Lecture 1.A

Pursuing Manifolds in the Universe of Images
--- Texture, Texton, Primal Sketch, and Object Template

Song-Chun Zhu

University of California, Los Angeles, USA
Lotus Hill Research Institute, China

Ref: S.C. Zhu, etal “Learning Explicit and Implicit Visual Manifolds by Information Projection”, 2009.
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The image universe --- what are its structures?

Consider an image I with 256 x 256 pixels in 256 grey levels.
The volume of image space | €2, |= 28236336 1157830
The volume of natural image ensemble | Q, | = 2°7*%*%¢ = 1037

The volume of images seen by humans <10'° x10'* =10

Each point is a matrix

11211823 3232 4123 23 34404042
21111312 3223 3333 2745 545444

20181414 2233 3131 2835 343440
23231853 5262 49 60 56 64 474342
34353523 3423 3333 2745 545444
43403034 2021 1920 2835 383530
12211823 3232 4123 23 34404042
23111312 3223 3363 6745 645444
23181414 2233 3291 9895 7464 60
27231653 5262 59 60 76 64 67 63 62
34343439 3929 4345 7765 848494
43413034 2524 1920 8885 888580

People believe that natural images reside in low dimensional manifolds.

This is only partially right.
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1, Background on visual (appearance) manifolds

Image patches from a single object category

are often found to form low dimensional manifolds.

e.g. ISOMAP, LLE:
Saul and Roweis, 2000.

But,
people found that image patches of generic
natural images do not follow this observation.
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Fig. 3. Images of faces (1) mapped nto the ermbedding space described by the first two
cocrdinates of LLE. Represertative faces are shown next 1o circled points in dfferert parts of the
space. The bottom images mmfmu 1o points along the top-right path (linked by solid bne),
ilustrating one particular mede of variablity in pose and expression
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Looking at local, generic natural image statistics

Ruderman and Bialek 87, 94
Fields 87, 94

Zhu and Mumford 95-96

Chi and Geman 97-98
Huang and Mumford, 1999
Simoncelli etc 98-03

Horizantal

Here is an example of how real world data
can be truly complex — non-Gaussian and
highly kurtotic. This is an iso-density contour
for a 3D histogram of log(range) images
(2x2 patches minus their means) (Brown
range image database, thesis of James

Huang)




Patches in an object come from different subspaces

texture patches in
implicit manifolds

e R
IGa b @

primitive patches in
explicit manifolds
o NN

space of image patches

texture patch

Ref: Z.Z. Si, H. Gong, Y.N. Wu, S.C. Zhu, “Learning Hybrid Image Templates”, 2008-09.

An example of low dimensional manifold:

texton / primitive

A 3D element under varying lighting directions

WRE? 7 CEN
W7/l
W el
4 lighting directions ..-0 /;‘ -..

1

Ref. S. Zhu/Xu/Guo/Wang, 2002-05 “What are tetxons?”
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An example of low dimensional manifold:

S S SR S R
o — {3
o L
- o = x ¥ * * A *
texton template a sample of texton instances
-~ [ e' ¥ g h &
yuE¥
L] ~ @&,Cﬂ @D&
% [ e
LS
Guo/Zhu 2002-05 \ - - “atomic” model
By analogy: pictures of our universe
Star: low volume and high density --- like the explicit manifold for texton/primitive

Nebulous: high volume and low density --- like the implicit manifold for texture

Interchangeable concepts: entropy ~ dimension ~ log-volume
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2, Pursuing Manifolds in the universe of image patches

f: target distribution; p: our model; q: initial model

q=pp2pL—=22p to f

image universe:
point is an image.

Exchangeable concepts: a model p(I) ~animage ensemble © ~a manifold ~ a cluster

Intuitive idea: a professor grading an exam

The full score (like dimension in our case) is 100. You have two ways:
For top students (high dimensional manifolds), you start from 100 and deduct points :
100-2 -0-0-3-0-2-0-0-0-0-0-1=92
For bottom students (low dimensional manifolds), you start from 0 and add points

0+8+0+0+3+0+2+0+0+5+0+0+1=19

In reality, suppose the exam is very long (just like the large image has >1M pixels), a student may
have mixed performance, e.g. doing excellent in the 15 half and doing poorly in the 2" half. Thus
a most effective way is to use the two methods for different sections of the exam.

