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Abstract 
Line drawings provide an effective means of communication about the geometry of 3D objects. An understanding 
of how to duplicate the way humans interpret line drawings is extremely important in enabling man-machine com- 
munication with respect to images, diagrams, and spatial constructs. In particular, such an understanding could 
be used to provide the human with the capability to create a line-drawing sketch of a polyhedral object that the 
machine can automatically convert into the intended 3D model. 

A recently published paper (Marill 1991) presented a simple optimization procedure supposedly able to duplicate 
human judgment in recovering the 3D "wire frame" geometry of objects depicted in line drawings. Marill pro- 
vided some impressive examples, but no theoretical justification for his approach. Here, we introduce our own 
work by first critically examining Marill's algorithm. We provide an explanation for why Marill's algorithm was 
able to perform as well as it did on the examples he presented, discuss its weaknesses, and show very simple 
examples where it fails. We then provide an algorithm that improves on Marill's results. In particular, we show 
that an effective objective function must favor both symmetry and planarity--Marill deals only with the symmetry 
issue. By modifying Marill's objective function to explicitly favor planar-faced solutions, and by using a more 
competent optimization technique,~we were able to demonstrate significantly improved performance in all of the 
examples Marill provided and those additional ones we constructed ourselves. Finally, we examine some questions 
relevant to the implications of this work for understanding the human ability to interpret line drawings. 

1 Introduction 

The interpretation of line drawings has been an impor- 
tant focus for research in machine vision since the 
field's inception. There seems to be little question that 
human subjects can easily recover 3D models from 2D 
line drawings depicting many classes of objects. One 
such class of special interest has been called the "blocks 
world." This class consists primarily of polyhedral 
solids in 3D Euclidean space and the projections of the 
visible edges of these objects onto a 2D plane (which 
we call the line drawing). Given a single line drawing 
of a blocks world scene, normal human subjects will 
usually arrive at the same 3D interpretation, even 
though there may be a very large number of possible 
3D objects that could have produced the given drawing. 

Beginning with the work of Guzman in 1968, there 
has been a concerted effort by vision researchers to 

develop an algorithmic procedure that could duplicate 
human performance in interpreting line drawings, at 
least with respect to blocks world objects, A signifi- 
cant body of work in this area was produced by such 
prominent scientists as Clowes (1971), Huffman (1971), 
Waltz (LO72), Mackv~rth (1973), Kanade (1980), Draper 
(1981), and Sugihara (1982, 1984). However, the prob- 
lem as originally formulated, devising a procedure for 
recovering psychologically plausible 3D models from 
line drawings, remains unsolved. (A psychologically 
plausible reconstruction of a line drawing is the one 
that virtually all people will accept.) 

The earliest work by Guzman was heuristic in 
nature, failed in many cases where humans had no trou- 
ble in finding appropriate interpretations, and did not 
actually return a 3D model, but rather partitioned the 
scene into separate polyhedral objects. Clowes, Huff- 
man, Waltz, Mackworth, and Kanade formalized and 
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extended the work of Guzman, but did not solve the 
original problem. They were (usually) able to label the 
edges of the line drawing to correctly reflect a consis- 
tent 3D interpretation if one existed, or could assert 
that the drawing did not correspond to a realizable 
blocks world scene. Mackworth and Kanade explicitly 
exploited the planarity of the faces of blocks world and 
"Origami" objects (by employing a "gradient space" 
representation) to accomplish a form of semiquantitative 
recovery. In addition to consistent edge labeling, they 
could also constrain the relative orientation of the faces 
of the target 3D model. The labels could describe the 
edges as being convex, concave, occluding, and so 
forth, but still, for the general case, no explicit 3D 
model was returned (without introducing additional 
constraints) and the algorithms would make occasional 
errors. 1 

In a series of papers, Sugihara reformulated the 
realizability and recovery problems for line drawings 
of polyhedra (both with and without hidden lines re- 
moved) in purely algebraic terms. He required as in- 
put a specification of the vertexes defining each of the 
individual planar faces of the polyhedra, and also re- 
quired that the implied line drawing be a general- 
position projection of the polyhedra. With this approach 
he succeeded in providing an algebraic criterion as a 
necessary and sufficient condition for a line drawing 
to represent a physically realizable polyhedral object. 
He could also constrain the space of feasible solutions, 
and obtain a unique solution if enough additional con- 
straints were provided. These additional constraints 
were obtained from information beyond that provided 
by the line drawing (e.g., shading or texture informa- 
tion). Sugihara's work was an important advance, but 
again it fell short of the original goal. It will rarely be 
the case that a unique reconstruction is implied by the 
line drawing, and thus the primary objective of duplicat- 
ing human performance in this regard is not met. 2 

Our motivation for writing this article was supplied, 
in part, by a recent publication authored by T. Marill 
(1991). He refocused on the original problem of human 
interpretation of single line drawings as 3D structures; 
he did not restrict his universe to blocks world objects 
nor did he demand that the line drawings be complete. 
The surprising thing about his work was that he used 
an optimization approach involving (seemingly) an 
almost trivial objective function, and the simplest 
possible descent algorithm to find a solution, and yet 
provided examples of reconstructed objects that were, 
intuitively, extremely good. (Figure 1, examples A 

through I, shows the line drawings used in Marill's ex- 
periments.) However, his paper provided no justifica- 
tion for why the algorithm should work, and thus no 
basis for judging its generality or insight into how it 
could be improved (should this be desirable). 

The first reference we have found that presents the 
case for choosing between various interpretations of a 
line drawing based on an objective function is Hochberg 
and McAlister (1953). In their paper, they "showed that: 
(1) some variants of the Necker cube are more likely 
to be described as 2D figures, and some are more likely 
to be described as 3D; and (2) these differences could 
be predicted by an objective and plausible coding 
scheme. Within this scheme, the economy of descrip- 
tion was assessed by (among other measures) the 
number of lines and angles contained within the coding. 
Thus, the costs and benefits of 2- versus 3-D interpreta- 
tions could be assessed. Figures that could be coded 
more simply under a depth interpretation were, in fact, 
seen in depth; those that could not be simplified in this 
way were seen to lie in the picture plane" (Pomerantz 
& Kubovy 1981, pp. 439-440). 

Barrow and Tenenbaum (1981) suggested ideas 
similar to Marill's for interpreting line drawings (both 
for simple closed curves and polyhedra), but did not 
pursue the ideas in greater depth. More recently, Bar- 
nard and Pentland (1983) and Pentland and Kuo (1990) 
have pursued Barrow and Tenenbaum's approach for 
simple curves and line drawings of surfaces by finding 
the smoothest curve (or surface) corresponding to the 
line drawing. 

In this article we introduce our own work by first 
critically examining Marill's algorithm. We provide an 
explanation for why MariU's algorithm was able to per- 
form as well as it did on the examples he presented, 
discuss its weaknesses, and show very simple examples 
where it fails (figure 1, examples J through N). We then 
provide an algorithm that improves on Marill's results 
for all nine of his examples, and also successfully deals 
with the simple cases where Marill fails. Finally, we 
examine some questions relevant to the implications of 
this work for understanding the human ability to inter- 
pret line drawings. 

We see the work described here as being of both 
theoretical and practical interest. The practical utility 
of this work is its relevance to man-machine commun- 
ication about 3D structures via line drawings--in par- 
ticular, providing the human with the capability to 
create a line-drawing sketch of a polyhedral object that 
the machine can automatically convert into the intended 
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Cube 
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Solid Box 
Example B 

t 
Square With X 

Example C 
Tetrahedron 
Example D 

Table 
Example E 

Empty Box 
Example F 

Double Pyramid 
Example G 

Staircase 
Example H 

Asymmetric Solid 
Example I 

All of 
Marill's 

Examples 
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Examples 

% 
Hexagonal Prism 

Example J 
Hexagonal Plate 

Example K 

O C  
Polygonal Plates 

Example L 
Truncated Box 

Example M 
Hinge 

Example N 
Imp6ssible Pyramid 

Example O 

Fig. 1. The line drawings examined in this article. Examples A through I are taken from Marill's paper. Examples J through N are line drawings 
introduced here for which Marills' algorithm failed to recover a phychologically plausible 3D model. Example O is a line drawing for which 
a psychologically plausible 3D model is not feasible. 

3D model. Deficiencies in providing a complete theory 
are not fatal, since auxiliary information can always be 
supplied interactively to resolve ambiguities, but the 
underlying theory should reduce this "side communica- 
tion" to a minimum. 

2 Marill's MSDA Algorithm 

Marill's algorithm consists of two components, an ob- 
jective function and a simple descent optimization pro- 
cedure for finding a local minimum of this objective 
function. The objective function is simply the standard 
deviation of all of the angles (SDA) in the recovered 3D 

object with respect to their common mean. Mari11 calls 
the minimization of the SDA the MSDA principle. 

The input line drawing is specified as a set of points 
(vertexes) and lines; each point is represented by an 
(x, y) coordinate pair, and each line is represented by an 
integer pair corresponding to the sequence numbers of 
the two points it joins. The representation of the recov- 
ered 3D object involves supplying a third (z) coordinate 
for each of the originally specified points. This is what 
we call the orthographic extension of the line drawing. 3 
It is actually a wire frame rather than a solid object. 

To evaluate the objective function for a given pro- 
posed solution, every pair of lines terminating on a 
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point (as defined in the input specification) is con- 
sidered to form a separate angle. Thus, if five lines ter- 
minate on the same point, every potential 3D solution 
contains ten angles at this point that contribute to the 
objective function. Note that the intersection, between 
two lines that happen to cross at intermediate points 
of their extent in the line drawing, is not treated as a 
vertex, and does not contribute to the objective func- 
tion (even if the lines were to lie in the same plane in 
the 3D reconstruction). Similarly, two distinct vertexes 
can have the same (x, y) coordinates in the line draw- 
ing, but then the line segments terminating on the 
distinct vertexes do not interact to form angles (even 
if the vertexes coincide in the 3D reconstruction). 

