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Pursuit of image models

Simplification, hallucination
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Family I: Descriptive Modeling

The extracted statistics are marginal distributions (histograms).

h=(h,. . hy
1. Given the observed statistics, a maximum entropy model is learned to reproduce

the observed statistics.
2. The most informative statistics (features) is selected by minimizing the entropy of

the max. ent. model
Leads to Markov random Field and Gibbs models
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p(x,y)

Toy Example: Estimating 1D manifold embedded in 2D

h0=¢ +h1 +h2

VACSY) {:}

By Ce Liu, 2001.
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Augmenting the model by minimax entropy

(Zhu,Wu, Mumford 95-97)

a texture = Q(hc) = {I: h(Fl) = he i =1,2,..,K,A = Z?}

h.=(h,, ..., hy ) are histograms of Gabor filters, i.e. marginal distributions of £(1)

I ~Q(h) k=3 I ~Q(h) k=4 Ism ~Q(h) k=7
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Prob. Model derived from deterministic ensemble

7> > A

texture ensembles texture models

Q(ho)=1{I: h(I)=h} PUp[Ta0:B)

Markov random fields and FRAME models on finite lattice (zhu, Wu, Mumford, 1997):

A, |IaA’B)__eXp ZB UNIENY
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Prob. Model derived from deterministic ensemble
Wu and Zhu ‘99

Theorem
For a very large image from the Julesz ensemble
1~Q(h,)={I: h()=h,}
any local patch of the image I given its neighborhood follows a conditional
distribution specified by a FRAME model p(Ia|laa : B)

Theorem
As the image lattice goes to infinity, /'(I; h.) is the limit of the

FRAME model p(Ia | 1A : B), in the absence of phase transition.

Atexture == h, =— f
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Correspondence to ensembles in Stat. Physics

N, =103,N,=10'8 N, +N,=10%

St
o I.'-/' )

Micro-canonical Ensemble = Q(N, E, V)= {s: h(S)=(N, V,E) }

A large system with fix number of elements N, volume V, and energy E.

What are the basic elements in the ensemble of visual patterns?
The minimax entropy principle does not tell us about it !
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Family IT: layered generative modeling

Seeking Fundamental Image Elements (Isolated)

Sparse coding, Olshausen and Felds, 95

Transformed Component Analysis, Frey and Jojic 00

Textons, Leung and Malik 99, Guo, Zhu and Wu, 01,02, (Dated back to Julesz 70s)
Image primitives, Guo, Zhu and Wu, ICCV, 03 (Dated back to Marr)
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Minimizing the Kolmogorov entropy

The learning problem is to pursue the best dictionary so as to minimize the
the Kolmogorov entropy.

Suppose we have a set of signals (in contrast to assuming a underlying density f)
Q= {Iy,Ip, -}

which lie on a low-dimensional manifold with unknown dimension H. Suppose the
ensemble is covered by at least N(¢)-balls with radius &.

N(e) = (1/g9"

H= logf'}f) — log ||
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Augmenting generative models

Therefore, the goal is to pursue the optimal bests so that the decreasing rate is fast,
which corresponds to minimizing the Kolmogorov entropy.

Let A be the dictionary.

n

When the dictionary is orthogonal, there is a close relation between the Kolmogorov
entropy H (or the dimension of signal) and the optimal decreasing rate of the coefficients.

*11
o

H 2 (Donoho, 98)
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A Three Level Generative image model
(Zhu et al 02)

Textons are defined as a vocabulary associated with a
generative image model.

A two level image model: By analogy

texton map T

texton vocabulary{'h > mm } “words”

base map B 0(103)
base vocabulary : n
(B -} | Prorem
image I 0(10) !
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Learning textons

symbolic sketch of
electronic bages and nucleus bazes
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Texton with geomeftric variations
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"Motons" --- Moving textons

Ob, d
serve Synthesized
Sequence Sequence
X Tl
a). input sequence b). trajectories of snowflakes d). deall (sink)
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) " :
Motons” --- Moving textons
(Wang and Zhu 02,03)

a texton template 7 many texton mstances randomly sampled from 7

%%#ﬁ

t t+1 t+2
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Lightons: textons with lighting varigtions
(Zhu et al 02)

photometric stereo images

A lighton is a triplet

H-a-¢

B =a1b1 + a2b2+a3b3

Sampling the 3D elements under varying lighting directions
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MCMC simulation of the "texton" process