(50-2 -0-0-3-0)+(0+5+3+0+0+2)=45+10=55

In fact, most of the object categories are middle entropy manifolds and have mixed structures.




Manifold pursuit in the image universe

In a simple case: f is a Gaussian distribution

eigen-value A
e.g. textw
mixed: e.g. tiger face
|’\.
I\I. e.g. face
123 N

Manifold pursuit by information projection

Given only positive examples from a class ¢

QF = 7% 1=12,.., M}~ F(1)

We pursue a series of models p to approach a underlying “true” probability f
q=pp 2P 3p to f
At each step, we augment the current model p to a new model 2+
hy =argmax KL(f |p) — KL(f |p;)
= argmax KL (p, | p)

Subject to a projection constraint:
Ep [heM] = Efhi(D] = h.

h, (I) is a feature statistics of image [




Manifold pursuit by information projection

Solving the constrained optimization problem leads to the Euler-Lagrange equation

Py = argmin I P, L) ]-O'EI:'_E(I? dl +-?’~|[f P (Ih, (1dI = 'E-I-] + -?‘o..rF-r (DdI=1]

P 0,) = ——py_, (I; Oy )ikl
Ay

k
= Lq exp { —Zi=1z,-hict) }

where
Zp =Ty ZagZap @ = (g iy
For q being a uniform distribution, we have qll) =:'7u

Information projection

p(f':‘?\

DellaPietra, DellaPietra,Lafferty, 97
Zhu, Wu, Mumford, 97

Qy ={p: Ep[hy(D] = Er[h,(D]}

41
Q; ={p: Ey[ha(D] = Ef[h(D]}

f Ps3

KL(f| p) = KL(f | p+) + KL(py | p)

So the KL-divergence decreases monotonically.




A Maximin Learning Principle

A max-step: choosing a distinct feature and statistics

hi = argmax KL (py | p)

A min-step: given the selected feature constraint, computing the parameter

AL = argminKL(p, | p)

3, Two types of pure and atomic manifolds

implicit manifold

Q={: h() =h,}

h(I) is some image feature/statistics

explicit manifold
Q={L1=gw4)}

g is a generation function,
w is intrinsic dimension
Aisa dictionary




Case 1. Atexture pattern is an “implicit manifold”

atexture=Q(h )={I: h,(D=h_, ,1=12,.,K}

ci ?

H, are histograms of Gabor filters, i.e. marginal distributions of #(I)

(Zhu,Wu, Mumford 97,99,00)

Pursuing texture manifolds




More examples of the texture manifold (implicit)

Observed

This is originally from statistical physics!  Gibbs 1902

Statistical physics studies macroscopic properties of systems
that consist of massive elements with microscopic interactions.
e.g.: a tank of insulated gas or ferro-magnetic material

N =103 A state of the system is specified by the position of the
N elements XN and their momenta pN

s=(xN, pV)

But we only care about some global properties
Energy E, Volume V, Pressure, ....

Micro-canonical Ensemble

Micro-canonical Ensemble = Q(N, E, V)= {s: h(S)=(N,E, V) }
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Equivalence of Julesz ensemble and FRAME / MRF models

Zhu, Wu, Mumford, 1997

Wau and Zhu, 1999

Theorem 1
For a very large image from the Julesz ensemble I ~ f(I; h ) any
local patch of the image Ia given its neighborhood follows a conditional
distribution specified by a FRAME model P(Ia |l : B)

Theorem 2
As the image lattice goes to infinity, f (I; h c) is the limit of the

FRAME model P |Iaa : B), in the absence of phase transition.