Thus, given a line drawing with n vertexes, each 
possible orthographic extension is represented as a z 
vector having n components; the corresponding angles 
and SDA are computed to evaluate the proposed solu- 
tion. Marill uses a descent technique to search for a 
best answer, recognizing that this is simply a heuristic 
and that this approach will find only a single local 
minimum of his objective function. The input object 
has all of its z values initially set to zero; that is, it is 
a flat object lying in the (x, y) plane. At each stage in 
the search, the SDA of the current z vector is computed 
and the program then looks at the children of the cur- 
rent vector. These 2n children are all of the vectors one 
step size away from the current vector, and are formed 
by both adding and subtracting a specified value (Az) 
to each of the n components in the current z vector. 
The value of the SDA is computed for each of these 
2n children, and the child with the minimum SDA is 
selected as the new current vector. This process is 
repeated until no improvement in the SDA is obtained, 
and the resulting z vector is returned as the solution 
for the first of three rounds of descent. Each additional 
round uses a smaller Az and begins with the result of 
the preceding round. Marill experimentally found ef- 
fective values of Az for his three rounds to be 1, 0.5, 
and 0.1. 

Figure 2 shows a line drawing, its internal represen- 
tation as described above, and the reconstructions us- 
ing MariU's algorithm and the algorithm we describe 
in section 3. 

In the top left window of the figure is the input line 
drawing (with the vertexes numbered for reference by 
the written representation below). The four windows 
on the top right show two views of Marill's reconstruc- 
tion and two views of our reconstruction. In the mid- 
die of the figure is a table showing the internal represen- 

tation of the input line drawing. In the first row are the 
(x, y) coordinates of the vertexes, in the order shown 
on the drawing. 4 In the second row are the integer 
pairs representing the lines in the drawing. In the third 
row are the sequences of vertexes corresponding to the 
planar faces derived according to the rules of appen- 
dix A (see section 3). The reconstructions are discussed 
in section 3.3. 

2.1 Marill ' s Examples 

Marill described the application of his algorithm to ex- 
amples A through I of figure 1. We categorize these 
examples along the following dimensions (based on the 
appearance of the input drawing and on the character- 
istics of the recovered 3D object): 
a. --Three-dimensional [A B D E F G H I] 

--Flat [C] 
b. --Blocks world (planar-faced solids with occluded 

edges not rendered) [13 H I] 
--Origami (planar-faced, possibly hollow) [C F] 
--Wire frame of blocks world object (all edges of 

a blocks word  object are given, and additional 
lines between vertexes of a planar face may be 
added) [A D G] 

--Restricted wire frame (every closed circuit of 
lines, without interior lines in the given input 
representation, corresponds to a planar face) [E] 

--Nonplanar wire frame (none of the above) 
c. --Symmetric [A B C E G H] 

--Asymmetric [D F 1] 
d. --All angles (approximately) equal [A B E F HI 

--A few distinct but mostly repeated angles (C G I] 
--Mostly unequal angles [D] 

For the purposes of our discussion, we use Marill's 
categorization and augment it with our own subjective 
evaluation where we disagree or need to add additional 
attributes to those Marill provides. It is important to 
remember that Marill always returns a wire frame as 
his solution, regardless of the categorization of the ob- 
ject. Thus, we would call the wire frame of a blocks 
world object a correct solution if it was a geometric- 
ally correct representation of the 3D geometry of the 
edges of the psychologically plausible blocks world ob- 
ject whose orthographic projection corresponded to the 
input line drawing, even though the wire frame does 
not provide an explicit representation of the grouping 
of lines into faces, and so forth. 
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10 11 

9 7 4 ~ 1  5 

3 0 

HeX;xg::~lP~lsm 

Our Reconstruction 

Points 

Lines 

F~Ces 

(1.97-1.00) (1.32-1.75) (0.67-1.75) (0.68-1.00) (1.34-0.25) (1.98-0.25) 
-0.68 1.00) (-1.34 0.25) (-1.98 0.25) (-1.97 1.00) (-1.32 1.75) (-0.67 1.75) 
0 1) (1 2) (2 3) (3 4) (4 5) (5 0) (6 7) (7 8) (8 9) (9 10) (10 11) (11 6) (0 6) (1 7) 

(2 8) (3 9) (4 10) (5 11) 
(0 1 7 6)(1 2 8 7)(2 3 9 8)(3 4 10 9)(4 5 11 10)(5 0 6 11)(0 1 2 3 4 5)(6 7 8 9 10 11) 

Zs 

Original 0.00 0.10 0.87 1.53 1.43 0.66 
Object -2.23 -2.12 -1.36 -0.69 -0.80 -1.57 
Marill's 0.00 0.46-2.15-1.48-2.19 0.72 

Reconstruction -0.37 0.33-2.61-1.92-2,36 0.31 
Our 0.00 0.12 0.96 1.66 1.55 0.71 

Reconstruction -1.99 -1.87 -1.04 -0.35 -0,47 -1.31 

Lengths 

1.0 to 4.0 

1.0 to 3.4 

1.0 to 3.9 

Angles (Mean / Range) S D A  ~ D P  
100.0 0.060923 0.000000 90.0 to 120.0 
84.0 0.110660 0.044710 47.5 to 111.2 
100.0 0.061289 0.000000 

88.6 to 122.6 

Fig. 2. Example J. This line drawing was created by orthographically projecting a specific 3D wire frame object. In this case, the object was 
a regular hexagonal prism. Although arbitrary line drawings can be used as input to the reconstruction algorithms described in this article 
(with greater or lesser success in recontruction), all of the examples introduced here were created by starting with specific 3D objects. The 
panels in the upper right show two views of the object reconstructed by Marills' algorithm. The first view is of the object rotated about the 
vertical axis by 30 degrees, and the second is of the object rotated about the horizontal axis by 90 degrees. The two panels in the lower right 
show two views of the object reconstructed by our algorithm. The table below this is the internal representation of the line drawing used by 
the reconstruction algorithms. Note that intersections such as those between lines (1 7) and (2 3) are not represented. Marill's algorithm uses 
only the first two components of this representation. The third component (faces) is derived from the line drawing using the algorithm de- 
scribed in section 3.1. The table at the bottom shows the results of the reconstructions in written form. 

Examples A, B, E, F, and H can all be visualized as 
approximately equiangular three-dimensional objects. 
That is each of the objects has an equiangular 3D wire 
frame as a psychologically plausible solution. Since 
these equiangular solutions exactly satisfy Marill's 
minimum standard deviation of angles (MSDA) criter- 
ion, it is obvious why Marill's objective function should 
prefer what we accept as the correct solutions in these 
cases. In the other four cases, supposedly representative 
examples of the ability of Marill's algorithm to deal with 
complicated structures having unequal angles, reason- 
ably correct solutions are also recovered, and it is this 
performance we wish to understand. 

2.2 The Performance of the MSDA Principle 

Given its overall simplicity, it would be quite remark- 
able if the MSDA principle generally converged to a 
psychologically plausible reconstruction. Unfortunately, 
it is rather easy to find examples where this is not the 
case, contrary to Marill's implied competence for the 
principle. 

Examples J through N of figure 1 are line drawings 
for which MariU's algorithm converged to solutions that 
are clearly psychologically implausible, even though 
these drawings are not significantly more complicated 
or more asymmetric than the examples that Marill used 
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4 

HeE:ga°:~ : : l K a t ~  , ~ l ~ c o n s t r u c t i o n  

Our Reconstruction 

I ' ,  I I ~ I ; '  I I , - I ' ,  I I ~ l ; o  I I , 

Lines (0 1) (1 2) (2 3) (3 4) (4 5) (5 0) 
Faces (0 1 2 3 4 5) 

Z s  

Original 0.00 0.32 0.24-0.15-0.48-0.40 
Object 
Marill's 

Reconstruction 0.00 0.22-0.12 0.00 0.22-0.12 
Our 

Reconstruction 0.00 0.34 0.28-0.11-0.43-0.38 

Lengths Angles (Mean / Range) S D A  "~ D P  

120.0 1.0 to 1.0 0.000000 0.000000 120.0 to 120.0 
116.2 0.9 to 1.1 0.000000 0.030363 116.2 to 116.2 
120.0 ' 1.0 to 1.0 0.000029 0.000000 119.6 to 120.4 

F/g. 3. Example K. 

(figures 2, 3, 4, 5, and 6 illustrate both Marill's 
reconstructions and our reconstructions, as described 
in section 3). In Examples J and K it would appear that 
the fault could lie with Marilrs use of a descent 
algorithm because the SDA of the psychologically 
plausible answer is less than or equal to the SDA for 
the solution Marill actually obtains. Thus, one can 
argue that a more competent global search strategy 
could have found the psychologically plausible answer 
using the same objective function. However, Examples 
L, M, and N are line drawings for which the SDA of 
Marill's solution is significantly lower than that of the 
psychologically plausible solution. Thus, the MSDA 
principle is clearly not adequate to reliably handle even 
simple line drawings. 

Before discussing ways of augmenting the MSDA 
principle to obtain a more competent principle and 
algorithm, we attempt to explain the performance of 

MSDA for line drawings depicting objects that are not 
equiangular. 

2.3 Evaluating the Performance of the MSDA Principle 

It is not immediately obvious why the MSDA principle 
should prefer a psychologically plausible answer if the 
object depicted in the line drawing contains two or more 
significantly different angles (e.g., C, D, G, I, and J). 
Marill offers no explanation for this phenomenon, and 
thus no way to judge the conditions under which his 
algorithm should be expected to succeed or fail. In this 
section we provide a partial explanation for cases (such 
as C, G, J, K, and L) that have critically important 
attributes--the psychologically plausible reconstruction 
is a 3D planar-faced object whose faces are either 
equiangular or form "complete-star" configurations 
(see appendix B). 
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5 

Polygonal Plates 
Example L 

Marill's Reconstruction 

O 

Our Reconstruction 

Points 

Lin~ 
Faces 

(0.81-0_19) (-0.02-0_96) (-0.82-0.41) (-0.490.71) (0.520.85) 
(3.24-0.89) (2.28 -0.61) (2.04 0.27) (2.76 0.89) (3.72 0.61) 
(0 1) (12) (2 3) (3 4) (4 o) (5 6) (6 7) (7 8) (8 9) (9 10) (10 5) 

(3.96 -0.27) 

(0 12 3 4)(5 6 7 8 9 10) 

Zs 

Original 0.00 0.29 0.94 1.06 0.47 0.47 
Object 0.15 0.23 0.63 0.95 0.87 
Marill's 0.00 0.30 0.93 1.04 0.46 0.00 

Reconstruction 0.31-0.24 0.00-0.31 0.24 
Our 0.00 0.00 0.00 0.00 0.00 0.08 

Reconstruction 0.41 0.35-0.04-0.36-0.30 

Lengths Angles (Mean / Range) S D A  "~ D P  

114.5 
1.0 to 1.2 0.010876 0.000000 

108.0 to 120.0 
108.0 

0.9 to 1.2 0.000005 0.165552 
107.7 to 108.2 

114.5 
1.0 to 1.2 0.018157 0.000000 97.9 to 120.4 

Fig. 4. Example L. Note that Marill's unacceptable reconstruction has an SDA that is significantly lower than that of the psychologically 
plausible original object. Thus, the MSDA principle itself has failed in this instance. 

