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1, Background on visual (appearance) manifolds

Image patches from a single object category
are often found to form low dimensional manifolds.

eg. ISOMAP, LLE:
Saul and Roweis, 2000.

But, people found that image patches of generic
natural images do not follow this observation.




Looking at local, generic natural image statistics

Fields 87, 94

Zhu and Mumford 95-96 =
Chi and Geman 97-98 T
Huang, 2000 ;
Simoncelli etc 98-03

Ruderman and Bialek 87, 94 [‘E A
'

Here is an example of how real world data
can be truly complex — non-Gaussian and
highly kurtotic. This is an iso-density contour
for a 3D histogram of log(range) images
{2x2 patches minus their means) (Brown
range image database, thesis of James

Huang)

A wide spectrum of categories from low to high entropy
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Entropy ~ Dimension ~ Log volume( manifold )




Visual manifolds have varying dimensions

Take 16x16 image patches (256-space), run PCA for each

category, and plot the eigen-values in decreasing order.
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By analogy: pictures of our universe

entropy ( temperature ) regimes. compositional structures.

How do we learn these manifolds?
Can we do it by K-mean clustering?
3 modeling theories in vision:
(1) Markov random fields, (2) Sparse coding, (3) Grammar and Composition




2, Manifold pursuit in the universe of image patches

f: target distribution;  p: our model; ¢: initial model

q=pPy P> —-op to f

image universe:
every point is an image.

1, q = unif()
2, 4= o)

model ~ image set ~ manifold ~ cluster

Intuitive idea: a professor grading an exam

The full score (like dimension in our case) is 100. You have two ways:
For top students (high dimensional manifolds), you start from 100 and deduct points :
100-2 -0-0-3-0-2-0-0-0-0-0-1=92
For bottom students (low dimensional manifolds), you start from 0 and add points

0+8 +0+0+3+0+2+0+0+5+0+0+1=19

In reality, suppose the exam is very long (just like the large image has >1M pixels), a student may
have mixed performance, e.g. doing excellent in the 15t half and doing poorly in the 2¢ half. Thus
a most effective way is to use the two methods for different sections of the exam.

(50-2 -0-0-3-0)+(0+5+3+0+0+2)=45+10="55

In fact, most of the object categories are middle entropy manifolds and have mixed structures.




Manifold pursuit in the image universe

In a simple case: f is a Gaussian distribution

eigen-value A
eg. texture\&
mixed: e.g. tiger face
b
l\l. e.g. face
123 N

Manifold pursuit by information projection

Given only positive examples from a class ¢
0 ={1°%%; i=12,.., M%)}~ f(1)

We pursue a series of models p to approach a underlying “true” probability f
gq=po=>p > =2p to f
At each step, we augment the current model p to a new model P
hy = argmax KL(f |p) — KL(f |p;)
= argmax KL (p4 | p)

Subject to a projection constraint:
E, [hi(D] = E[h,(D] = Ay

h, (I) is a feature statistics of image 1




Manifold pursuit by information projection

Solving the constrained optimization problem leads to the Euler-Lagrange equation

p.(1)

+
p (0

p. = argmin [ p.(I) log dl + 2. [f p.(Dho(DAl - k] + 2, [ p. (DAl 1]

D (;0,) = ka_i(l; 0, _,)e bk
Lk

K
= Zikq (D exp { _Ziﬂlihj(l) }

where
Ly =21 ZopmZyoy 0= (A0, 0y)

For q being a uniform distribution, we have q(l) = zi

l nform at|0n prOJeCt|0n DellaPietra, DellaPietra,Lafferty, 97

Zhu, Wu, Mumford, 97

Do =¢ Q ={p: Ep[hy(D] = E[h;(D]}

J/ Q, ={p: E, [h,(D] = Ef[hz([)] }

KL(f | p) = KL(f | p+) + KL(p+| p)

So the KL-divergence decreases monotonically.




A Maximin Learning Principle

max-step: choosing a distinct feature and statistics

n: = argmax KL (ps | p)

min-step: given the selected feature constraint, computing the parameter

AL =argmin KL(p, | p)

Claim: this learning procedure unifies almost all we know in visual modeling
PCA, sparse coding,
MRF, Gibbs, FRAME,
Adaboost (when h() is binary),
Stochastic grammar

3, Case studies:

Case 1:  Pursuing texture models by compression from white noise
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A texture pattern is an “implicit manifold”

atexture=Q(h, )={I: h,(D=h_, ,1=12,..,K}

ci ?

