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Parsing Image Into Various Stochastic Patterns

input image                      point process                  curve process

a color region                      texture regions             objects
Depending on the types of patterns it focuses, image parsing subsumes conventional vision tasks:  

perceptual organization, image segmentation, object recognition, etc.
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A basic assumption, dated back to Helmholtz (1860), is that biologic and machine vision 
is to compute the most probable interpretation(s) from input images. 

Let I be an image and W be a semantic representation of the world.

A Bayesian Formulation
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In statistics, we sample from a posterior probability to preserve ambiguities.
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Problems

1. Representational or modeling problems:

What are W , p(W), and p( I | W) ? 

Can MCMC run in seconds on a PC for parsing images?

a). What are the structures of the search space, which we call Ω?

b). How do we explore the search space for globally optimal solutions ? 
--- reversible MC jumps + diffusion (PDEs).

c). How do we compute and preserve ambiguities .

2.  Computational problems:
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Ideas to Improve MCMC Speed in Literature

A main idea is to introduce auxiliary random variables:

x ~ π(x)

The common problem is:
The Markov chain moves are designed a priori, without looking at the data.

T --- temperature    (Simulated tempering, Narinari and Parisi, 92, Geyer and Thompson, 95 )

s --- scale                (Multi-grid sampling, Goodman and Sokal 88, Liu et al 94 )

w --- weight              (dynamic weighting, Liang and Wong 1996 )

b --- bond                (clustering, Swendsen-Wang, 87)

u --- energy level     (slice sampling, Edwards and Sokal, 88 …)

Augment x by variables:
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What is Data-Driven Markov Chain Monte Carlo  ?

)I|W(~W pThe complexity of sampling the posterior 
is in the Metropolis -Hastings jumps
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Without looking at the data, the pre-designed proposal probabilities are often uniform distributions, thus it is a blind 
(exhaustive) search !

Then it may converges in a small number of steps !



4

Los Alamos National Lab, 12-2-2002

q

The proposal probabilities q( ) focuses on a tiny portion of the search space and thus
narrows the search exponentially in a probabilistic fashion.  Thus the Markov chain
converges and mixes very fast.

Basic Ideas

Search space:

p
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Intuitive Idea:  Divide-and-Conquer 

Let W=(w1, w2, …., wn), usually these variables are divided 
for several types:

partition, label of models, model parameters, order,  …

Consequently, the search space is made of a few types of “atomic spaces”
--- one for each type of variables --- through union and production.

Then we can compute discriminative probabilities in each atomic space,
which is then composed into the proposal probabilities.
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Example:  Image Segmentation
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is a 7-partition of the lattice.
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Some Image Models 

Some families of image models:

g1ϖ : iid Gaussian for pixel intensities g2ϖ : non-parametric histograms

g3ϖ : Markov random fields for texture g4ϖ : Spline model for lighting variations

c1ϖ : iid Gaussian for color (LUV) c2ϖ : mixture of Gaussians for color

c3ϖ : spline model for smooth color variations (e.g. sky, lake, …)

g1ϖ g2ϖ g3ϖ g4ϖ
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a). solution space c). an atomic space

atomic 
particles

7pΩ

b). a sub-space of 7 regions

A 7-partition

space

atomic
spaces

1CΩ 1CΩ
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2CΩ 2CΩ

3CΩ 3CΩ

The Search Space
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Designing Markov Chain Dynamics

Type I:   Diffusion of region boundary  -- region competition.

Type II:  Splitting of a region into two. 

Type III: Merging  two regions into one.

Type IV: Switching the family of models for a region.

Type V:  Model adaptation for a region.

1

2

4
3
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7
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Edges in Partition Space pϖ

Edge detection and tracing at three scales of details:
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Clustering in Color Space c1ϖ

saliency maps     1              2            3             4   5            6
The brightness represents how likely a pixel belongs to a cluster.

Input

Mean-shift clustering (Cheng, 1995, Meer et al 2001)
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Walking in the Partition Space

an adjacency graph:  each vertex is a basic element :  pixels, small-regions, edges, ….
each link e=<a, b> is associated with a probability/ratio for similarity
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Walking in the Partition Space

Sampling the edges independently,  we get connected components: 

These connected sub-graphs are the clusters in the partition space

sampling       c  ~  q( C | F(I))   on pϖ
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Graph Partitioning– Generalizing SW

The red edges are the bridges
Theorem. Accepting the label change proposal with probability:

results in an ergodic and reversible Markov Chain.
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Diffusion Components by PDEs

(s)n)
)?|y)p(I(x,log
)?|y)p(I(x,log

?(s)(µ
dt
(s)vd

b

a r
r

⋅+⋅=

The Markov chains realized reversible jumps between sub-spaces of varying dimensions.

Within a subspace of fixed dimension, there are various diffusion processes expressed
as partial differential equations.

For example, the region competition for curve evolution (Zhu, Lee, and Yuille, 95)

Ra

Rb y(s))(x(s),(s)v =
r

Let v be a point on the boundary between two regions, its motion
is governed by the region-competition equation.
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Results by DDMCMC

snapshot of solution W sampled by DDMCMC

segmentation synthesis
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Running DDMCMC

input

MC 1           MC 2         MC 3

starting with 3 different initial segments below

energy plots of three MCMCs

W1         I1~p( I |W1)       W2 I2~ p(I|W2)
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DDMCMC are 2-3 orders of magnitude faster than traditional MCMC.