To establish the role played by the above geometric 
attributes, we define the planar orthographic extension 
of a simple closed 2D circuit in a line drawing to be 
any orthographic extension for which the correspond- 
ing 3D contour is planar. If a line drawing contains 
more than one simple closed 2D circuit, then aplanar 
orthographic extension of the entire line drawing ex- 
ists if we can cover the line drawing with a set of sim- 
ple closed 2D circuits such that (a) every angle in the 
drawing is included in at least one circuit, and Co) each 
circuit projects to a 3D planar contour. 5 

In appendixes B, C, and D, we provide a number 
of theorems that are pertinent to understanding the ef- 
fectiveness of the MSDA principle applied to planar 
orthographic extensions. The main theorem, appendix 
D, asserts that solutions with certain symmetries cor- 
respond to the global minimum of the SDA over all 
planar orthographic extensions (the specific symmetry 
condition we examine is that all faces must either be 

equiangular or form complete-star configurations). 
Consequently, if there were some way to consider 

as possible solutions only the planar orthographic ex- 
tensions of a line drawing (such as the psychologically 
plausible solutions for examples A, B, C, G, J, K, and 
L), these solutions would be global minima of the SDA 
because of the angular symmetry they exhibit. We show 
in example L that Marill's algorithm is not constrained 
to search only for planar solutions; while it will also 
find solutions with nonplanar faces that have lower 
SDAs then the planar solutions, there is still the 
possibility that MSDA shows at least a weak inherent 
preference for planarity. While we cannot completely 
rule out this possibility, it appears that the geometric 
constraints inherent in the specific examples Marill 
selected, rather than MSDA itself, are largely respon- 
sible for finding planar-faced solutions. Specifically, 
triangles in the line drawing will always produce planar 
faces in the orthographic extension, and as we prove 
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9 S 

Truncated Box 
Example M 

Marill's Reconstruction 

Our Reconstruction 

Points 

Lines 
Faces 

(0.15 -0.06) (0.80 -0.06) (0.99 0.38) (0.86 0.81) (0.54 0.81) (-0,18 0.19) (0.46 0.19) 
(0.66 0.63) (0.53 1.06) (0.20 1.06) 
(01) (12) (23) (3 4) (4 O) (56) (67) (78) (89) (95) (05) (16) (27) (38) (49) 
( 0 5 9 4 ) ( 1 0 5 6 ) ( 2 1 6 7 ) ( 3 2 7 8 ) ( 4 0 5 9 ) ( 4 3 8 9 ) ( 0 1 2 3 4 ) ( 5 6 7 8 9 )  

Z$ 

Original 0.00 0.77 0.61 0.06-0.32 0.28 
Object 1.04 0.88 0.34-0.04 
Marill's 0.00 0.68 0.67-0.17-0.37 0.31 

Reconstruction 0.97 0.93 0.18 0.01 
Our 0.00 0.57 0.49 0.10-0.20 0.37 

Keconstruction 0.94 0.86 0.46 0.16 

Lengths Angles (Mean / Range) S D A  2 D P  
96.0 0.5 to 1.0 0.071281 0200000 90.0 to 135.0 
95.4 0.4 to 1.0 0.047822 0.004897 

73.5 to 125.0 
96.0 0.4 to 12 0.059677 0.000000 

80.7 to 132.2 

Fig. 5. Example M. Note that our reconstruction has a slightly lower SDA than that of the original object, indicating the preference of our 
algorithm for equiangular faces. 

in appendix B, a closed four-sided polygonal space 
curve with 90-degree angles at each vertex will always 
be a planar configuration. Since in Marill's examples 
listed above, all the faces satisfy these two geometric 
conditions, we see why both the desired planarity and 
symmetry are present in the computed solutions. 6 

Marill offers only two examples (D and I) that are 
not clear instances of the above analysis (all angles 
equal, or symmetric planar faces). His solution for ex- 
ample I is at least questionable since it does not recover 
the wire frame of a polyhedral solid (our algorithm 
finds such a solution; there is a further discussion of 
this subject in sections 3.3 and 4). However, this solu- 
tion has almost all of its angles equal to 90 degrees, 
and so it needs no further explanation if we accept it 
as correct. 

Marill's solution to the asymmetric drawing of ex- 
ample D looks very reasonable; it has all its angles fair- 
ly well distributed between 40 and 70 degrees, and we 
have not found a more symmetric (equiangular) ortho- 

graphic extension for this line drawing. However, 
because the input line drawing is a completely con- 
nected set of triangular faces, all solutions are con- 
strained to have planar faces. Thus, a large range of 
psychologically plausible objects is accessible to any 
reasonable algorithm. 

In summary, there is an understandable reason why 
Marill's MSDA principle will sometimes tend to select 
planar symmetric 3D wire frames when a purely equi- 
angular solution is not possible. But we also see that 
MSDA will make unacceptable errors, even in simple 
cases, because it is not constrained to prefer solutions 
with planar faces unless the geometry of the line draw- 
ing itself forces planarity. 

3 Our Planarity Enforcing MSDA Algorithm 

What's missing in the MSDA principle is a means for 
enforcing the planarity of specified faces. There are two 



An Optimization-Based Approach to the Interpretation of Single Line Drawings as 3D Wire Frames 121 

2 

Hinge 
Example N 

/ 

Marill's Reconstruction 

Our Reconstruction 

Points 
Lines 
Faces 

(-0.58 0.24) (0.95 1.36) (1.50 1.04) (-0.02 -0.08) (0.30 2_89) (0.86 2.56) 
(0 1) (1 2) (2 3) (3 5) (5 4) (4 O) 
(0 123) (0453)  

Zs 

Original 0.00 0.64-0.12-0.77-0.47-1.24 
Object 
Marill's 

Reconstruction 0.00 1.21-1.17-0.41-1.18 1.26 
Our 

P~eeonstruction 0.00 1.93 1.69-0.21-2.21-2.40 

Lengths Angles (Mean / Range) S D A  2 D P  

75.0 1.0 to 2.8 0.137078 0.000000 45.0 to 90.0 
63.8 

2.0 to 3.3 0.000293 0.196270 
62.7 to 65.0 

89.8 0.7 to 3.6 0.000291 0.000009 88_8 to 91.3 

Fig. 6 Example N. The SDA of Marill's unacceptable reconstruction is again significantly lower than that of the psychologically plausible 
original object. 

parts to this problem: (1) finding those faces in the line 
drawing that should be planar in the 3D reconstruc- 
tion, (2) and enforcing the planarity of these faces dur- 
ing, or at least by the end of, the optimization process. 

3.1 Finding Planar Faces 

The following algorithm for finding the planar faces 
is based on a set of psycho!ogical assumptions presented 
in appendix A. The requirements of items 3, 4, and 
5 from appendix A have been composed into the follow- 
ing algorithm. (In the following discussion, we define 
a face in the line drawing to be a sequence of vertexes.) 

First, all simple (nonself-intersecting) closed circuits 
containing more than three lines are found. (Triangles 
are necessarily planar, so they need not be considered.) 

Those circuits that are either: (1) completely empty of 
both lines and vertexes (such as the faces of example 
B); or (2) both convex (in the line drawing) and free 
of internal circuits (such as all the faces of example J) 
are considered to be planar faces of the wire frame; 
call this initial set 6)0. A circuit is defined to be an in- 
ternal circuit to a convex circuit if: (1) all of its vertexes 
lie within the convex circuit; and (2) it terminates in 
two nonadjacent vertexes of the convex circuit. 

Added to fP0 are those circuits, defined by the 
following algorithm, that are not subsets of any circuit 
in (P0. First, all triples of consecutive lines such that 
the first and third lines are parallel are found (the two 
planar faces of example N fall into this category, as do 
the "table legs" of example E). Then, if possible, each 
triple of lines is extended with additional consecutive 
lines such that all even-numbered lines are parallel to 
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each other and all odd-numbered lines are parallel to 
each other. An example of a closed circuit found this 
way is the side of the staircase facing the viewer in ex- 
ample H; the side of the staircase opposite the viewer 
is an example of an open circuit found using this same 
rule. 

Finally, pairs of parallel lines lie on planar faces in 
general position, so the four vertexes of the pair of lines 
are defined to form a planar face (whether or not the 
vertexes are connected by lines in the line drawing). 
If the pair of lines are not already a subset of a pre- 
viously found planar face, these are added to (Po .7 

The above procedure is remarkably robust in dealing 
with unconstrained line drawings. For example, we have 
yet to fred a case where this procedure proposes a 
psychologically implausible planar face (it even found 
faces in our test cases that we had not originally recog- 
nized as being planar--such as the back side of the stair- 
case in example H). However, it will sometimes miss 
finding a concave planar face leaving the 3D model 
underconstrained, and this can result in the reconstruc- 
tion of a psychologically implausible 3D wire frame. 
If we know that the line-drawings to be processed are 
restricted to the projections of blocks world objects with 
all planar intersections included in the drawing (i.e., 
no hidden lines removed), then we can be assured that 
no faces are missing by (omitting ~some details here) 
first employing the above procedure, next removing all 
lines' edges from the drawing that are assigned to two 
faces, and then repeating this whole process on the 
reduced line drawing until all the edges have been 
assigned to exactly two faces (there are some special- 
position configurations in which three or more faces 
have a single edge in common that we presently do not 
deal with). For this more constrained universe of line- 
drawings where we correctly and completely identify 
all the planar faces, we have yet to encounter a case 
where our algorithm produces a psychologically im- 
plausible 3D model. 

