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Seeing as Statistical Inference

A basic assumption, since Helmholtz (1860), is that biologic and machine
vision compute the most probable interpretation(s) from input images.

Let | be an image and \W be a semantic representation of the world.

W = argmax p(W|I) = argmax p(l|W)p(W)
weQ weQ

In statistics, we need to preserve the full posterior.

(Wl,Wz,...,Wk) ~ p(W|I)
p(WII)
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Top-down / Bottom-up Inference at all levels

Objective: Constructing parse graphs on-line !
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Image parsing by DDMCMC, Tu et al, 2002-05

Two Basic Computing Mechanisms: Bottom-up vs. Top-down

Some objects can be computed more effectively by bottom-up while others by top-down

4 Object Regions

112 Atomic Reg\unﬁ -

46,256 Pixels

(a) bottom-up graph construction {b) Top-down graph construction

How to formulate this problem ?




Part 2.A: «, 3 and y computing processes in AoG

The And-Or graph is a recursive structure. So, consider a node A.
1, any node A terminate to leaf nodes at a coarse scale (ground).
2, any node A is connected to the root.

Starting the o/B/y channels when they are applicable ---an optimal scheduling problem
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Compositional boosting, T.F. Wu et al, CVPR 07

An example: human faces are computed in 3 channels

a—channel p—channel y—channel
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Human faces in real scenarios

JUDYBATS

a-channel ﬁ%?ﬁ

B-channel SEEEN,

y-channel ©

1. Each node has its own o,
[3 and y computing
processes.

Hierarchical modeling and o, p and y computing
O ]
arents)

ead-
shoulder
¥: p(face | p/

oL: p(face | compact image data)

2. How much does each
channel contribute?

[3: p(face | parts)
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o processes for the face node

‘ a-channels: p(face | compact image data)

ead-
shoulder

B processes for the face node(when its o is off)

‘B-channels: p(face | parts), binding ‘

ead-
J shoulder

‘ a-channels of some parts are on I
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B processes for the face node(when its a is off)

‘B-channels: p(face | parts), binding ‘

,
. i ead-
shoulder

‘ a-channels of some parts are on I

B processes for the face node(when its o is off)

‘B-channels: p(face | parts), binding

,
. i i ead-
L_LEN shoulder

‘ a-channels of some parts are on I
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B processes for the face node(when its a is off)

‘B-channels: p(face | parts), binding

», ’
. i = ead-
shoulder

‘ a-channels of some parts are on

v processes for the face node(when it's . and 3 is

££)\
o)

‘ y-channels: p(face | parents), predicting ‘ ‘ a-channels of some parents are on }-—

ead-
shoulder
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v processes for the face node(when it's oo and 3 is

££\
OfT)

‘ y-channels: p(face | parents), predicting | ‘ a-channels of some parents are on }-—

ead-
shoulder

v processes for the face node(when it's o and 3 is

££\
Ull)

‘ y-channels: p(face | parents), predicting | ‘ a-channels of some parents are on }-—
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v processes for the face node(when it's oo and 3 is

££\
OfT)

y -channels: p(face | parents), predicting | ‘ a-channels of some parents are on }-—

In general: recursive o, 3 and y channels

Modeling Computing (W.0.L.G. consider node A)

Image Data
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a—channel; head-shoulder

1
a—channel; head-shoulder
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a—channel; head-shoulder

Head-
A\ Shoulder)
4 =
’

o—channel: face
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o—channel: face

o—channel: face
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o—channel: eye

o—channel: eye

EEEEEFNESE
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a—channel: eye

AEEEEENETTERNEEER

o—channel: nose
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o—channel: nose
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a—channel: mouth

a—channel: mouth
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a—channel: mouth

g

All oo channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels

AEEETE] ="mlEwslED -
EEEFYETT EEMN =70

EY v&Y 3 EN. -

ENEFES Ea I NEEE -

Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels

T

s

ZFEE - NED -
FIWECT @EN =70
YEU O EN. -
ET | IEa I AEE

L. AR - AT

8/7/2009

23



Integrating o, f and y channels
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Integrating o, f and y channels
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Integrating o, f and y channels
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Information contribution

o channels
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Performance improvement

red for a, blue for a+p, green for a+y,

for a+p+y channels
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At low-middle level: o, 3 and y channels

junctions: 3 channels dominate, say, binding.
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At low-middle level: o, 3 and y channels

junctions: [3 channels dominate, say, binding.
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(a) Information contributions (IC) evaluated for the five low-level primitives: o(in red), o+ f(in blue) o+ P4y(in green).
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{b) The testing ROCs of a(in red) and a+fi(in blue) for L, T/Y/arrow and crass junctions, respectively.

2.B Computing Multiple Solutions

(1), preserve uncertainty, and (2), avoid premature commitments.

Necker Cube Duck/Rabbit lllusion Elephant lllusion

g?
N =

Concave Rabbit
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Here are two more examples

We showed that computers can dream. Can computers find these solutions ?