1 k
P(I, Loy 5 B):_exp{_z thj(IA 159);
Z(p) =

Case 2: Learning active basis as deformable template

Abasis is an image space spanned by a number of vectors (e.g. Gabor/primitives)
B= (Bj_, Bz, amn p Bk)

Acar=0={L. T= » vy, Bz}
A car template

(Gabor elements represented by bar)

An incoming car image:

With slight modification, this model can handle multi-views Ref: Wu, Si. Gong, Zhu,

ICCV 08 2008
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Deformed to fit many car instances

Summer School at Beijing, July, 2009

Bl
e ﬁ
a-B m."
3 template instance 1 instance 2 instance n
KL(p(r) [la(r))
a(r)
p(ry) ~ P(ry)
7/
0 = —= 1234567
projection I no. of base functions selected
instance 3
Summer School at Beijing, July, 2009 34
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Pursuing the active basis model (explicit manifold)

q(1): background distribution
(all natural images)

p(): pursued model to approximate
the true distribution.

KL(p(r) [l a(r))

T
[ I' -, # Gabor elements selected
7
-r!

A running example

A car template consisting of
48 Gabor elements

Car instances
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Experiment : learning and clustering

hwﬁ%ﬂ; e N Ea o TR A~ o ¢
e & 1 _ AFeak o
5 B w:n@HI.M'Eﬂﬁ

M Learning active basis
1

EM clustering

X r /@ _,g;”%
‘ £ ’n'

Experiment - learning and detection

ﬁﬁ!ﬂﬁ]@ﬁﬂﬂ-iﬂl-ﬂ!

8 8.9 .8
8.8 8 .

agre
f888 -
2888

Y.N. Wu et al ICCVO07, 1JCV09

vs: Viola, Jones, 04
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Template detection experiment

Y.N Wu et al. 2007

Matching €, to € Push and Pull

Y

(a) push and compress

(b) pull and expand
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Summary: a second look at the space of image patches

ESNNAE
ESNOAE
7| HENNEE

implicit manifolds

image space

explicit manifolds

INNN
39550

4, Relations to the literature: psychophysics

(1) textures vs textons  (Julesz, 60-70s)

textons
(a)

Gp?‘fa.-v‘,abqﬁq
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Textons vs. textures

textures
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Clustering in video

)
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Summer School at Beijing, July, 2009

Examples in video
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Textons in motion

Observed
Sequence

E

¢). birth map (source

L

a). input sequence b). tajectories of snowflakes ) death map (sink

Synthesized
Sequence

Ref. Y.Z. Wang, 2003

Summer School at Beijing, July, 2009

6, Primal sketch: integrating the two regimes

org image sketching pursuit process

o T

syn image synthesized textures sketch image
Summer School at Beijing, July, 2009 (Guo,Zhu,Wu, 2003-05)
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manifolds of image primitives

Learned texton/primitive dictionary with some landmarks that transform and warp the patches

[ (o] | | | |ofoJole
- ISSSEEESESES
l\\ EEENSNNSTENA

Primal Sketch is a two-level MRF model

Spatial MRF

Texture MRF

Summer School at Beijing, July, 2009
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Primal sketch example

input sketching pursuit
image A process
synthesized § sketches
image

Summer School at Beijing, July, 2009

Primal sketch example

original image synthesized image

sketching pursuit process

Summer School at Beijing, July, 2009
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7, Pursuing composite manifolds in the middle entropy regimg

Learning Hybrid Image Templates

primitive Pﬂm_hes n space of image patches
explicit manifolds
of NN

IIIIIEI!

primitive patch %] A

B ! texture patch

texture patches in
implicit manifolds

ZanE
Bugn
WY
KRG

Learning object templates by manifold pursuit

The two types of models compete in learning the templates

Sketch

Sketch
W Textura

nnun i ” i
Llls 7 2 aﬂwﬂ% &)

head /shoulder hedgehog

pizza

Sketch Sketch
Texture

oW TTTT
@ EEEES

water patches
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Examples of the learned hybrid image templates

Mixing the implicit and explicit manifolds

Z.Z.Sietal 2008-09

Some examples of learn object templates

cat head tiger head bear head

23



The epsilon-ball interpretation

image space

color space

€~ texture pattern
| [(HO)-h+=

I sketch pattern e

o [=cBed] fot reion

| — color

Comparing with the HoG Representation

\ WA 7

§ oo o s

g = e
(B & & & & A

e

Dalal and Triggs, 2005; Felzenszwalb, Girshick, McAllester and Ramanan, 2007-09

cat

car

24



8, Information scaling leads to manifold transitions !