3.2 Enforcing Planarity 

The second requirement, enforcing planarity, is accom- 
plished by adding a term to the objective function that 
is zero when all the designated planar faces are actually 
planar, and increases in value as the faces deviate from 
planarity (call this term DP). The new objective func- 
tion, E(X), is a linear combination of the previously 
defined SDA term and the new DP term: s 

E(X) = XSDA 2 + (1 - X)DP 

Note that minimizing E(k) favors planar faces, but 
strict planarity is not necessarily assured. This is not 
quite what we would like in the ideal case. Ideally, we 
would like to find the orthographic extension of the line 
drawing with the lowest SDA that has exactly planar 
faces (i.e., for which DP = 0). 9 To achieve this, we 
use a continuation method (Leclerc 1989; Witkin et al 
1987), which is a sequence of descent steps applied to 
E(h), for decreasing values of k. The sequence begins 
with the initial condition that Marill suggests (z = 0 
for all points) and with some initial X0 -< 1. Then, 
is decreased by a given amount and the descent algo- 
rithm is applied anew, starting at the solution found for 
the previous value of k. This is repeated until h is suf- 
ficiently close to zero so that no additional changes oc- 
cur with further reductions in X. 

Why not simply start with X close to zero in the first 
place? The reason is that when X is sufficiently close 
to zero, the local minima of E(h) are determined only 
by the planarity component. Thus, simply starting with 

close to zero would not allow us to find solutions with 
low SDAs (in fact, when X = 0, the original line draw- 
ing, which is planar, is a local minimum of E0~)). 
Although we cannot affect the shape of E(X) when 
is small, we can choose the starting point for the des- 
cent algorithm. Thus, the purpose of the continuation 
method is to choose a sequence of starting points that 
are first strongly influenced by the SDA term, but which 
eventually become dominated by the DP term. The 
method is not guaranteed to find a global minimum of 
the objective function, but has yielded excellent answers 
for all the examples discussed in this paper. 

We define the deviation from planarity term, DP, 
as the sum of terms DPi, where DPi is zero when face 
f~ is planar, and increase as the face deviates from 
planarity. We have found two useful definitions of the 
DPi. The first is a strong planarity term that will not 
allow a face to fold from one planar configuration to 
another planar configuration, but applies only to con- 
vex faces. To see how a face can fold from one planar 
configuration to another one within the context of the 
optimization we are performing, consider a line draw- 
ing of a square. When all of the z values of the vertexes 
are zero, the face is planar. By letting the z values of 
the first and third vertexes become arbitrarily large, the 
face "folds" into a configuration that, in the limit, is 
also planar. In order to detect and avoid this folding 
whenever possible, we define DP i to be the following 
function (DPI) whenever face 3~ is convex in the line 
drawing (DPI is based on item 6 i n  appendix B): 
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Let n be the number of sides in the face, and aj be 
the angle at the jth vertex. Then, 

1 DP1 = (n - 2 ) ~ - -  ~ c ~ j  
J 

A weaker measure of planarity, DP2, applicable to 
all faces, is based on the observation that the normals 
defined by pairs of consecutive pairs of lines should 
lie in the same direction (this is analogous to the no- 
tion of torsion for a curve): 

DP2 = 

I 1 -  I ( l j - aX l j ) ' ( l jX l j+x )  1 1  2 
j ]l/j-1 x l~ I[l;x/j+-~ 

where lj is the j  th line of planar face~ andj  - 1 and 
j + 1 refer to the previous and next lines in the face, 
respectively (i.e., the subscripts are taken modulo the 
number of lines in the face). 

The combined DP term is the sum of: (1) the sum 
of DP1 over all convex faces, and (2) the sum of DP2 
over all nonconvex faces divided by the number of 
angles in all of the nonconvex faces. 

3.3 Results 

Figures 2 through 6 illustrate the results of our p/anar/ty 
enforcing MSDA algorithm, and allows one to compare 
them with both Marill's reconstructions and the original 
3D objects that were used to generate the line draw- 
ings. The "original 3D objects" presented in our figures 
are the psychologically plausible solutions that we ex- 
pect the program to recover. We started with actual 3D 
wire frames, rather than arbitrary line drawings as an 
experimental expedient, since most random line draw- 
ings will not induce the perception of a 3D configura- 
tion in human subjects. 

The reconstructions are illustrated both graphically 
(as two views in the upper third of each figure) and 
in tabular form in the lower third. The first column of 
the table lists the z coordinates of each object, the sec- 
ond column is the range of lengths of the hnes of each 
object, the third column is the mean and range of the 
angles formed by all line pairs meeting at a common 
vertex, the fourth column is the standard deviation of 
angles (SDA) of each object, and the fifth column is 
the deviation from planarity (DP) of each object. To 
simplify the comparison of the results, the recovered 
z coordinates have been normalized so that the first 

point always has z = 0, and the second coordinate is 
always positive (this normalization procedure has no 
effect on the objective function). 

We also applied our algorithm to examples A 
through I from Marill's paper. Since his algorithm pro- 
duced approximately planar-faced solutions by itself in 
all cases but example I, it isn't surprising that our 
algorithm produced solutions almost identical to his. 
The greatest deviation from his result was for example 
I, because Marill's algorithm recovered a significantly 
nonplanar face for the leftmost face of the line drawing. 

In all of the examples, the Azs we used for Marill's 
algorithm (both as a stand-alone algorithm and within 
the continuation method) were 0.125, 0.0625, 0.03125, 
0.015, and 0.007. We used a smaller initial l z  than MariU 
suggests because the larger one often forced the algo- 
rithm out of the valley of attraction of the current local 
minimum. Decreasing AZ by a factor of two generally 
allowed the algorithm to run in the fewest number of iter- 
ations. Using a smaller final Az allowed the algorithm 
to produce significantly more accurate solutions. In the 
continuation method, ~ was started at 0.25, and was 
decreased by a factor of two a total of ten times. 

Example J (figure 2) illustrates Marill's reconstruc- 
tion for a line drawing of a rectangular hexagonal prism. 
This reconstruction not only appears psychologically 
implausible from these two views, but, as we discuss in 
the following section, the reconstructed object does not 
appear rigid when rotated in real time. It would appear 
that at least part of the reason for this result is that the 
recovered faces are clearly nonplanar, as shown by the 
value of DP in the table. The reconstruction obtained 
by using the planarity enforcing MSDA algorithm is 
almost identical to the original hexagonal prism. 

In example K, we see that the MSDA principle is 
ambiguous for simple line drawings. Marill's recon- 
struction takes the line drawing of a planar hexagonal 
plate (SDA -- 0.0) and reconstructs a nonplanar object, 
also with SDA = 0.0. By enforcing planarity, however, 
our reconstruction is quite close to the original hex- 
agonal plate. 

In examples L and N, we see further evidence that 
the MSDA principle by itself is inadequate for even sim- 
ple line drawings. In both examples, MariU's recon- 
struction has a significantly lower SDA than the original 
object, and we consider both of these reconstructions 
to be psychologically implausible. Our reconstruction 
of example L is quite close to the original object, 
modulo an additive constant and flip of the z coordinates 
of the second object (which is invisible to the objective 
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function). Example N is a fairly ambiguous figure, and 
our reconstruction favored a "hinge" with all angles 
close to 90 degrees (the original object had a "hinge- 
angle" of 45 degrees). Because of the ambiguity of  the 
figure, there exists a family of reconstructions that we 
consider psychologically plausible, including ours. 

Example M shows the reconstruction of a figure for 
which some of the planar faces are not equiangular. 
Again, because some of the faces had more than four 
sides, Marill 's algorithm failed to recover a psycho- 
logically plausible object. Our reconstruction is reason- 
ably good, but it did adjust the right angles in the large 
face by as much  as 13 degrees in order to make the 
angles in that face closer to being equal. Nonetheless, 
we consider the reconstruction to be psychologically 
plausible. 

3.4 Stability and Robustness of the Planarity Enforc- 
ing MSDA Algorithm 

We have examined the stability and robustness of our 
algorithm in two ways. The first was to examine the 
behavior of the algorithm applied to different projec- 
tions of the same 3D objects, but always using the same 
initial conditions for the optimization, namely z = 0 
for all vertexes. The second was to examine the behavior 
of  the algorithm for different initial conditions. 

We ran the planarity enforcing MSDA algorithm on 
at least 32 randomly chosen projections of the 3D objects 
used to create the line drawings of examples A through 
N.t° For virtually every projection of each of these ob- 
jects, the algorithm reconstructed the object as well as 
it did for the original projection. For example, figure 7 

"-ll 
1 S 320 0.73 Z S 4700.81 3 S 349 0.49 

i S 396 0.70 

o O  
5S 3100.60 

7 5 5 0 5  1.50 

# 
O 

Fig. 7. Nine projections of the hexagonal prism, and our corresponding reconstructions. The projections used as original line drawings are 
shown in the lower left-hand corner of each group of four. The original line drawing is annoted by: (1) the projection number; (2) the letter 
S when the planar faces found for that line drawing were the same as for the original projection, and D otherwise; (3) the number of iterations 
required for convergence; and (4) the largest difference between corresponding angles in the reconstruction and the original object, in degrees. 
The other three line drawings are three views of the reconstruction. 
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shows nine projections and the corresponding 
reconstructions for the hexagonal prism (Marill's 
algorithm failed for all of these projections). An ex- 
ample of a near failure is shown in figure 8, where the 
eighth projection of the staircase is almost in special 
position, producing the largest error, and using the 
greatest number of iterations. In fact, when the rule 
adding all pairs of parallel lines as planar faces is 
removed, the algorithm leaves the z values virtually un- 
changed from their initial values (not illustrated here). 
In summary, in approximately 500 trials, either the 
planarity enforcing MSDA algorithm correctly recon- 
structed the original object, or it left the line drawing 
as an "uninterpreted" flat object. 

By comparison, the MSDA algorithm is relatively 
unstable, even for the line drawings one might expect it 
to get right. For example, figure 9 shows nine projec- 
tions and the corresponding reconstructions using the 
MSDA algorithm, for a cube in which all of the angles 

should be exactly equal. Note that projections 1 and 9 
produce psychologically implausible reconstructions. 

In a second set of experiments, we used a random- 
number generator to provide twenty sets of initial zs 
in the range -1  to 1 for examples A through N. u With 
the exception of example D, which was always correctly 
reconstructed, the MSDA algorithm failed to converge 
to a psychologically plausible solution in at least four 
of the twenty trials on each of the other line drawings, 
and produced an average of ten failures per line draw- 
ing. In other words, the SDA term by itself has many 
local minima that descent algorithms will fall into. 