Performance Comparison

Analyze performance bounds of DDMCMC paradigm.

Los Alamos National Lab, 12-2-2002

Experiments: Color Image Segmentation

Input                          segment π∗ synthesis  I ~ p( I | W*)
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Input                          segment π∗ synthesis  I ~ p( I | W*)

Experiments: Color Image Segmentation

Los Alamos National Lab, 12-2-2002

Input                          segment π∗ synthesis  I ~ p( I | W*)

Experiments: Color Image Segmentation
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a. Input  image       b. segmented regions    c. synthesis  I ~ p( I | W*)

Los Alamos National Lab, 12-2-2002

Image Segmentation

Input                          segment π∗ synthesis  I ~ p( I | W*)
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The Berkeley Benchmark Study

test images                     DDMCMC        manual segment

0.3082

0.5627

“error” 
measure

0.1083

(David Martin et al, 2001)
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a. Input  image      b. segmented regions  c. synthesis  I ~ p( I | W*)

Examples of Failure
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a. the first two face features                   b. an example of face detection

Adaboost in the Label Space

---- an example from Viola and Jones, 2001.

y=Sign( a1h1(I) + … + a ThT (I) )  à sign(p(y=1| I)/ p(y=-1| I)

Adaboost is a learning algorithm which makes decision by combining a number 
of simple features. As T and training samplers become large enough, it weakly

converges to the log ratio of the posterior probability

Los Alamos National Lab, 12-2-2002

Ambiguities in Visual Inference

Nicker cube Vase vs. faces bikini vs. martini
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a. Input image                           b. Segmented texture regions      c. synthesis by texture models

d. curve processes + bkgd region   e. synthesis by curve models

Ambiguity in Visual Inference
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Computing Multiple Solutions

To faithfully preserve the posterior probability p(W|I),
We compute a set of weighted scene particles {W1, W2, …, WM}, 

A mathematical principle:
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Pursuit of Multiple Solutions

The Kullback-Leibler divergence can be computed if we assume
mixture of Gaussian distributions.

--- a simple fact: the KL-divergence of two Gaussians is the signal-to-noise ratio.

Intuition:  S includes global maximum, local modes, apart from each other.

Los Alamos National Lab, 12-2-2002

A k-adventurer algorithm 
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Preserving Distinct Particles

x1 x2 x3 x4

Los Alamos National Lab, 12-2-2002

An Example of Keeping Multiple Solutions

An example of illustration:

1

2
3 4
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Preserving Distinct Particles

A model p with 50 particles two approximate models q with 6 particles

min D(q || q1)

q                                 q1                                            q2

An example of illustration:
min | q – q2 |

Los Alamos National Lab, 12-2-2002
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General Search Space for Image Parsing
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Parsing Images into Regions and Curves

)W,W,W,(WW tpcr=

Los Alamos National Lab, 12-2-2002

Curve Models

Curve shape ))(),(( sHsU=Γ

)(sU is the center line.

),( θΓ=CCurve

)(sH is the curve width.

})..1);,{(,(W c c
ii

c KiCK == α
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input regions rW

synthesis

curves cW

synthesis c
synI cWby~ synthesis r

synI rWby~

group 1

Parse Image into Regions and Curves
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input

synthesis

curves cW

synthesis c
synI cWby~

regions rW

synthesis r
synI rWby~

tree 

Parsing Images with Trees
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input regions rW

synthesis

curves cW

synthesis c
synI cWby~ synthesis r

synI rWby~

group 1 group 2

Parse Image into Regions and Curves
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input

synthesis

curves cW

synthesis c
synI cWby~

regions rW

synthesis r
synI rWby~

group 1 group 2 group 3

Parse Image into Regions and Curves
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input

synthesis

curves cW

synthesis c
synI cWby~

regions rW

synthesis r
synI rWby~

tree 1 tree 2

Parsing Images with Trees
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Input range image                 Input reflectance image

Segmenting Laser Range Images

Our segmentation                   Manual segmentation
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Input range image                  Input reflectance image

Segmenting Laser Range Images

Our segmentation                    Manual segmentation
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Input range image               Input reflectance image

Segmenting Laser Range Images

Our segmentation                  Manual segmentation
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Two Computing Paradigms in Vision

1. Generative methods  --- “Top-down”
explicitly model the visual patterns

--Bayesian framework,
--Markov random fields,
--Markov chain Monte Carlo,
--Partial differential equations for diffusion, evolving, ...

2. Discriminative methods --- “Bottom-up”
explore “intra-class” vs “Inter-class” difference

-- Feature extraction, on /off, e.g.  Edge detection
-- Data clustering
-- Adaboost,
-- Decision tree, …

General but quite slow

Fast but not reliable
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Summary

1. DDMCMC is a systematic way for integrating “top-down” and “bottom-up”.

The discriminative methods approximate local posterior probabilities (ratios)
in various atomic spaces. These probabilities/ratios are used as 
importance proposal probabilities, and drive the Markov chain to search
for globally optimal solutions.

2. Fast Markov chain convergence and mixing at low temperature.
In contrast to simulated annealing, the SW- type algorithm can move
fast at low temperature.

3. Ensemble complexity   vs.   worst case complexity
Though one can always construct worst case and prove NP-completeness, but
on the average case, the computational complexity can be much lower.        
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When the bottom-up proposal probabilities fail !