Scaling (zoom-out) increases the image entropy (dimensions)

JPEG Entropy vs Scale

IPEG Entropy per Pixel

01

Wu, Zhu, Guo, 04,07

Information scaling leads to manifold transitions !

scale 1 scale 3

scale 8

Ref:
Wu, Zhu, Guo, 2004-07,
“From Information Scaling to

Regimes of Statistical Models”

25



Coding efficiency and number of clusters over scales

j —Explicit -
E . ——Implicit /
: yd
i 4 / ol
3, d
E 2 / middle entropy crisis
5
Scale A
/\
/
) S
/
/ \
\
Summer School at Beijing, July, 2009 & 7 8 9

A wide spectrum of categories from low to high entropy

Two

Edge Bar Parallel Cat Dog Lion Tiger Fur Grass

l

Entropy ~ Dimension ~ Log volume( manifold )

c
=
— Eg

IS A

EEEEN
&

EEMEE

=, g =1 T
A N R
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Transition of the manifolds through info. scaling

How are these manifolds related to each other ?

perceptual scale space theory (Wang and Zhu 2005)

Summer School at Beijing, July, 2009

Summary on the representation

2 pure atomic where
image spaces _ N 21D 25D 3D
Scaling --Transition ’ —_ -
Texture b Sketch Sketch Sketch

Primal Sketch

Texton / Graphlets— Parts = Objects = Scenes
"
% what

Summer School at Beijing, July, 2009
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Lecture 1.B

Stochastic Image Grammar in And-Or Graph
--- Modeling and Learning Object Categories

Song-Chun Zhu

University of California, Los Angeles, USA
Lotus Hill Research Institute, China

Ref:  S.C. Zhu and D. Mumford, “A Stochastic Grammar of Images”, Foundations and Trends in
Computer Graphics and Vision, Vol.2, No.4, pp 259-362, 2006.

Summer School at Beijing, July, 2009

1, Representing Objects by Reconfigurable Graphs

~3,000 basic object categories.

Objects have large within-category variations in configurations
Vehicles --- sedan, hunchback, van, truck, SUV, ...
Clothes --- jacket, T-shirt, sweatet, ...
Furniture --- desk, chair, dresser, ...

Scenes have more flexible configurations
a living room,
an office,
a street, ...

Summer School at Beijing, July, 2009
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How do we define an object category?

Each object category is a set of “re-configurable” graphs that
satisfy certain regulations in its structures and appearance.

This is actually a grammar in formal formulation.

It comes in many other names:
Compositional models,
Hierarchical models,
Contextual models,

Summer School at Beijing, July, 2009

Formulation of Grammar by Chomsky 1957

Agrammar is a 4-tuple: G = (Vw, V7. R, S)

Grammar Production Rules
Type -0 Unrestricted a—8
Type -1 Context-sensitive aAB—savB
Type - 2 Context-free A—oy
T 3 Regul A—a
ype - egular A—aB

The language of a grammar is the set of all valid sentences

L L2 T (w)

L(G) {d,-: Sy we 12;:} §TERT

29



2, And-Or tree for Production rules

In a grammar, each non-terminal node has a number of alternative ways for expanding, and thus
can be represented by an And-Or tree
(A Or-node
A:=aB | a| aBc T

@ @ @ And-nodes

O

A special property of
image grammar is that
any node can terminate a4 A aw e
or‘ground” immediately. ./ Bttt By () Ornodes

terminal nodes

Summer School at Beijing, July, 2009

Representing grammar by And-Or graph

A grammar production rule:

A — abjcc

O Or-node

O And-node ,.-‘" - Py
{ | i

5 :
D leaf -node d

c d e f

L=y ™ 0 T VX )

The language of a node Ais the set of all valid configurations

Summer School at Beijing, July, 2009
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The expressive power of and-or graphs

Consider a 2-layer And-Or tree with

branching factor 3. And-Or graph was used

in the 1980s by Judea Pearl
for heuristic search in Al.