On the other hand, the planarity enforcing MSDA 
algorithm succeeded in converging to a psychological- 
ly plausible solution in all trials but one (it failed in 
one trial of example N, the hinge.) 12 This extremely 
robust performance was somewhat unexpected. We 
believed that the initial condition, z = 0 for all vertexes 
was an important component of the continuation 

1 s ~o~.57- 7 2 D 374 1.87 J L<'']" 
3 S 269 2.06 ~ 

9 
5D IT/1.48 J 

I ~ ~ ' ~  

6 S 468 2.24 

J 

7 S 434 1.90 8 D 1024 3.13 9 s 195 1.48 

Fig. & Nine projections of the staircase, and our corresponding reconstructions. Note that the eighth projection is very nearly in special posi- 
tion, with many vertexes and lines overlapping in the line drawing. The continuation method had the largest error and used the greatest number 
of iterations for this case. When the rule adding all pairs of parallel lines as planar faces is removed, the continuation method prefers the 
original line drawing (all zs constant) as the intepretation, which is certainly psychologically plausible. 
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k S  1040.26 3 S 104 0.58 

S 100 0.21 S 162 0.44 

S 264 0.43 ~ S 6640,71 

F/g. 9. Nine projections of the cube, and the corresponding reconstructions using Marill's algorithm. Note that projections 1 and 9 produced 
psychologically implausible reconstructions. 

method. However, it would appear from the results of 
these experiments that the imposition of the planarity 
term in the continuation method severely curtails, or 
eliminates, psychologically implausible minima. One 
might conjecture that, for most line drawings, there is 
one t3 (or perhaps a very few) psychologically plaus- 
ible local minima in the SDA when the zs are con- 
strained to a planar orthographic extension. 

3.5 Reconstruction lime 

The specific descent algorithm defined by Marill, and 
described here, has the nice property that it's easy to 
describe and easy to implement, no matter what the 
objective function may be; however, it is typically quite 
inefficient. One of the better descent algorithms is the 
conjugate gradient algorithm. To estimate achievable 

run times, we implemented the conjugate gradient algo- 
rithm described in Numerical Recipes (Press et al. 
1986). The algorithm requires an objective function (in 
this case, E(X)) and the gradient of the objective func- 
tion (in this case, a function that returns a vector whose 
i th element is the partial derivative of E(X) with respect 
to z'). Analytically deriving the gradient of E(h) is 
rather painful, so instead we used a simple numerical 
approximation; this involves evaluating the objective 
function for each vertex, which is expensive. A more 
efficient implementation that only recomputes those 
components of the objective function that change when 
a given vertex changes could reduce the following run 
times by a factor of four or better. 

Table 1 gives the number of iterations/run time (in 
seconds) for three example line drawings. These ex- 
periments were run on a Symbolics 3645, so we would 
expect about a factor of ten improvement if algorithms 
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were implemented in C on a modern workstation such 
as a SUN SPARC-2 (according to some simple bench- 
marks that we ran). The last column gives the expected 
run time for an optimized conjugate gradient algorithm 
running on a SPARC-2. 

Table L Number of iterations/run time for three examples. 

Example 

Original Conjugate Conjugate 
Descent on Gradient on Gradient on 
Symbolics Symbolics SPARC-2 

Cube 187/199 15/15 15/0.375 
Tetrahedron 46/9 14/16 14/0.4 
Hexagon prfsm 406/1306 33/186 33/4.65 

Note that the conjugate gradient algorithm improves 
the run-time considerably for all but the simple 
tetrahedron line drawing. On a SPARC-2, the run times 
are such that the time required to reconstruct a line 
drawing is small relative to the time it would take to 
manually enter the drawing. That is, the run times are 
well within "interactive time." 

3.6 A Reduced Search Space Technique for Obtaining 
Exact Planar MSDA Reconstructions 

In the planarity enforcing MSDA algorithm described 
in section 3.2, planarity is not strictly enforced, but 
rather, nonplanarity is penalized during the optimiza- 
tion process. This approach almost always produces 
faces that are very nearly planar at the end of the op- 
timization process. There is a very efficient way to 
strictly enforce planarity during the MSDA optimiza- 
tion for line drawings of strictly planar-faced wire 
frames, described below. The problem with this ap- 
proach is that if the line drawing does not actually cor- 
respond to a planar-faced wire frame, or if the line 
drawing is not accurate, the resulting reconstruction will 
typically be psychologically unacceptable--we lose the 
graceful degradation provided by the planarity enforc- 
ing MSDA. 

The following method for strictly enforcing planarity 
is based on the observation that there are far fewer 
degrees of freedom in a planar-faced object than there 
are vertexes (to reemphasize, this method is only ap- 
plicable to line drawings of strictly planar-faced wire 
frames). One way of expressing this observation is in 
terms of a subset of vertexes, that we call the free 
vertexes, whose z values uniquely determine the z values 
of all of the other dependent vertexes by virtue of the 

planarity of certain faces. For instance, given the planar 
faces of the hexagonal prism of figure 2, specifying the 
depth of the four vertexes 0, 1, 2, and 6 uniquely deter- 
mines the depth of the other vertexes: the depth of 
vertexes 3, 4, and 5 are determined by constraining 
them to lie on the same planar face as vertexes 0, 1, 
and 2; similarly, vertex 11 is determined by vertexes 
0, 5, and 6; vertex 10 by vertexes 4, 5, and 11; and 
vertexes 7, 8, and 9 by vertexes 6, 10, and 11.14 

Having determined the free vertexes, one can then 
apply the MSDA principle to the reduced search space. 
For the case of the simple descent algorithm, the only 
change to the algorithm is that only the free vertexes 
are directly modified during the optimization, and that 
the depth of all of the dependent vertexes are recom- 
puted whenever a free vertex is modified. Applying this 
method offree vertexes to the hexagonal prism reduces 
the number of iterations from 406 to 39, and the run 
time from 1306 seconds to 47 (the run time is reduced 
by a greater proportion than the number of iterations 
because the DP term has effectively been removed from 
the objective function). 

Thus, the advantage of using the method of free 
vertexes is that it reduces the search space and run times 
considerably--oftentimes an order of magnitude or 
more. The disadvantage of using this approach is that, 
unlike the planarity enforcing MSDA algorithm, it re- 
quires a virtually perfect line drawing of a planar-faced 
object to ensure that the resulting reconstruction is 
planar. For example, adjusting the (x, y) coordinates 
of even one vertex by a small amount in a line drawing 
such as the cube (example A), can cause the 3D wire 
frame to be highly nonplanar for some choices of z 
coordinates of the free vertexes. Consequently, the 
method of free vertexes can produce reconstructions 
that are not psychologically plausible. Nonetheless, 
there are certain situations in which this approach can 
be effective, both for special kinds of line drawings, 
and for line drawings that are first processed to make 
them precise projections of the intended 3D object. 

4 Implications for Human Vision 

Line drawings provide an effective means of commun- 
ication about the geometry of 3D objects. It is a matter 
of some debate as to whether the interpretation of line 
drawings is a learned skill, or whether line drawings 
are isomorphic to some intermediate construction of 
the human visual system (HVS) in its normal processing 
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of imagery, but in either case an understanding of how 
humans interpret line drawings is extremely important 
in enabling man-machine communication with respect 
to images, diagrams, and spatial constructs. In this sec- 
tion we address two related questions arising out of the 
investigation described in earlier sections: (a) under 
what conditions is a line drawing actually given some 
intended 3D interpretation, and (b) under what condi- 
tions does a moving rigid (wire frame) object actually 
appear rigid. 

Some, but not all, line drawings are perceived by 
human subjects as being three dimensional. What at- 
tributes of the drawing promote such an interpretation, 
and what are the constraints on the nature of the 
resulting 3D construction? Partially because human in- 
trospection is involved, this is a very difficult question 
to answer. For example, if the drawing is recognized 
as a known or previously encountered 3D object, it 
might be visualized this way even though it violates con- 
ditions necessary for an unfamiliar object to be perc- 
eived as being three dimensional. Gestalt psychologists 
have suggested that if the drawing offers a simpler con- 
struct when seen as three dimensional than when seen 
as being fiat, it will be perceived as being three dimen- 
sional; however, an effective computational procedure 
to evaluate "simpler" has yet to be provided (and there 
is also the problem of producing the corresponding 3D 
construct). One might consider that minimizing angular 
variance is an example of a simplicity principle, but 
we have not yet been able to define a formal complex- 
ity metric, as was done, for example, in the work of 
Leclerc (1989). 

It appears to be much more productive to show a 
human subject a candidate 3D reconstruction and ask 
if it corresponds to some given line drawing than it is 
to tabulate introspective judgments about whether ob- 
jects appear to be 2D or 3D. The former approach, in 
fact, is how Marill presents his results to the reader. 
Obviously, he can not show an actual 3D reconstruc- 
tion, but only a projection. If he showed the recon- 
structed object projected without some spatial reloca- 
tion, then all we have is the original line drawing back 
again--and no determination can be made; Marill 
shows two projections of his reconstructed objects, 
rotated by a few degrees, for evaluation by the reader. 
Now we know that every orthographic extension is a 
geometrically feasible reconstruction, so on what basis 
does the human judge acceptability (i.e., what we have 
called a psychologically plausible reconstruction). It 
is easy to hypothesize a whole list of conditions that 

should be met--mostly different instantiations of the 
idea that regularities (such as parallel lines or equal 
angles and lengths) observed in the line drawing are 
not accidental, and should be preserved in the recon- 
structed object; orthographic projective invariants, such 
as parallelism, should then also be preserved in the 
reprojections of the spatially relocated object. One 
could write computational procedures to search for such 
invariants, but this approach seems incompatible with 
the universality of the human evaluation process (e.g., 
none of the invariants we happened to think of may be 
present in the instances we are considering). A more 
powerful idea is to require that the computational pro- 
cedure that produced the original reconstruction give 
the same result when applied to any of its general posi- 
tion reprojections--that is, a consistency criterion. This 
is exactly the condition that obtains when we observe 
a moving or rotating object to be rigid; when we see 
a (continuous) sequence of projections that we perceive 
as being isomorphic to the same geometric reconstruc- 
tion, we perceive the object as being rigid. 15 