Guo, Zhu, and Wu 01

The textons form dynamic neighborhood (Mumford called mixed random fields)
We realized that textons should not be modeled in isolation, and must pursue global structures
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Primal Sketch Model

(Guo, Zhu and Wu, 2003)

org image sketching pursuit process

syn image synthesized textures sketch image
Song-Chun Zhu
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Simple examples of the image primitive

Learned texton dictionary (Guo, Zhu and Wu, 2003)
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Primal Sketch: two-level model

Spatial MRF

Texture MRF
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Ix Kurtosis is attributed to structures
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Comparison with linear additive bases

1. Missing the semantics structures
2. Not sparse enough!
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More Example

original image sketching pursuit process

MSRI, January, 2005 . . Song-Chun Zhu
synthesized image sketches




More example

original image synthesized image sketching pursuit process
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sketching pursuit process

f \
2 =

ET X A e
[t

,—_:.} £
synthesized image sketches
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primal sketch over time: topological changes
(Wang and Zhu 2004)

River sequence
Sketch sequence

shows topologic changes

Water sketch over time

Fire sketch over fime ﬁ T W \Y ﬁ ‘Y }

Song-Chun Zhu
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Summary: Generative and Descriptive manifolds

1. Textons are atomic structures in natural images.
Each texton is specified by 4 types of intrinsic dimensions

geometric, photometric, topological, and dynamic

generative manifold : Qp ={I: I =g(W), W € Qq}.

2. Textures can also be viewed as manifolds

descriptive manifold : €2(hc) = {I: h(I) = h¢}.

Theorems show: (1) works for low entropy regimes and (2) works for high entropy regimes
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Climbing up the hierarchy of representation

Sketches of human figure
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Supervised Learning of sub-graphs for parts

Category A: Collars
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Principle: Integrating the two methods

Now it is not hard to see that the modeling and learning process is to pursue hierarchic
models by minimizing the Shannon entropy and Kolmogorov entropy in turns,

At each level, we run two steps
in reducing the entropy

= MRF, K-step ---Transform the structures to higher layer
J A, S-step --- Put a MRF/Gibbs model on the remainings
== MRF,
A, K
MRF, ¥
A
MRF, S
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Challenges: model transitions in scale space

scale 3

scale 4

“scale5 sale6 sale7 .
We need a seamless transition between the MRF theory and the generative analysis
MSRI, January, 2005
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Nature image contains objects at a
range of scales

This picture contains trees/leaves
at four ranges of distance, over
which our perception changes.

A: see individual leaves with
sharp edge/boundary
(occlusion model)

B: see leaves but blurry edge
(additive model)

C: see a texture impression
(MRF)

D: see constant area
(iid Gaussian)
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Three types of changes over scales

1. Catastrophic (texture to texton explosion),

2. graph grammatical spliting,

image I

(Guo, Zhu and Wu, 2004)

primal sketch G

F
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3. boundary sharpening
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"Scale - Regime" diagram (xu, chen and Zhu,2004)
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Example of recons‘rruc‘red face by our model

mput rec rec rec rec

o . . . .
- 'I’ =

Automatic sketch
over scales

(Xu, Chen and Zhu,2004)
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Mapping the Image Universes at
different entropy rate

cartoons

texture
FF_%AME -

Iso-contours of entropy rate
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Part 2: Generic Images parsing

scene g

v
—
a football match scene

objects
sports field spectator
patterns / =l
e carve grosps wome | g perns
color region textore
parts -
textons Example: parsing (Tu etal, 2000-2004)
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Part 2: statistical Computing

In statistics, we need to sample from the joint posterior probability.

(W, Wo,... W) ~ p(W|T) or p(IIW)p(W)
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Generative p(W) W — (’lU]_, wo, ..., ’ll)k)

\_\‘\
Generation . Inference
p(IIW) " p(WII)  MCMC sampling

i

W* = arg max p(W|I) = arg max p(I|W)p(W)

Discriminative edge  color face
W<~x~(w1 YWD, ..., fwk)
x P (1) (D)

y

I

q(wj|Fj(I)) — p(wj|I),j =1.k
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Integrating generative and discriminative

scene node 0
--------- - bottom-up hypothesis
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The Search/state Space

A 7-partition atomic

pace particles

atom|c L
spaces

a). solution space b). a sub-space of 7 regions c). an atomic space

MSRI, January, 2005 Song-Chun Zhu




Using Mean-shift clustering (cheng, 1995, Meer et al 2001)

q®[D) =Z€Di g(0-9,)

Input .

saliency maps 1

The brightness represents how likely a pixel belongs to a cluster.
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Diagram for Integrating
Top-down generative and
Bottom-up discriminative
Methods.