N / L\ / l\ For example the 12-counterfeit
coin problem.

SRR
Total:  1+3+9+27
(3x@P =32

Summer School at Beijing, July, 2009

30 nodes with 81 leaves
531,441 configurations

Definition: And-Or graph, parse graphs, and configurations

{b) parse graph |

{a) And-Or graph —— () parse graph 2 —_—

O and-node
v or-node
O leal node

N —i0} - B
T G @ K i i

- A -40

1d) configuration | (e) configuration 2
PR T _ga;,@\:.;qp_\ m———B—c————@
— l - ~
N 1.Z E:l Il | 7
‘_“j,;*_h 17 ,’1;. ZI g
h 4 r s e i v
|z 3| [4]3 7 9 m 1 & III ®

Each category is conceptualized to a grammar whose language defines a set or
“equivalence class” for all the valid configurations of the each category.




An example: the clock category

(b) Parsing graphs for instances

A
ANV
./?\

/3; O
SO I A

O i

Arabic  foman
frane mumber A FAY
s FAR 2
|l Jul a2 } A L o2
hs N & d

Il XN

Dol

A parse graph of a bike

Relationships

@ Relative Position

Relative Scale

. @ Aspect Ratio

W21
\:7{}) ® \\:ﬁ//‘
© ©
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A relation is like a non-linear filter

Some examples

Positicn Scale Orientation Contained Hinged Attached Butting Concentric

L oo« I A || — 71O

N | pa— ) — = p
O O N | T x|
Low Level Relationships High Level Relationships

Abinary relation is set of links between selected nodes.

It is applied to selected sites and returns a value (scalar or binary).

Suppose A'is a vector of attributes for all nodes
A=(a,a,..,a,)

L; :f(aiaaj)

3, Pursuing a probability model on the And-Or graph

Denote:
G  ---aparse graph,
U(G) ---- the set of Or-nodes in G,
V(G) ---- the set of the And-nodes + leaf nodes in G
R(G) ---- the set of relational links between nodes in G.

The probability model is defined as

p(G: A, R,e)=%exp{— Saw- Y om- S

ueU(G) veV(G) 1;€R(G)

The first term alone stands for a SCFG.
The second and third terms are Markov potentials.

Summer School at Beijing, July, 2009
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By analogy otexture modelng— pyrging the relations by info. projection

observed synthesized

\ 1R - -~ .
4 %‘%:T:“\ A e R
o 1) L & &
é“u‘—;’i‘x"l — ‘ \__"'_:‘-:
{ — -
) || P \ || 1 & iy |/g\,\\]
® &) | . J @) L,
~— — —J "
p— T
RN N [ \
© '(/ ) Ilf (7)) ll[/ =1 % ‘ |/"/I.é>l I|
AR /AN / ! \ | I i I.'
N N W =
f —\\ AN \Y 0
.}I | .-"’/"'\I\\ - ‘I|| !I I; \ ) :
v |t 1 I, [N == \\\\m_/éa
AN AN A
© =)t ) |..‘ .y Vi \
) N O N

Sampling Clock: we keep evolving O(100) samples

Poway et a |, 2006-07

)

$dj
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Learning | 0 LAVEEEE A
and RN A O

sampling a
bike model

Examples of sampling bicycles: Computer can dream

LS S
=
= 5
Y BCAYZ 2N
'_ I‘i_/'
Dreaming is a process of learning Poway eta , 2006-07
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Examples from sampling cars

it is less satisfactory, as 3D perspectives are not accounted.

T A

—

oty
C = __'T; ED

(.-.:_'d_\_ﬁ:::.

I —
i \._./

|terative learning to match the statistics (histogram)

Scale X

Scale' Y

Position X

Position Y

— 121GET Histogram

— e First lteration

Last Iteration

KL Distance

' Pursuit iteration

Results of the learning procedure.