Applying the above ideas to an evaluation of the 
MSDA algorithm, we find two serious deficiencies in 

First View 

--..... 
jr 

Marill's Reconstruction 

Second View Marill's Reconstruction 

Fig. I0. Illustration of the failure of Marill's algorithm to recover 
geometrically similar 3D models from two different projections of 
the same 3D project. The top row shows the input line drawing of 
the 3D object as seen from one viewpoint (similar to example G), 
and two views of MarilFs recomtyucted object. The bottom row shows 
the input line drawing of the same 3D object as seen from a dif- 
ferent viewpoint, and two views of Mafill's reconstructed object. The 
two reconstructed objects not only appear different, but are in fact 
significantly different geometrically, as we verified by examining their 
internal representation. In contrast, applying our algorithm to both 
of these input line drawings, as well as ten other randomly chosen 
views prodficed reconstructions with an angular error of less than 
thirteen degrees from the original object. 
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0.0 22.5 45.0 67.5 

IJ IIl1  1Ii35  1115  I 
Fig. 11. The illusion of nortrigidity for a rotting wire frame with nonplanar faces. The wire frame, Marill's reconstruction of example J, is 
rotated about a vertical axis in the center of the object. The rotation angle is written in the lower left-hand comer of each box. 

the algorithm. First, when presented with two dif- 
ferent orthographic projections of an object, the MSDA 
algorithm sometimes fails to recover 3D wire frames 
that are even remotely similar to each other (see figure 
10). Second, when we use the computer to create a 
rotating display of some of the reconstructions obtained 
with the use of the MSDA algorithm, we see what ap- 
pears to be the movement of a nonrigid object (see 
Figure 11). 

The latter observation led to a number of casual ex- 
periments to determine the factors affecting the percep- 
tion of nonrigidity in displays of rotating 3D wire 
frames. We found that wire frames with pronounced 
nonplanar faces (where one would have expected a 
planar face from the line drawing) appear to be 
nonrigid. MariU's solution for example I (asymmetric 
solid) does appear rigid under rotation, even though 
the faces are slightly warped. However, his solution is 
very nearly planar; if we force a bit more distortion 
into the solution, the object then appears to deform 
under rotation. Thus, it would appear that strict (or at 
least near) planarity for the appropriate faces is a 
necessary condition for the perception of rigidity. 

However, planarity by itself was not sufficient to 
create a perception of rigidity. For example, if one 
chooses random values for the free vertexes of a cer- 
tain line drawing (see section 3.6), one produces an ob- 
ject whose faces are strictly planar. However, unless 
the resulting figure is also a local minimum of the SDA, 
the resulting 3D wire frame does not appear rigid when 

rotated. Similarly, the wire frames of some line draw- 
ings with all of the z coordinates set to zero appeared 
nonrigid when rotated (e.g., example A). Furthermore, 
all of the hundreds of solutions produced by the planar- 
ity enforcing MSDA algorithm that we looked at ap- 
peared rigid under rotation. Thus, we tentatively con- 
clude that a wire frame must not only be planar to be 
perceived as rigid, but must satisfy additional con- 
straints, such as being a local minimum of the SDA. 

5 Future Work 

There are a number of directions that we have begun 
to explore or that we plan on exploring in the near 
future. 

The first of these, for which we have some prelim- 
inary results, is a redefinition of the objective function 
in which the angles are partitioned into groups that 
should be equiangular in 3D. This becomes necessary 
either when there are angles in the line drawing that 
are not a part of any planar face or when the angles 
in a planar face are not all equal in 3D (in either of 
these cases, the symmetric preference theorem of ap- 
pendix D does not hold). An example of the first case 
is the hinge (figure 6), in which angles (1 0 4) and 
(2 3 5) are not a part of any planar face. An example 
of the second case is the truncated box (figure 5), in 
which angles (1 2 3) and (2 3 4) should be equal to 
each other but not equal to the other angles in planar 
face (0 1 2 3 4), and similarly for face (5 6 7 8 9). 
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A 

(~) (b) 

Fig. 12. An illustration of the need to group angles together than should be equiangular, rather than applying the planarity enforcing MSDA 
principle to all angles. (a) The reconstruction using an appropriate equiangular grouping. (b) The reconstruction using the planarity enforcing 
MSDA principle applied to all angles. 

By changing the definition of the SDA term to be the 
sum of the standard deviation of the angles in each 
equiangular group (weighted by the number of angles 
in that group), we have improved the reconstruction of 
these two objects considerably. Defining a simple, yet 
robust, set of rules that can automatically determine 
the equiangular groups for a line drawing, as we did 
for the planar faces of the line drawings in this paper, 
is still an open question. A simple rule is to group 
together all angles that are a part of a convex face. This 
is illustrated in figure 12. The reconstruction is accurate 
to 3 degrees, whereas using the SDA over all angles 
gives a relatively poor reconstruction. 

A second direction that we plan on exploring is to 
implement a preprocessing step that would take a rough 
sketch and enforce various constraints in 2D, such as 
(1) parallelism between designated pairs of lines, or be- 
tween designated lines and axes; (2) equality in length 
between designated lines, or between lines and fixed 
lengths; and so forth. The paradigm would be similar 
to the one for the interpretation of the line drawing, 
namely some set of rules would be used to determine 
which lines should be parallel or of equal length (with 
outside intervention always possible), and an optimiza- 
tion step would then enforce the constraints while mov- 
ing as little as possible from the original line drawing. 
The ideal is to be able to do as much of this as pos- 
sible without intervention for an interactive user. 

A third direction is to explore the relationship be- 
tween what we have done and previous work in under- 
standing the 3D shape of curves, such as (Barrow & 
Tenenbaum 1981; Stevens 1981; Witkin 1981; Barnard 

& Pentland 1983; Malik & Maydan 1989; Pentland & 
Kuo 1990). 

An intriguing relationship between Barrow and 
Tenenbaum's work on single curves and our work on 
planar faces is as follows. They defmed the problem 
of interpreting curves in a manner similar to the way 
that we and Marill did: by defining an objective func- 
tion over the z coordinates of the object and minimiz- 
ing that objective function using a descent algorithm. 16 
Their objective function was the integral of the change 
in curvature squared plus the torsion squared. Thus, 
an ideal curve for their objective function is a planar 
circle, since both terms in the integral are then zero 
everywhere (when the end-points are removed from the 
integral, the arc of a planar circle is also an ideal curve 
for their objective function). Analogously, one of the 
ideal curves for our definition is a regular planar 
polygon (or an arc of a regular planar polygon), since 
then both the SDA and DP are zero. Thus, the similar- 
ities are that the SDA plays a role similar to the integral 
of squared change in curvature, and the DP plays a role 
similar to the integral of squared torsion. Some of the 
differences are that both the SDA and DP1 terms are 
global measures of symmetry and planarity, while the 
curvilinear measures are integrals of local measures. 
A second difference is that the SDA is also zero for 
some nonregular and even nonconvex polygons. 

Pentland and Kuo (199) applied Barrow and Tenen- 
baum's idea to distinctly nonplanar curves and surfaces 
by leaving out the torsion component. It is somewhat 
surprising that this worked since both Barrow and 
Tenenbaum's and our own experience indicate that 
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planarity is a key ingredient in making the optimiza- 
tion approach work. We will explore this question in 
the near future. 

Finally, we would like to find some computational- 
ly effective procedure for using the rigidity under rota- 
tion criterion in the 3D recovery process, rather than 
as a final check on proposed solutions. 

6 Discussion 

Traditional blocks-world problems are mathematical in 
nature, they deal with issues of existence and consis- 
tency based strictly on geometric considerations; they 
make no reference to what people actually see. The 
problem defined by Madll is psychological; since every 
line drawing has an infinite number of mathematically 
valid orthographic extensions and no invalid ones, on 
what basis does the HVS select a particular extension 
as being psychologically acceptable? Marie proposed 
an intriguingly simple criterion for duplicating human 
preference, but we have shown that, while it often pro- 
duces an acceptable answer, it is unreliable even in very 
simple situations. 

Marill's work has similarities to the Huffman- 
Clowes-Waltz approach that focused on how polyhedral 
vertexes can appear in a line drawing and, hence, the 
constraints such vertexes impose on the implied 3D 
model; Marill considers only the constraints implied 
by line intersections at specified vertexes in the line 
drawing. Mackworth, Kanade, and Sugihara found it 
necessary to introduce constraints based on the explicit 
assignment of vertexes to planar faces. We show here 
the need for introducing a similar explicit requirement 
for planarity (actually, in the context of optimizing an 
objective function, our constraint is soft in that it can 
be violated). However, in our case, the requirement for 
planarity is justified on psychological grounds rather 
than as a means for achieving a geometrically more 
competent algorithm. 

The preference of the HVS to interpret a line draw- 
ing as the most symmetric polyhedral (planar-faced) 
object consistent with the drawing is well established 
in the psychological literature. Madll appeared to have 
discovered a simple computational procedure for find- 
ing such solutions for any given line drawing, but on 
closer examination, it became apparent that his MSDA 
principle does not enforce (or even prefer) planar solu- 
tions. 17 Because of this deficiency, MSDA is unreliable 
even in very simple situations. We were able to prove 

(appendix D) that if a planarity preference is explicitly 
added to the MSDA objective function, then indeed, 
the nonobvious preference for symmetric solutions is 
also present. However, we are now forced to address 
the problem of how to provide the auxiliary informa- 
tion necessary to partition the drawing into the coherent 
components corresponding to the 3D planar faces. It 
appears that the HVS selects some subset of the con- 
tours in the line drawing as corresponding to the planar 
faces in the 3D model, and if we do not supply this 
information to a recovery algorithm (either explicitly 
or by providing a set of conditions implying the same 
information), we will fail to recover psychologically ac- 
ceptable models. 

