such that $x_t \in \mathbb{Z}^2$, $\|x_{i+1} - x_i\| = 1$, and $x_i \neq x_k, \forall k < i$. Ω_n is the set of all SAWs of length n.

Problem: sample m SAWs from the following distribution

$$\pi(\mathbf{x}) = \frac{1}{Z_n}, \quad Z_n = |\Omega_n|,$$

and compute statistics such as $E[\|x_n - x_1\|^2]$, and Z_n.
20 SAWs samples
Estimating the partition function

\[Z_t \approx cq^t, \quad c = 1.32 \ (2.14), \quad q = 2.65 \ (2.66), \]

\[Z_t = q_{\text{eff}}^t \gamma^{-1}, \quad q_{\text{eff}} = 2.64 \ (2.64), \quad \gamma = 1.3 \ (1.38). \]
Estimating the squared extension

We used the samples to estimate \(R_t = E_\pi[\|x_t - x_1\|^2] \).

\[R_t \approx at^b, \quad a = 1.0 \ (0.917), \quad b = 1.44 \ (1.45). \]
23 A naive sampler

1. Start the SAW at (0, 0).

2. For \(t = 2, \ldots, n \) do

 - the walker cannot go back to \(x_{t-1} \);
 - sample, with equal probability, one of the three allowed neighboring positions;
 - if the positions has already been visited go to Step 1.
A naive sampler

The graphs show how many times one has to restart the sampler before a valid SAW can be drawn, as function of \(n \). Asymptotically, the average number of resampling is \(O(1.13^n) \).

Need a more efficient sampler!
Setting up the SIS framework

To setup a SIS sampler, one has to

1. choose the trial distributions $g_t(x_t), \ t = 1, \ldots, n$ and
2. choose the auxiliary distributions $\pi_t(x_t), \ t = 1, \ldots, n$.
Auxiliary distribution

Different choices for \(\pi_t(x_t) \) are possible:

<table>
<thead>
<tr>
<th>type</th>
<th>auxiliary distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-look-ahead</td>
<td>(\pi_t(x_t) = \pi^t(x_t))</td>
</tr>
<tr>
<td>2-look-ahead</td>
<td>(\pi_t(x_t) = \sum_{x_{t+1}} \pi^{t+1}(x_{t+1}, x_t))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>q-look-ahead</td>
<td>(\pi_t(x_t) = \sum_{x_{t+1}, \ldots, x_{t+q-1}} \pi^{t+q-1}(x_{t+q-1}, \ldots, x_{t+1}, x_t))</td>
</tr>
</tbody>
</table>

In general:

\[
\pi_t(x_t) = \pi^{t+q-1}(x_t) = \frac{n^{t+q-1}(x_t)}{Z_{t+q-1}}, \quad q \geq 1.
\]

where \(n^{t+l}(x_t) \) is the number of SAWs of length \(t + l \) that start with \(x_t = (x_1, \ldots, x_t) \).
27 Trial distribution

- Since the auxiliary distributions are very simple, the trial distributions can be obtained directly from the these:

\[g_t(x_t|x_{t-1}) = \pi_t(x_t|x_{t-1}) = \frac{n_t^{t+q-1}(x_t, x_{t-1})}{n_t^{t+q-1}(x_{t-1})}. \]

- The incremental weights are (up to a unknown constant factor)

\[u_t^{(j)} \propto \frac{1}{g_t(x_t^{(j)}|x_1^{(j)}, \ldots, x_{t-1}^{(j)})}. \]
Our criterion for efficiency

- **Efficiency.** Let

<table>
<thead>
<tr>
<th></th>
<th>SIS sampler</th>
<th>ideal sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td># sampling op.</td>
<td>T</td>
<td>T^*</td>
</tr>
<tr>
<td># equivalent samples obtained</td>
<td>m</td>
<td>m^*</td>
</tr>
</tbody>
</table>

The efficiency of the SIS sampler is

$$E = \frac{m/T}{m^*/T^*}$$

- **Effective efficiency.** If we set $m = \text{ESS}(m^*)$, then

$$E_{\text{eff}} = \frac{T^*}{T} \frac{\text{ESS}(m^*)}{m^*}.$$
Comparing the trial distributions

- Coefficient of Variation
- ESS
- Efficiency
- Effective Efficiency
30 Speeding up the sampler

We can speed up the sampler by using the following techniques:

- rejection control,
- resampling,
- partial rejection control.
31 Rejection Control (RC)

- **Goal**: avoid to carry on low-weighted (therefore useless) samples.

- **How**: use the partial weights to detect and kill as soon as possible low-weighted samples.

