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Plan of this talk

Objective: to handle large intra-category structural variability.

=N

, Conceptualization:
How do we define the concept of a category, i.e. the set of all valid instances?

2, Modeling
A grammar is embodied in an And-Or graph.

Define a probabilistic model on the And-Or graph to account for the natural statistics.

3, Image annotation and ground truth
Constructing a large human annotated database

4, Learning
Learning from a relatively small data set and generalizing by MCMC sampling.

5, Computing and parsing
Recursive bottom-up / top-down inference.
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Define: And-Or graph, parse graphs, and configurations

{b) parse graph |

(@) And-Or graph
O and-node
% ornode
0O leal node

{0

(d) configuration |
pZ - ’@\ e
m - I; -
B ~E- fo”
r Yoy i)
[ m 1l .

_H

(¢} parse graph 2

(e} configuration 2

Each category is conceptualized to a grammar whose language defines a set or

“equivalence class” for all the valid configurations of the each category.

An example: the clock category

(a) And-Or graph
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(b) Parsing graphs for instances
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A parse graph of a bike

Relationships

@ Relative Position

Relative Scale

@ Aspect Ratio

A relation is like a non-linear filter in low level vision

Some examples
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Abinary relation is set of links between selected nodes.

It is applied to selected sites and returns a value (scalar or binary).
Suppose Ais a vector of attributes for all nodes

A=(aa,..a,)
L :f(ai»aj)
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A large scale human annotation project at Lotus Hill, China

Tel:+86-711-3876688,+86-711-3867183
Fax:+86-711-3876699

Contact person:

Julia Xia,wenhuaxia@omail com
Michael Yang,xyang Ihi@amail.com
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An example: parse graph of a cat
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An example: parse graph of a boy with bag

@
,’\
andle (Part Strap (Part)

!

Backpack
‘Ohjt!u] f=
ﬁ ]

* Handle {Part)

Zipper (Part)

C
—Bo
Ear (Part)

\

Shoulder (Part)

]

“loth (Part

Arm (Part)

An example: clip for surveillance video




|t includes many datasets

280 object categories, 20 scene categories, video, text, segmentation, grouping

with ~3,000,000 nodes.
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The Probability model on the And-Or graph

Denote:
G  ---aparse graph,
U(G) ---- the set of Or-nodes in G,
V/(G) ---- the set of the And-nodes + leaf nodes in G
R(G) ---- the set of relational links between nodes in G.

The probability model is defined as

p(G:A, R,9)=%6Xp{— Saw- Y om- S}

ueU(G) veV(G) r;€R(G)

The first term alone stands for a SCFG.
The second and third terms are Markov potentials.

For a context sensitive attribute grammar:

the hard relations / constraints affect the frequency at the or-nodes.
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By analogy to texture modeling 1\ rg1jing the relations by minimax entropy

observed synthesized
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Sampling Clock: we keep evolving O(100) samples

Poway, Yao, and Zhu, 2006-07
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Examples of sampling bicycles

Poway, Yao, and Zhu, 2006-07
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Examples from sampling cars

it is less satisfactory, as 3D perspectives are not accounted.

lterative learning to match the statistics (histogram)

Scale X Scale Y Position X Position Y KL Distance
@ . \ / \\ 1" L
— Target Histogram = == == First leration Last Iteration Pursuit lteration

Results of the learning procedure.

(@) Histograms for four pairwise relationships at different iterations. The last iteration matches the
observed histogram quite closely.

(b) The KL divergence between the current and target model as the relationship pursuit is performed.
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Top-down prediction by sampling the missing part

Stage 1: Stage 2: Stage 3:
random correct more
prediction scale relations
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Poway, Yao, and Zhu, 2006-07

The blue parts are predicted by the learned models at various learning stages

Learning from a small training set & generalization by sampling

{a) generalizing from a
small training set

In our recognition experiment
with 33 categories, each category
has 50-60 samples. the sampling
process improves the average

recognition rate from 66% to 81%.

(b instances for leaming

(€} generative representation

Poway, Yao, and Zhu, 2006-07

{d) generated novel configurations
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What is the smallest sample set for training?

Bike Car Lamp

=

Mug MP3 Player Teapot

1/ 4 .

Coverage results for 6 categories. Obviously, as training size increases we cover more of the test
set. However, we usually only need a small fraction of the training set to maximally cover the testing
set.

Recursive computing and parsing

The And-Or graph is a recursive structure.

we only need to consider a single node A.
1, any node A terminate to leaf nodes at a coarse scale.
2, any node A is connected to the root.

t |tz | =---
1 | - | |["| — A open list {(weighted particles for hypotheses)
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closed list (accepted instances)
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Compositional boosting, T.F. Wu et al, CVPR 07
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Top-down / Bottom-up Inference at all levels

Starting the o/B/y channels when they are applicable ---an optimal scheduling problem
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Image parsing by Tu et al, 2002-05

Top-down / Bottom-up Inference

Integrating generative and discriminative methods
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Previous work on image parsing
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Examples of Image Parsing
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Tu, Chen, Yuille, and Zhu, iccv2003

Image Parsing Results
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Example: Bottom-up / Top-Down Inference of Rectangular Scenes

parsing graph
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(Han and Zhu, 05)

A slap shot of the inference algorithm
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Case study |: parsing rectangular scanes by grammar
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How much does top-down improve bottom-up?

In the rectangle experiments: Han and Zhu, 2005-07

ROC Curve for Rectangle Detection Using Bottom-up only and Bottom-up/Top-Down
T T

‘,Q‘

1

09

é, - ’§b+y - channels

0.8 ’

’
071 *

06~

05

B-channel

Detection Rate

0.4

03

0.2

01

—{@— Using Bottom-Up Only
- @ - Using Both Bottom-Up and Top-Dow
1 1 1

0 I I I I I I
0 2 4 6 8 10 12 14 16 18 20

False Alarm Per Image

& VT&VVVI

Ar



Case study Il: parsing human upper-clothes

Elements in the dictionary of human figure
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Chen, Xu, and Zhu, CVPR, 2006
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Case study ll: parsing human upper-clothes

Chen, Xu, and Zhu, CVPR, 2006

Case study llI: object category recognition

Example of bottom-up proposing and top-down prediction / hallucination
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some
recognition

examples
in5

categories &

Confusion matrix for 33 categories

Overall classifying accuracy: 81.41%
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Message to students: three personal opinions

1, Object categorization is a finite problem,
---- We need a Google mentality !

2, High level vision needs structures and supervised learning.
---- You thou not feel ashamed for using your hands.
Let’s play basketball, go beyond soccer !

3, The pendulum swings from statistics to computer science,
---- Study grammar, parsing, compiler, architecture !

Examples of the dictionary of image primitives
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primal sketch : connecting symbols to pixels

' syn iage synthesized textures sketch image

primal sketch is a 2-layer MRF model

Spatial MRF

. Texture MRF
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