Most of the work in the blocks-world tradition 
employed perfect labeled fine drawings with the assign- 
ment of vertexes to faces given as part of the input 
specifications. If we follow the same approach (al- 
though we are not concerned with having perfect line 
drawings since our recovery method employs optimiza- 
tion, which can tolerate deviations from any of the con- 
straints embodied in the objective function), then-we 
at least have provided a tool for simplifying man- 
machine communication using the language of line 
drawings. However, there is obvious theoretical value 
in understanding the criterion for human selection of 
the circuits in the line drawing that correspond to planar 
faces in the 3D model, is In part, this importance is 
related to the issue of how the HVS recovers the shape 
of a moving object. Even though there are a few well- 
known exceptions, it is widely believed that the HVS 
will assume an object to be rigid and correctly recover 
its shape if this is indeed the case. 19 However, the rigid 
wire frames with nonplanar faces provide a whole class 
of counter-examples to this belief--they appear to be 
nonrigid when observed in motion (even at very low 
speeds where maintaining correspondence of vertexes 
from one projection to the next is no problem). The 
nonrigidity appears to result from the I-IVS making in- 
correct decisions about how the drawing can be parti- 
tioned into planar faces (see appendix E). 

7 Summary 

Marill's recently published paper claimed that the 
simple procedure he described could duplicate human 
judgment in recovering the 3D wire frame geometry 
of objects depicted in line drawings. He provided some 
impressive examples, but no theoretical justification to 
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back his claims. In  this article, we cri t ically examined 
the merits of Mafil l 's  algorithm, provided at least a par- 
tial explanat ion for its competence,  identif ied weak- 

nesses, showed how it could be improved, and discussed 
the implicat ions of this work for clar ifying some im- 

portant  p roblems in  h u m a n  perception.  
In  particular, we provided a number  of theorems that 

show that min imiz ing  the standard deviat ion of angles 

is (potentially) a simple and  effective method for selec- 
ting symmetr ic  solutions when  the constraining line 
drawing (which is the project ion of a wire f rame that 
may be incomplete) permits such interpretation. On  the 

other hand,  we showed that Mari l l ' s  algori thm could 

fail in s imple cases, that he employed an opt imizat ion 
procedure  that was often too weak to find the correct  
answer even when  it was wi th in  the competence  of  the 
objective funct ion,  and that the algori thm would often 
produce wire  frames with nonplanar  faces (something 

no human  would intuit ively accept in perceiving a 

straight-line drawing as a 3D configuration).  
We argued that an impor tant  condi t ion in testing or 

evaluating the psychological plausibility of a reconstruc- 
t ion is that its reprojections (after spatial relocation) 

result in the same object being produced by the recovery 
algorithm. For  the h u m a n  visual  system, this is equiv- 
aient to the condi t ion  that the recovered object  appear 
rigid when observed during movement  or rotation. The 

percept ion of  rigidity for wire  f rames appears to be 
highly correlated with the presence  or absence of 
strongly nonp lanar  faces. By modi fy ing  Ma d l l ' s  ob- 
ject ive funct ion to explicitly favor planar-faced solu- 

tions, and by us ing a more  competent  opt imizat ion 
technique,  we were able to demonstra te  significantly 
improved performance  in  all  of  the examples Mar i l l  

provided as well as those additional ones we constructed 
ourselves. The robustness of our  algorithm was demon-  
strated by obta ining consistent  psychologically plaus-  

ible reconstructions in hundreds of experiments involv- 
ing variat ions in viewpoint  and init ial  condi t ions  for 
the approximately 20 objects in  our  database. 
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Notes 

1. Gradient space, originally conceived of by James Clerk Max- 
well in 1864 (see (Whitely 1986)) and rediscovered by D.A. Huff- 
man, provides only necessary conditions for planar realizabil- 
ity of general polyhedral objects with hidden lines removed, and 
thus consistent edge labeling is possible for impossible blocks 
world and Origami objects. Further, the labeling/recovery 
algorithms were not always competent to find an existing solution. 

2. There were some other problems of lesser significance for our 
purposes. For example, the algebraic formulation was sensitive 
to computation round-off errors, and digitization errors in spec- 
ifying the line drawing; a realizable object could be rejected 
because of such minor numeric inaccuracies. Sugiham dealt with 
this problem by adding an optimization step to his algorithm, 
which could find a feasible reconstruction if the input drawing 
was an almost correct specification. 

3. MariU, on the other hand, calls the set of all possible zs the ortho- 
graphic extension. 

4. For simplicity, the vertexes are represented by only two digits 
of precision in the table. However, we used the full 32-bit preci- 
sion of the projection in the internal representation used by the 
algorithms. 

5. We note that while there generally can be many different ways 
of covering a line drawing, those of blocks-world objects with 
hidden lines removed will be covered uniquely if we demand 
that the interior of the 2D circuits be free of any lines. We also 
note that it is not always possible to cover a line drawing with 
simple closed circuits corresponding to the specified planar faces 
of a given orthographic extension (see example N). It may also 
be the case that a given covering has no nontrivial orthographic 
extension with planar faces as specified, as in example O. 

6. One face, in example H, is an exception to this statement. 
However, there are enough other geometric constraints in this 
particular case to enforce planarity. 

7. Because this rule typically produces many additional planar faces, 
it was not used in figures 2 through 6. For these line drawings, 
the results are virtually identical with or without these additional 
planar faces. However, the rule was used in the stability and 
robustness experiments of section 3.4. 

8. The SDA term is first squared to make it commensurate with 
the DP term. Note that squaring the SDA term has no effect on 
the minimization when X = 1 (i.e., the simple MSDA algorithm), 
because the SDA term is positive, and squaring is a monotonic 
function of the positive reals. 

9. This assumes the line drawing is perfect. We later discuss how 
such perfect drawings can be obtained in an interactive 
environment. 

10. Since we had only the original line drawing for each of MariU's 
examples, we used the reconstruction from each line drawing 
as the 3D object for the random projections. 

11. The line lengths for these drawings were approximately in the 
range of 2 to 5. 

12. For all line drawings except the truncated box and the hinge, the 
largest absolute difference in angles between any trim and the 
reconstruction with z = 0 was less than one degree. For the trun- 
cated box, the largest error was less than fifteen degrees. For 
the hinge, one of the trims caused the hinge to "fold" with are- 
pairs (1 0 4) and (2 3 5) going to zero degrees. Otherwise, the 
largest error was less than seven degrees. 

13. Modulo a change in sign in the z coordinates. 
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14. The set of free vertexes is by no means unique. For example, 
any three vertexes from one hexagon plus any vertex from the 
other hexagon will do for this line drawing. We have a simple 
algorithm for finding a set of free vertexes, but have not yet proven 
that it is correct, so we do not present it  here. 

15. The successive reconstructions are not independent; to the ex- 
tent that they allow a range of interpretations, the parameters 
selected for one interpretation will influence the parameter selec- 
tions for successive interpretations. 

16. Some differences are that Barrow and Tenenbaum considered 
arbitrary, but known perspective transforms in their paper, while 
Marill used only orthographic projections. In either case, the 
set of state variables is equivalent. In addition, Barrow and Tenen- 
baum did not consider the use of a continuation method. 

17. Marill, of course, only returns the wire frame. But in the case 
of a blocks-world object, competent algorithms exist for finding 
all the valid completions of the wire frame as a solid polyhedral 
object (Strat 1984, Markowsky and Wesley 1981). 

18. As noted in section 3.1 and appendix A, we have made some 
initial progress toward the solution of this problem and have 
developed an algorithmic procedure that can successfully han- 
dle all of the examples discussed in this paper, but we recognize 
that this is still far short of a complete solution. 

19. For example, by using UUman's result that three distinct or- 
thographic projections of four noncoplanar points in a rigid con- 
figuration are sufficient to uniquely determine the structure and 
motion up to a reflection about the image plane. 
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Appendix A. Psychological Assumptions 

The following are some of the basic assumptions  that 

we believe are typically made by people  in the recon-  

structions of wire frames from l ine drawings, and some 

constraints relevant to part i t ioning a l ine drawing into 

p lanar  face. They are known  to have rare exceptions. 

1. Three d imens ional  wire  frames, derived from l ine 

drawings, have impl ied planar  faces inside subsets 

of their closed circuits; they can also have struts, 

such as legs or bracing wires, in or on  a planar  face. 

(Strongly nonplanar  faces produce  psychologically 

implaus ib le  solutions.)  
2. Symmetr ic  reconstruct ions are preferred over non-  

symmetr ic  ones. 

3. Parallel l ines in  a l ine drawing are parallel  in space. 

Lines  connect ing vertexes falling on  two parallel  

l ines are in a c o m m o n  plane  with the two parallel  

l ines.  
4. Many-s ided convex closed contours without  inter- 

nal  circuits ( in a 2D l ine drawing) are likely to cor- 

respond to the contours of  p lanar  faces in the cor- 

responding 3D orthographic extension (see B4). An 
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internal circuit to a convex polygon is defined to be 
a circuit for which all the vertexes are internal to 
the polygon, and for which the ends of the circuit 
lie on nonadjacent vertexes of the polygon. 

5. A closed simple contour in a line drawing, without 
internal lines, corresponds to a planar face in the 
corresponding 3D reconstruction. 
An algorithmic procedure for identifying 3D planar 

faces in the corresponding 2D line drawing of a wire 
frame has been constructed by composing the require- 
ments of items 3, 4, and 5 into a single algorithm, as 
defined in section 3. That procedure is sufficient to deal 
with all of the examples we discuss here, but is not 
general enough to handle other cases we can think of. 

Appendix B. Projective Invariants 

The following are some important projective invariants 
for planar geometric structures. 
1. The sum of the interior angles (measured between 

0 and 360 degrees) of a closed planar contour with 
n sides equals (n - 2) 180 degrees. Thus, since a 
polygon of n sides projects to a polygon of n sides 
under both orthographic and central projection, the 
mean value of the interior angles of a given closed 
planar contour [(n - 2)180/n] is invariant under both 
orthographic and central projection. 
We note that Marill measures angles only in the in- 

terval between 0 and 180 degrees. To the extent that 
we are primarily concerned with equiangular closed 
contours in the application of the above theorem in ex- 
plaining and using his results, this discrepancy is ir- 
relevant since all the interior angles of such contours 
are less than 180 degrees. 
2. Consider an angle (two line segments sharing a com- 

mon endpoint) in 3D space and its orthographic pro- 
jection. We will call the plane containing the angle 
the source plane, and the plane containing its pro- 
jection the projection plane. If the angle is translated 
in the source plane, its projection is also translated, 
but does not change in magnitude from its original 
projected value. Now consider a set of n angles ly- 
ing on a common source plane, such that the sum 
of these angles is360 degrees. If it is also the case 
that the angles can be translated so that when all 
their vertexes coincide, they exactly span an angle 
of 360 degrees, then the mean value of the set of 
angles (360/n) is unaltered under orthographic pro- 
jections. We will call such a collection of angles a 
"complete-star." (Example C, for instance, contains 

a complete-star consisting of the eight 45-degree 
angles formed at the comer vertexes by the diagonals 
with the sides of the square. Example G contains 
this same configuration in its central plane.) We note 
that if an essentially infinite number of copies of an 
angle of d degrees (where 360/d = k and k is an 
integer) is uniformly distributed in orientation over 
a plane, then the mean value of the angles under any 
orthographic projection of the plane is the constant 
value d. 