(a) Histograms for four pairwise relationships at different iterations. The last iteration matches the

observed histogram quite closely.

(b) The KL divergence between the current and target model as the relationship pursuit is performed.
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Top-down prediction by sampling the missing part

Slage Lt Slagez: Slagesr
random correct more Poway, et al 2006-07
prediction | scale relations
¢ ot
-

Pursuit lteration

The blue parts are predicted by the learned models at various learning stages

Learning from a small training set & generalization by sampling

(a) generalizing from a
small training set

ances for learmning (¢} generative representation

Poway, Yao, and Zhu, 2006-07

(d) generated novel configurations

In our recognition experiment
with 33 categories, each category
has 50-60 samples. the sampling
process improves the average

recognition rate from 66% to 81%.

{ 1 Mot}

N N

37



What is the smallest sample set for training?

Bike Car Lamp

Mug MP3 Player Teapot

Coverage results for 6 categories. we only need a small fraction of the training set to maximally
cover the testing set.

4, A large scale human annotation project at Lotus Hill

Tel:+86-711-3876688,+86-711-3867183
Fax:+86-711-2876699

Contact person:

Julia Xia,wenhuaxia@gmail.com
Michael Yangxyang.lhi@gmail.com

Aboutus @

Home

=2 =
it _Scen_g

, / /
mage Parsing -—_iaj \‘l. 7/ | y

Related Publicati = i ~ —
elate ublications B B_ackgmun_gj Lotus
= bl v
Data Examples
Services
Ay M

Download Free
Client Comments

_ Acknowledgments
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2
S
E
=

Bg (Object)

An example: parse graph of a cat

Paw (Part)

Hat (Part)

)

Tail (Part

Body {Part)

An example: clip for surveillance video
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LHI dataset: 1.8M images parsed, 1000s AoG nodes

O Ornodes
{7771 And nodes

scenes == A [ Instances

( texture ) ( flat regions ;}
image e Fregen - N
primitives

5, Example: Representing An event by AoG

A coming car is picking up a man
= gup O And- node
7% Or-node
_ *"\x\_ 1 Leaf- node
wﬂ.mng picking up mmma away
waiting wﬂ.mng npgmach enter mmma
55 QO
y . '—'—h___ .
ji mml n'to car -+ man invisible
man man man  car
movmg ':IOP ~ta\ -,m\ movmg stop stay stay

T ??
-

slay slay moving EID? stay stay J'l]O\'lJ'lg




A parse graph for event instance

A waiting car is picking up a coming man

||||| a) acl e ca man enter the car
I
TT—
T
man move  man stop _man stay _car sta
| | | [

stay  moving Stop stay stay  death

HE B & EE

moving

Video parsing by And-Or Graph

Car | stopping in Road 0

@ Car 2 crossing intersection
= without stopping

41



Examples of automated text generation

Land_wvehicle_359 approaches intersection_0 along road_0 at 57:27. It stops at 57.29.

Land_wvehicle_360 approaches intersection_0 along road 3 at 57:31.

Land_wvehicle_360 moves at an above-than-normal average speed of 26.5 mph in zone_4 (approach of
road_3 to intersection_0) at 57:32. It enters intersection_0 at 57:32. It leaves intersection_0 at 57:34.

There is a possible failure-to-yield violation between 57:27 to 57:36 by Land_vehicle_360.

Land_vehicle_359 enters intersection_0 at 57:35. Tt turns right at 57:39. It leaves intersection_0 at 57:36.
It exits the scene at the top-left of the image at 57:18.

Ref: Benjamin Yao et al “From image parsing to text generation”, 2009.
In collaboration with Mun Wai Lee at ObjectVideo Inc.

Summary on the representation

2 pure atomic where

image spaces
Scaling --Transition 2.1D 2.5D

Texture \ O / Sketch ™~  Sketch™ Sketch

Primal Sketch

Texton Graphlets— Parts = Objects = Scenes

ch 7 what

N

Summer School at Beijing, July, 2009
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