Markov kernel
Ko K3 Ka
text region model switchin

42 Qr 93] 93
Ko Koy s Kayr generative
birth death split merge inference

weighted
particles

discriminative
inference

(w1 [Tst1 (D) |q(wo|Tsto(I)) q(w3|Tst3(I)) | g(wa|Tsta(I))
face detection text detection edge detection model clustering]
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Two Computing Mechanisms

4 Object Regions =]

/ Fawd ]

2 e
112 Atomic Regions

46,256 Pixels A 4 4
(a) bottom-up graph construction (b) Top-down graph construction
MSRI, January, 2005 Song-Chun Zhu

Alternating Bottom-up and Top-Down

Measuring the power of a discriminative Test

0(wlFy) = K L{p(w[T)|lq(w|Tst(I))) - K L{p(wT) |q(w|Tst(T), F.))
= MI(w||Tsty(I, F3.)-MI(w||Tst;(T)) = KL(q(w|Tsty(T), Fy )|jg(w]Tst;(T)))

Measuring the power of sub-kernels

Wi~ (W) = v(Wo) 0 Kyqy 0 Kogpy om0 Ky

Ba() £ KL(p(W D)W )= K L{pWID 41(W)) = K LK 0y (Wi Wag Dl IPasc (Wil Wieg 1))
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N|—

p) = exp{-p T1(, =1} -

<s,t>

[T exp{-B-10, =1,)}, <s.t><E,
<s,t>

For example, in a 1D string of spins, suppose we use a Gibbs sampler to flip one spin at a time
It has a p=": probability for flipping the spin at the boundary. Flipping a string of length n will need
on average

t=1/pr=2" steps! This is exponential waiting time.

AR RR AR AR RN AR R AR AR

112 112
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Swedsen-Wang (1987) is an extremely smart idea that flips a patch at a time. There are multiple
interpretations. We explain it from the Metropolis-Hastings method.

Each edge in the lattice e=<s,t> is associated with a constant probability g.
If s and t have different labels at the current state, e is turned off.
If s and t have the same label, e is turned off with probability q.
Thus each object is broken into a number of connected components (subgraph).
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Convergence comparison: in sweep#
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Segment results

Input image Atomic regions
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% Graph partition/clustering:

5ling the discriminative model in the partition space
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Convergence comparison: in cpu time

x 16

zoomed-in view
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The Berkeley Benchmark Study

(David Martin et al, 2001)

test images DDMCMC

manual segment “error”

measure
0.1083

.

0.3082

0.5627
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a. Input image  b. segmented regions c. synthesis | ~p( || W)

MSRI, January, 2005 Song-Chun Zhu

Parsing images into regions and curves

| dl

ﬂ regions W

synthesis synthesis I, ~by W° synthesis I, ~by W'
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from image parsing to 3D

Example I: 3D reconstruction from a Single Image (Han and zhu, 2003)

input I

= : q

lcurve&tree layer l region layer

\f .
A '
e

3D reconstruction and rendering
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from image parsing to 3D

3D reconstruction (Han and zhu, 2003)

input image

3D reconstruction from a single image
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Input image sketch
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Image Parsing Results

Tu, Chen, Yuille, and Zhu, iccv2003

Synthesis

Input Regions Objects

sTop
sigp

Bsusad
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Image Parsing Results

Input Regions Objects Synthesis

ATER 20 i MWORLD PLAYER 2002

WORLD PLAYER 2002

1 L foule
WESTWooD | B

PARKING 5
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Summary: We see three methods and we need to
work on the cracks between them

Generative methods Descriptive methods
Hierarchic models, Markov fields/networks
Harmonic analysis/iwavelet... Graphical models, Stat. Physics
Heuristic Search, Relaxation, Gibbs sampler,
MCMC Swendsen-Wang, Belief prop.

Discriminative methods

Clustering/detection,
Machine learning
Adaboosting
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