3. We note that if the angle between two line segments 
is less than 180 degrees, the angle can be closed to 
form a triangle, and since triangles are preserved 
under both orthographic and central projection, an 
angle of less than 180 degrees will never transform 
under such projections into one of more than 180 
degrees. We will call a closed planar contour con- 
vex if the region it bounds is convex. Since a con- 
vex contour has all internal angles of less than 180 
degrees, a convex planar contour remains convex 
under both orthographic and central projection. 

4. We note that the orthographic projection of an ar- 
bitrary nonplanar polygonal space curve, with four 
or more sides, has a probability of projecting to 
either a nonsimple or concave curve with a prob- 
ability (P) that increases with the number of sides: 

P > 1 - 0 . 5  n - 3  for n >_ 4 

This expression is based on the following model: Con- 
sider a process that generates a chain of 3D random 
vectors by generating three random numbers for each 
vector (in spherical coordinates, an angle uniformly 
distributed between 0 and 360 degrees, a second angle 
between 0 and 180 degrees, and a length uniformly 
distributed between 0 and some fixed integer L). As 
each vector is generated we extend the projection of 
the developing space curve on the X-Yimage plane. The 
process stops after some fixed number of steps, which 
is determined by choosing a random number in some 
given range; the curve is now closed by connecting the 
starting point, which could be the origin of the X-Y 
plane, to the last point generated and this determines 
whether the inside is to the left or fight as we follow 
the chain of edges of the projected polygon. We note 
that the only relevant factor in whether the projected 
closed contour is convex or concave is the cylindrical 
angle giving the rotation of each of the random vec- 
tors relative to the X axis in the image plane. For more 
than three sides, there is a 50% probability at each 
vertex that the inside angle is greater than 180 degrees, 
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which thus produces a concave polygon (the last clos- 
ing side can be ignored since it does not have the same 
statistics as the other edges in our random model.) 
Other probabilistic models would give nonidentical, but 
similar results. The > condition is based on additional 
considerations, such as the projected curve intersec- 
ting itself even though the input specification does not 
record a vertex at the cross-point. 
5. Closed four-sided polygonal space curves with 

90-degree angles at each vertex are planar contours. 
To prove this assertion, let the sequence of vertexes 
be labeled a, b, c, and d. Let the plane containing 
lines Lab and Lbc (and thus vertexes a, b, and c) be 
called P1. Since all angles are 90 degrees, Led must 
lie in a plane (P2) normal to Lbc at c. Similarly, L~d 
must lie in a plane (P3) normal to Lab at a. Vertex 
d must then lie on the line (L d of intersection of P2 
and P3, which is normal to P1. We know one solu- 
tion is to locate d at the point of intersection (d*) 
of Ld and P1 (where a, b, c, and d* form a rec- 
tangle). This is the planar solution and we wish to 
show that no other solution is possible. We note that 
a second constraint on the location of d is that it must 
lie on a sphere with diameter ac (i.e., all right 
angles, with legs passing through points a and c, 
must be inscribed angles of circles through a and 
c with diameter ac). We know d* lies on the sphere 
and P1 is a bisecting plane of the sphere. Thus La 
is tangent to the sphere at d* and a t* is the only 
possible solution. 

6. A Global Planarity Test for a Space Curve. A 
planar polygonal curve has a sum of internal angles 
equal to (n - 2)180 degrees. Thus, if the curve is 
triangulated using only the existing vertexes along 
the curve, the sum of the angles of the triangles is 
also (n - 2)180. 
Case 1" Consider a space curve S that projects to 

a convex planar curve. If the space curve is itself planar, 
the sum of its angles (measured between 0 and 180 
degrees) is (n - 2)180. Assume S is nonplanar, that 
is, there is a "fold" along one or more edges of some 
triangulation of its planar projection. Consider the 
vertex V at the intersection of one such fold (with 
respect to the implied triangulation 73 and S. The plane 
through the two edges of S meeting at V, and the faces 
of the triangles of T that have edges intersecting at V, 
form a polyhedral angle. It is known that any face angle 
of a polyhedral angle is less than the sum of the other 
face angles. Therefore, the sum of the angles of the 
space curve is equal (at vertexes with no folding) or 
less (at vertexes with folding) than the sum of the angles 

of the triangles in T (i.e., less than (n - 2)180). 
Case 2: If the projection of the space curve S is con- 

cave, and we measure angles between 0 and 360 
degrees, the sum of the internal contour angles in the 
planar projection will equal (n - 2)180 as in Case 1. 
However, while the space angles with projections of 
less than 180 degrees will decrease at folds, the internal 
angles greater than 180 degrees will increase (i.e., at 
vertexes where there are folds, the polyhedral angle in 
the argument given in Case 1 is now formed for the 
external angle of S at 1I). Thus, since some angles will 
increase and others decrease, we cannot be sure that 
the curve is planar even if the sum of its internal angles 
equals (n - 2)180. However, we do have a sufficient 
condition for nonplanarity. That is, the curve is known 
to be nonplanar if the sum of its internal angles, meas- 
ured between 0 and 360 degrees, is not equal to (n - 
2)180 degrees. 

Appendix C. A Partition Theorem 

The variance of a set of S of n objects {ai} is defined 
a s  

V = - I  ~_~(ai - M) 2 = ~ - M 2 
n i=1 Li=I n 

where 

= - -  a i 
n i=1 

Let us now partition the {ai} into k subsets, such 
that the subset S l has nj elements and mean M I where: 

Mj = 1  ~_jai 
nj sj 

Let Vj be the variance of Sj about Mj and let Aj = 
( M  - Mj).  

Theorem: 

k 

n j--1 

Proof." The expression for V can be rewritten as 

V = I I~sl [ai - (MI + Aa)]2 + Z [ a i  - (M2 + A2)]2 
n s2 

- 1  

+ "'" + ~ [ai - (Mk + Ak)]2 / 
._1 Sk 
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If we let: 

Iffj = ~ [ a / -  (Mj + Aj)] 2 
sj 

Then we have: 

lffj = E a2 + MJ 2 + A2 - 2Aj E a /  
nj nj nj 

- 2Mj ~_~ ai + 2My Aj 
nj 

Given that r~(ai/nj) = Mj, we note that the 4th and 6th 
terms cancel and the 2nd and 5th terms combine: 

-"~" = [ E  a / 2 -  Mf]  + A~ = Vj + A] 
nj nj 

And 
= nj[  + 

QED 

Appendix D. Symmetric Preference Theorem 

Recall that 
1. In appendix B we showed that the average angle of 

all planar orthographic extensions of a given sim- 
ple closed 2D contour are the same, and that the 
average angle of all planar orthographic extensions 
of a complete-star are also the same; 

2. in appendix C we proved a theorem that allows us 
to compute the SDA of a set of simple dosed planar 
contours (and/or complete-stars) as the sum of two 
components. The first component is the variance of 
the angles in a contour or star about the mean angle 
of that contour or star, summed over all contours 
and stars. The second component is a weighted sum 
of the squared differences between the mean angle 
of each contour and star, and the average of all the 
angles under consideration. 
By (1), the second component of the variance is con- 

stant over all planar orthographic extensions because (a) 
the mean of each contour and star is constant over all 
such extensions, and (b) the mean of all angles can be 
computed as the weighted sum of the mean of each con- 
tour and star. 

Consequently, if we restrict our attention to the 
planar orthographic extensions of a line drawing, then 
by (2) above, only the first component of the variance 
will change over the extensions. Since the first com- 
ponent is zero for an extension comprising only equi- 

angular planar contours and stars (such as the solutions 
for examples A, B, C, G, J, K, and L), and since it 
is positive otherwise, then such symmetric solutions 
correspond to the global minimum of the SDA over all 
planar orthographic extensions. 

Appendix E. Factors Affecting the Perception of 
Nonrigidity 

If we rotate a randomly derived orthographic extension 
of almost any of the line drawings used as examples 
in this article, the object appears nonrigid to most 
observers (even though, of course, the wire frame is 
actually a rigid object). While there are many possible 
explanations for this phenomenon, our conjecture is that 
it is primarily due to special position projections of the 
wire frame (that occur at one or more poses in its rota- 
tion) that lead the HVS to incorrectly assume that some 
projective invariant (such as parallel lines, see figure 
11) is being observed. This, in turn, causes incorrect 
expectations about the presence and location of planar 
faces. 

We informally looked at some other possible causa- 
tive factors, but did not observe consistent nonrigidity 
phenomena. For example, we looked at objects, such 
as example N that produce compelling 3D interpreta- 
tions with Necker reversals, but for which the drawing 
is incomplete--it does not show all the edges that should 
be visible, for example, where planar faces intersect. 
There was the possibility that these missing edges in 
the 3D model (and thus missing lines in the drawing) 
could cause the appearance of a nonplanar-faced ob- 
ject to be observed. But the hinge, and the few other 
objects we looked at in this category, appeared rigid. 

We also looked at nonplanar orthographic extensions 
of drawings that generally appeared flat, including 
blocks-world type drawings that do not have correspon- 
ding polyhedral realizations (such as example O). The 
results here were ambiguous. The rotating objects 
generally produced illusions of nourigidity, but since 
these objects did not always appear 3D, the illusions 
were generally very weak. 

Some other causal experiments include cases where 
all the lines connecting the vertexes of the wire frames 
are deleted; we observed that some of the wire frames 
that originally appeared nonrigid now appeared to be 
rigid under rotation. And, as a general observation, we 
have not encountered any examples in which the wire 
frame of a (nondegenerate) blocks-world object appears 
nonrigid when in motion. 


