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Abstract

The study of many vision problems is reduced to the estimation of a proba-

bility density function from observations. Kernel density estimation techniques

are quite general and powerful methods for this problem, but have a signi�cant

disadvantage in that they are computationally intensive. In this paper we ex-

plore the use of kernel density estimation with the fast gauss transform (FGT)

for problems in vision. The FGT allows the summation of a mixture ofM Gaus-

sians at N evaluation points in O(M + N) time as opposed to O(MN) time

for a naive evaluation, and can be used to considerably speed up kernel density

estimation. We present applications of the technique to problems from image

segmentation and tracking, and show that the algorithm allows application of

advanced statistical techniques to solve practical vision problems in real time

with today's computers.

1 Introduction

Many problems in computer vision can be posed as obtaining the probability

density function describing an observed random quantity. In general the forms

of the underlying density functions are not known. While classical parametric

densities are mostly unimodal, practical computer vision problems involve mul-

timodal densities. Further, high-dimensional densities can not often be simply

represented as the product of one-dimensional density functions. While mix-

ture methods partially alleviate this problem, they require knowledge about

the problem to choose the number of mixture functions, and their individual

parameters.

An attractive feature of nonparametric procedures is that they can be used

with arbitrary distributions and without the assumption that the forms of the

1
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underlying densities are known. However, most nonparametric methods require

that all of the samples be stored or that the designer have extensive knowledge

of the problem. Since a large number of samples is needed to obtain good

estimates, the memory requirements can be severe [1].

A particular nonparametric technique that estimates the underlying density

and is quite general is the kernel density estimation technique. In this technique

the underlying probability density function is estimated as

f̂(x) =
X
i

�iK(x� xi) (1)

where K is a \kernel function" (typically a Gaussian) centered at the data

points, xi; i = 1::n and �i are weighting coeÆcients (typically uniform weights

are used, i.e., �i = 1=n). Note that choosing the Gaussian as a kernel function is

di�erent from �tting the distribution to a Gaussian model. Here, the Gaussian

is only used as a function that is weighted around the data points. The use of

such an approach requires a way to eÆciently evaluate the estimate f̂(xj) at

any new point xj . A good discussion of kernel estimation techniques can be

found in [2].

In general, given N original data samples and M points at which the den-

sity must be evaluated, the complexity is O(NM) evaluations of the kernel

function, multiplications and additions. For many applications in computer vi-

sion, where both real-time operation and generality of the classi�er are desired,

this complexity can be a signi�cant barrier to the use of these density estimation

techniques. In this paper we discuss the application of an algorithm, the Fast

Gauss Transform (FGT) [3, 4], that improves the complexity of this evaluation

to O(N +M) operations, to computer vision problems.

The FGT is one of a class of very interesting and important new families

of fast evaluation algorithms that have been developed over the past dozen

years, and are revolutionizing numerical analysis. These algorithms use the fact

that all computations are required only to a certain accuracy (which can be

arbitrary) to speed up calculations. These algorithms enable rapid calculation

of approximations of arbitrary accuracy to matrix-vector products of the form

Ad where aij = �(jxi � xj j) and � is a particular special function. These

sums �rst arose in applications that involve potential �elds where the functions

� were spherical harmonics, and go by the collective name \fast multipole"

methods [3]. The basic idea is to cluster the sources and target points using

appropriate data structures, and to replace the sums with smaller summations

that are equivalent to a given level of precision. Interesting applications of these

algorithms include fast versions of Fourier transforms that do not require evenly

spaced data points [5]. An algorithm for evaluating Gaussian sums using this

technique was developed by Greengard and Strain [4]. We will be concerned

with this algorithm and its extensions in this paper. Related work also includes

the work by Lambert et al [6] for eÆcient on-line computation of kernel density

estimation.

Section 2 introduces some details of the Fast Gauss Transform, and our im-

provements to it. We also present practical demonstrations of the improvement



2nd Int'l workshop on Statistical and Computational Theories of Vision 3

in complexity. In Section 3 we introduce using kernel density estimation to

model the color of homogenous regions and use this approach to segment fore-

ground region corresponding to people into major body parts. In Section 4 we

show how the fast Gauss algorithm can be used to eÆciently compute estimates

for density gradient and use this for tracking people. The tracking algorithm is

robust to partial occlusion and rotation in depth and can be used with station-

ary or moving cameras. Appropriate reviews of the relevant related work are

provided in these self-contained sections.

2 Fast Gauss Transform

The FGT was introduced by Greengard and Strain [3, 4] for the rapid evaluation

of sums of the form

S (ti) =

NX
j=1

fj exp

 
�
(sj � ti)

2

�2

!
; i = 1; : : : ;M: (2)

Here sj and ti are respectively the d�dimensional \source" and \target" coor-

dinates, while � is a scalar and fj are source strengths. They showed that using

their fast algorithm this sum could be computed in O(N+M) operations. They

also showed results from 1-D and 2-D tests of the algorithm. It was extended by

Strain [7] to sums where � in equation 2 varied with the position of the target

or the source, i.e., for the case where � depends on the source location the sum

is

S (ti) =

NX
j=1

fj exp

 
�
(sj � ti)

2

�2j

!
; i = 1; : : : ;M: (3)

A puzzling aspect of the FGT is that even though the algorithm was pub-

lished fourteen years ago, and Gaussian mixture sums arise often in statistics

(as already noted by Greengard and Strain), the algorithm has not been used

much in applications. Subsequent publications on the FGT have only begun to

appear again over the last two years.