We perform a RC step with time schedule \(\{t_1, t_2, \ldots, t_k, \ldots, t_l\} \) and thresholds \(\{c_1, c_2, \ldots, c_k, \ldots, c_l\} \). At time \(t_k \), each sample is accepted with probability

\[
\min \left\{ 1, \frac{w(j)}{c_k} \right\}
\]

and the weights are updated so that

\[
w^{(\ast j)} = p_c \max \left\{ c_t, w^{(\ast j)} \right\}.
\]
• The schedule can be either
 - **static**: \(t_k = kT \),
 - **dynamic**: we do a RC step if \(cv^2 > c_{\text{sched},t} \); typically,
 \[c_{\text{sched},t} = a_{\text{sched}} + b_{\text{sched}}t^{\alpha_{\text{sched}}} \].

• The rejection threshold can be set in a variety of ways:
 - **epsilon**: \(c_t = \epsilon \) very small: discards only zero weighted samples.
 - **average**: \(c_t = \alpha \min w_t^{(j)} + \beta \bar{w}_t + \gamma \max w_t^{(j)} \).
 - **percentile** \(c_t = \text{percentile}(\{w_t^{(1)}, \ldots, w_t^{(m)}\}, p) \).
 - **polynomial** \(c_t = a + bt^\alpha \).
Resampling (R)

- **Goal**: keep a set of high-weighted (aka useful) samples.
- **How**: substitute low weighted samples with copies of the high weighted ones.

We perform a R step with **time schedule** \(\{t_1, t_2, ..., t_k, ..., t_l\} \).

Given the samples \(\{x_{t_k}^{(1)}, ..., x_{t_k}^{(m)}\} \), we create a new set of samples \(\{x_{t_k}^{'(1)}, ..., x_{t_k}^{'(m)}\} \) by taking copies of the high-weighted ones:

- **Simple scheme**: \(x_{t_k}^{'(j')} = x_{t_k}^{(j)}, \quad j \sim w_{t_k}^{(j)}/\overline{w}_{t_k} \).
- **Residual scheme**: take \(\lfloor w_{t_k}^{(j)}/\overline{w}_{t_k} \rfloor \) copies of the sample \(x_{t_k}^{(j)} \) and fill the gaps using the simple scheme.

Then, we update the weights:

\[
 w_{t_k}^{(j)} \leftarrow \overline{w}_{t_k}, \quad j = 1, ..., m.
\]
33 Partial Rejection Control (PRC)

- **Goal**: keep a set of *high-weighted* samples.
- **How**: substituted low weighted samples with *computationally cheap* high-weighted ones.

We perform a R step with *time schedule* \{\(t_1, t_2, ..., t_k, ..., t_l\}\) and *thresholds* \{\(c_1, c_2, ..., c_k, ..., c_l\}\). At time \(t_k\):

- do a RC step, rejecting \(L\) samples;
- we go back at time \(t_{k-1}\) and we resample \(L\) new samples;
- we grow the new samples to time \(t_k\).
A Appendix: some mathematical details

A.1 Theoretical justification of Rejection Control

Given that a sample is accepted, its distribution is

\[x_t^{(j)} \sim g^*_t(x_t|x_1^{(j)}, \ldots, x_{t-1}^{(j)}) = \frac{\min \left\{ 1, \frac{w_t^{(j)}(x_t)}{c_t} \right\}}{p_c} g_t(x_t|x_1^{(j)}, \ldots, x_{t-1}^{(j)}). \]

The distribution \(g^* \) is closer than \(g \) (in \(\chi^2 \) norm) to the true marginal.

This is also the reason why the weights need to be updated:

\[w^{(*j)} \propto \frac{\pi_t}{g^*_t} = \frac{p_c}{\min \left\{ 1, \frac{w_t^{(j)}(x_t)}{c_t} \right\}} \frac{\pi_t}{g_t} = p_c \max \left\{ c_t, w_t^{(j)} \right\}. \]
A.2 Justification of Resampling

Consider \(\{x^{(1)}, \ldots, x^{(m)} : x^{(j)} \sim g(x)\} \), \(m \) big. Then,

\[
\#\{x^{(j)} : x^{(j)} = z\} \approx mg(z).
\]

Any sample \(x^{(j)} = z \) has probability \(\approx w(z)/m \) to be resampled. Therefore

\[
P(x^{*}(j) = z) \approx mg(z) \frac{w(z)}{m} = \pi(z)
\]

which explains why samples weights are constant after resampling.
A.3 Evaluating the real efficiency of resampling is difficult

Resampling introduce correlation among samples: the efficiency formulas are not valid anymore. In particular, just after the first resampling step one has

$$E \left[\left(\sum_{i=1}^{n} \frac{x_i}{n} \right)^2 \right] \approx \sigma_x^2 \left(\frac{1}{\text{ESS}(n)} + \frac{1}{n} \right).$$

So the variance of the estimator get worst!