
1

IMA workshop on Visual Learning and Recognition, May 2006,      

Generative models
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Modeling

One fundamental problem, in my opinion,  that we are facing today is to

represent the enormous amount of visual knowledge

needed at all levels of vision.

modeling  =  visual knowledge representation

More specifically,  it is to distill data (raw images, video) into visual 
knowledge in terms of various kind of models. 
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Visual Knowledge

There are two kinds of visual knowledge

1. Representational knowledge:
---hierarchical generative models

--- descriptive models, such as MRF

2. Computational knowledge: --- discriminative models

(a) Visual vocabulary 
--- dictionaries at all levels of vision 

(b) Spatial relations and context 

discriminative features for various variables 
ordering of bottom-up tests …
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Three families of models in vision

Generative models
Hierarchic models, 
Grammar (SCFG) 
Wavelet/sparse coding…

Descriptive models
Markov random fields
Graphical models,
Mixed Markov fields 

Discriminative methods
Clustering/detection,
Adaboosting,
SVM, … 

context sensitive 
graph grammar etc.

Data-Driven

Markov chain

Monte Carlo
conditionalrandom fields
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Descriptive models
1. A flat graph representation G=<V, E>.

G could be directed, undirected, such as chain, tree, DAG, lattice, etc.
the nodes in the graph are at the same semantic level.

2. hard constraints or soft “energy” between vertices for regularity and context

Examples, 
constraint-satisfaction,   line drawing interpretation,  scene labeling, deformable templates,
image restoration,  segmentation,  graph partition/coloring,  shape from stereo/motion/shading
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Learning descriptive models

Conceptualization and Modeling with Descriptive models

Examples:
Gibbs,
MRF, 
FRAME,
Mixed Markov model

Model pursuit: choose informative features and statistics to minimize the log-volume of the set 
or Shannon entropy of the model   --- minimax entropy principle.
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Example

Iobs Isyn ~ Ω(h) k=0 Isyn ~ Ω(h) k=1 Isyn ~ Ω(h) k=3 Isyn ~ Ω(h) k=7Isyn ~ Ω(h) k=4

The same procedure has been applied to various of levels of context models:

textures,  texton process,  simple shapes,  scene context, …

Markov random fields and Gibbs models on pixels
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Generative model

A hierarchic graph representation
the nodes in the graph are at different semantic levels.
the edges show the decomposition.

hidden variables

observables

Examples, 
wavelets, sparse coding, stochastic context free grammar, …, 

levels of dictionaries
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Learning generative models

Model pursuit: choose optimal dictionary (epsilon-balls) to cover the 
maximum probability mass or minimize the Kolmogorov entropy   

--- again, minimax entropy
It is closely related to binding with maximum mutual information.

A generative model is a joint probability with a series of dictionaries

It has to be a 
descriptive model

Key concepts:
A dictionary is a set of epsilon balls (manifolds)
A hidden variable is an index to the dictionary.
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Integrated generative model

Generative methods Descriptive methods
context sensitive 
graph grammar etc.

Necessity is obvious:  
we need both hierarchic composition and context.

But how?
1.   When do we represent regularity by a constraint (descriptive) 

or by a production rule (generative)?
2.   How to handle the continuous transition between 

texture (descriptive) and structures/shapes (generative)?
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Leaves at a range of scales

D
B

A

C

This picture contains trees/leaves
at four ranges of distance, over
which our perception changes.

A:   see individual leaves with 
sharp edge/boundary
(occlusion model)

B:   see leaves but blurry edge
(additive model)

C:   see a texture impression
(MRF)

D:   see constant area
(iid Gaussian)
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Model regime transitions in scale space

We need a seamless transition between different regimes of models

scale 1 scale 2 scale 3 scale 4

scale 5 scale 6 scale 7
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By analogy:  A picture of the universe

At different temperatures
we observe different
entropy patterns.

At different scales,
different forces rule
the systems.

A photo from Cosmology. Our image space is very much like this, it 
contains patterns of wide range of entropy regimes. 
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Integrated learning
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Augmentation of the Integrated generative model

The pursuit of an integrated model is to minimize the Shannon and Kolmogorov entropy 
in turns,   

1

1MRF
∆

primitives
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A low level example: primal sketch

sketching pursuit process

sketch imagesynthesized textures

org image

syn image

+=

sketches
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Examples of the dictionary of image primitives
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Example: primal sketch

Spatial MRF

Texture MRF
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Middle-level example:  the dictionary of graphlets

A graphlet is a graph composed of 2-8 image primitives with open bonds.
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Middle level example
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High level examples: the dictionary of human figure 
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Composing the parts

Each sub-template is a vertex in a composite template, and vertices
are connected through “bonds”. 

g2

g1

11β
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33β32β

31β23β

22β
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The ideas of binding, composition, hierarchical, and 
reusable parts

A

B C

a ccb

Or-node

And-node

leaf -node

A grammar rule: 
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Embedding the integrated models into an And-Or graph
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Examples of new configurations (synthesis)

Note that the number of sub-templates and their connections change.
Each is a possible “configuration”.
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Examples of human upper-cloth representation
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Examples of human upper-cloth representation
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Back to history

In the 1980s, we have a popular model for low and middle level vision
(Geman and Geman, Blake and Zisserman, Koch and Poggio, Mumford and Shah)

Three questions:
1. Why is the potential quadratic?

2.  Why is the gradient operator?

3. Where is the concept of edge from?