H, are histograms of Gabor filters, i.e. marginal distributions of £(I)

I ~ Q(h) k=7

(Zhu,Wu, Mumford 97,99,00)

More examples of the texture manifold (implicit)




This is originally from statistical physics !

Statistical physics studies macroscopic properties of systems
that consist of massive elements with microscopic interactions.

e.g.: a tank of insulated gas or ferro-magnetic material

N = 1023 A state of the system is specified by the position of the
- N elements XN and their momenta pN
o @0 .o P 8 ° R
e © o oo — («N N
08,00 00°% S_(Xap)
[} :. [ ] e o
0® % 0%e o © But we only care about some global properties
° 0% o%c°e ® Energy E, Volume V, Pressure, ....

Micro-canonical Ensemble

Micro-canonical Ensemble = Q(N, E, V)= {s: h(S)=(N,E, V) }

Equivalence of Julesz ensemble and FRAME/MRF models

Zhu, Wu, Mumford, 1997

Wu and Zhu, 1999

Theorem 1
For a very large image from the Julesz ensemble I ~ f'(I; h C) any
local patch of the image I given its neighborhood follows a conditional
distribution specified by a FRAME model p(Ia |Ioa : B)

Theorem 2
As the image lattice goes to infinity, £(1; he) is the limit of the

FRAME model p(Ia|1aa : B), in the absence of phase transition.
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Case 2: A car pattern is an “explicit manifold”

Learning-active-basis-as-deformable-template———

Abasis is an image space spanned by a number of vectors (e.g. Gabor/primitives)
B= (Blf Bz, . Bk)
Acar=0={I: [=Ziji)5}
i
A car template

(Gabor elements represented by bar)

An incoming car image:

With slight modification, this model can handle multi-views Wu, Si. Gong, Zhu, 2008

Deformed to fit many car instances

A r



Pursuing the active basis model (explicit manifold)

q(l): background distribution
(all natural images)

p(l): pursued model to approximate
the true distribution.

KL(p(1;) |l q(r,))

l
[ I':_, # Gabor elements selected
i
- -v!

A running example

A car template consisting of
48 Gabor elements

Car instances

A A



Experiment : learning and clustering
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Learning active basis
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Experiment : learning and detection
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Wu,Si,Fleming,Zhu,07

vs: Viola, Jones, 04




Template detection experiment

Wu,Si,Fleming,Zhu,07

Summary: two pure manifolds

implicit vs. explicit
Q={: h()=h,}
h(I) is some image feature/statistics
Q={LT=gWw4)}

g is a generation function,
w is intrinsic dimension
A is a dictionary




Summary: a second look at the space of image patches

image space

explicit manifolds

4, Relations to the literature: psychophysics

(1) textures vs textons  (Julesz, 60-70s)
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Textons vs. Textures
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Clustering in video
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Examples in video
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6, Primal sketch: integrating the two regimes

org image sketching pursuit process

syn image 7 synthesized textures sketch image

(Guo,Zhu,Wu, 2003-05)

manifolds of image primitives

Learned texton/primitive dictionary with some landmarks that transform and warp the patches
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Primal Sketch is a two-level MRF model

Spatial MRF

Texture MRF

Primal sketch example

input
image

synthesized §
image

sketching pursuit
process

sketches

A



Primal sketch example

original image synthesized image

sketching pursuit process

7, deformable template: mixing the im/explicit manifolds

space of orientation histograms
(a projection space)

space of image patches

(@)

texture patch

sketch patch

H{Iy=h+e

I =cB+¢

Siet al 2008

A r



The two types of models compete in learning the templates
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head and shoulder hedgehog water patches

Some examples of learn object categories
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8, Information scaling leads to manifold transitions !

Scaling (zoom-out) increases the image entropy (dimensions)

Wu, Zhu, Guo, 04,07

Transition of the manifolds through info. scaling

How are these manifolds related to each other ?

perceptual scale space theory (Wang and Zhu 2005)

S A



Summary: understanding the “ingredients of our herbs” !

2 type manifolds, pursuit, integration, mixing, and transition
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