Local interpretations are often strongly coupled !

They form “clusters” and the search algorithms often get stuck.
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Sampling Probabilities with Multiple Modes

The two criteria for MCMC design:
1, Short “burn-in” period --- The MC reaches the equilibrium fast
2, Fast “mixing rate” --- The MC states are less correlated in time

Simple to maximize...

p(X)

Background: Swendsen-Wang 1987

Ising model: D(X)=%H(/)(Xivxj); go(xilxj):eﬂ-é‘(xi:xj'); 50 e{-1+1}
<i,j>

(@) Augment with auxiliary bonding variable U along edges E:

U={u;,i,jeX;u; e{-1+1}}

(b) Tum edges “on” (u;; = +1) or “off” (u; = -1) probabilistically.

(c) Select a connected component V, and update its nodes’ labels.

state A state B

8/7/2009
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Representation: Candidacy Graphs

We formulate a candidacy graph representation, as it can represents
1, MRF and CRF structures
2, Soft and hard constraints.
3, Positive (collaborative) and negative (competitive) edges.

® Off nodes

T 5
4
Candidacy 3
graph 5 2
4 L
3
6 @ @
Original é)
QTh O  Onnodes

MCMC 101: Sampling with Auxiliary Variables

Augment the Ising model with bond variable U:

p(X,U)—— [Te ixuy) [T (X% uy)

<i,j>eE* <i,j>eE~

Define the joint probability so that

LS pexu) = p(x)
U
2. p(U]X) and p(X]U) are easy to sample from.

. e _ _e_

(Edwards and Sokal, 1988)
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Experiments on Negative Edge Ising Model

Created “checkerboard” constraint problem.

-
Solution 2

Initial State Solution 1

Convergence plot: Energy over iterations

Energy
/
e :

Gibbs

50 B0 70

Iterations

C4 converges fastest of all.
Gibbs takes huge amount of time to converge.

BP has trouble with loops and never converges.

8/7/2009
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Mixing rate: Correlation plot

solution states over time auto-correlation over time
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C4 has
- Low burn-in time (converges quickly).
- High mixing rate (samples remaing unbiased over short run).
Simulating the Potts model
Energy vs. time
N
Time
State vs. time Correlation vs. time
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C4: Generalization to Arbitrary Posteriors

State A State B

Same protocol with Potts model, different dynamics.

1. p(U|X) > Data driven edge probabilities. Learn distributions on features of node cliques.

2. p(X|U) > Random sampling or CSP.

Metropolis-Hastings Design

a(A— B)=min(1 a(B—>A) p(Xg | F,B)j
"q(A—>B) p(X,|F,A)

a(B—> A) _a(v,B) ally, =2'1V,.B)
q(A—>B) a(VelA) a(ly, =41V, A)

q(V, | B) depends only on its cuts! Ratio simplifies!

H(l_qe)

q(vo | B) — eecut(Vy,B)
ao 1A []C-a.)

eecut(Vy,A)
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Solving the Necker Cube problem

Solution 1 Solution 2 —
< < < < Solution 1

* < + S

—% < + <
< —k = < = . A

=* 4| < - S S ul

< + < 7 _

* K I Is,| | Solution2

< < < < .

C4 finds both solutions, swaps corner labels continuously.

Problem with “Flat"--C4

The “love triangles™:
create inconsistent clusters %

Love triangle

e.g. Love triangles in the
duck / rabbit illusion.
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Hierarchical C4

The candidacy graph so far represent pair-wise edges, high-order relations are
represented by extended candidacy graphs.

=7

Duck

System will now flip between duck and rabbit without love triangle issue.

Solving the Elephant lllusion

': .f:'l .:-:E IJ
Hierarchical part model Layered representation of hierarchy
o
r“’,\i\;:%n‘w\\\\jml\
| Mo N Elephant
INREREEN Leg Pair, Head,
Back
Leg, Trunk

N
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Composing by the B-channels

f :
Trunk compatibilities I ! - ';! i B F N
LinelTrant Line]

Linz[Dack Line]

Leg compatibilities

Elephant
Leg Pair, Head,
Back
Leg, Trunk

Part binding for next layer

Trunk bindings \S 2
Leg bindings Y '. | .

Elephant
Leg Pair, Head,
Back
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Continue sampling / binding for each layer

| SRS o (1 et als A7\
Leg Pair compatibilities \% ! T ]" = %% LU : 5‘\ l
M T O on

Leg Pair bindings Sﬁ I@;ﬂ

Elephant
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Top Level Bindings and sampling

Elephant

! \\\
compatibilities ’T\
\

I

I 1 i 5 [ G O RN
Leg, Trunk [ I N5 0 A OO  S
Line CTTTTTTTTIT
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Long standing debates in vision

They have to be resolved by numeric answers

Structure vs.  Appearance

Hierarchy vs.  Context
Bottom-up ~ vs. Top-down

Generative vs. Discriminative

View-centered vs. Object-centered
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