An important reason for the lack of use of the algorithm is probably the

fact that it is inconvenient to do so. First, it is not immediately clear what the

cross-over point is when the algorithm begins to manifest its superior asymptotic

complexity and o�sets the pre-processing overhead. While the nominal complex-

ity of the algorithm is O(M + N);the constant multiplying it is O(pd), where

p is the number of retained terms in a polynomial approximation (described

below). This makes it unclear if the algorithm is useful for higher dimension

applications seen in statistical pattern recognition. The fact that there is no

readily available implementation to test these issues acts as a further barrier to

its wide adoption.

Another reason for the delay in applying the FGT to problems in compu-

tational statistics might be that the algorithm, as originally presented, are not

directly applicable to general mixture of gaussian sums that statisticians are
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used to thinking about. General d�dimensional mixture of gaussian sums have

the form

S(ti) =

NX
j=1

fj exp
�
� (ti � sj)

0

V �1 (ti � sj)
�

(4)

with V �1 is a symmetric positive de�nite covariance matrix, which is much more

complex than 2. Even in the case of kernel density estimation with Gaussians,

the form of the Gaussian sum encountered is

S(ti) =

NX
j=1

fje
�

P
d
k=1

�
(ti�sj)k

�k

�2

=

NX
j=1

fje
�

��
(ti�sj)1

�1

�2

+:::+

�
(ti�sj)d

�d

�2�
; (5)

where the subscript k indicates the component along the kth coordinate axis,

i.e., the covariance matrix is diagonal. The applications we present below in

segmentation and tracking use this form which is a generalization over the orig-

inal FGT algorithm. Our ongoing work (the details of which, including a proof

of convergence are to be reported elsewhere) extends the variable scale FGT

algorithm to sums of the form 5.

2.1 Speeding up computations with Gaussians

Before describing the FGT, it is appropriate to describe some algorithmic im-

provements for evaluating Gaussian mixture sums proposed in the literature,

which are distinct from the FGT.

The evaluation of a special function such as the exponential is usually ex-

pensive, requiring ~O(100) 
oating point operations using the normal libraries

supplied with compilers. Approximate libraries that achieve accuracy almost

everywhere, and require fewer 
oating point operations are available, e.g., the

Intel approximate math library [8] claims a speedup of a factor of 5 for eval-

uating exponentials over the corresponding x87 implementation. The FGT is

distinct from these, and indeed the approximate math libraries can be used in

conjunction with it to achieve further speed-up.

A second speed-up of gaussian sums is based on the observation that since

a Gaussian typically decays relatively quickly, leading to insigni�cant additions

when it is evaluated beyond a speci�ed distance, heuristics can be used to avoid

unnecessary evaluations when ��1 (js� tj) is small. Some authors (e.g., Fritsch
& Rogina, 1996 [9]) have formalized this by developing a data structure that

enables automating this heuristic. The FGT also employs such data structures,

and automates the observation that lies behind this heuristic by providing rig-

orous error bounds.
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2.2 Overview of the Algorithm

The shifting identity that is central to the algorithm is a re-expansion of the

exponential in terms of a Hermite series by using the identity

e�(
t�s
� )

2

= e
�

�
t�s0�(s�s0)

�

�2
= e�(

t�s0
� )

2
1X
n=0

1

n!

�
s� s0

�

�n
Hn

�
t� s0

�

�
; (6)

where Hn are the Hermite polynomials. This formula tells us how to evaluate

the Gaussian �eld exp
�
�
�
t�s
�

�2�
at the target t due to the source at s, as an

Hermite expansion centered at any given point s0: Thus a Gaussian centered at

s can be shifted to a sum of Hermite polynomials times a Gaussian, all centered

at s0: The series converges rapidly and for a given precision only p terms need

to be retained. The quantities t and s can be interchanged to obtain a Taylor

series around the target location as

e�(
t�s
� )

2

= e
�

�
t�t0�(s�t0)

�

�2
'

pX
n=0

1

n!
hn

�
s� t0

�

��
t� t0

�

�n
: (7)

where the Hermite functions hn (t)are de�ned by

hn (t) = e�t
2

Hn (t) : (8)

The algorithm achieves its gain in complexity by avoiding evaluating every

Gaussian at every evaluation point (which leads to O(NM) operations). Rather,

equivalent p term series are constructed about a small number of source cluster-

centers using Equation 6 (for O(Npd) operations). These series are then shifted

to target cluster-centers, and evaluated at theM targets in O(Mpd) operations.

Here the number of terms in the series evaluations, p; is related to the desired

level of precision �, and is typically small as these series converge quickly.

The process is illustrated in Figure 1. The sources and targets are divided

into clusters using a simple boxing operation. This permits the division of the

Gaussians according to their locations The domain is scaled to be of O(1), and

the box sizes are chosen to be of size r
p
2� where r is a scale parameter.

Since Gaussians decay rapidly, sources in a given box will have no e�ect (in

terms of the desired accuracy) to targets relatively far from there sources (in

terms of distance scaled by the standard deviation �). Therefore the e�ect of

sources in a given box need to be computed only for targets in close boxes. Given

the sources in one box and the targets in a neighboring box, the computation

is performed using one of the following four methods depending on the number

of sources and targets in these boxes: Direct evaluation is used if the number

of sources and targets are small. If the sources are clustered in a box then

they can be transformed into Hermite expansion about the center of the box

using equation 6. This expansion is directly evaluated at each target if the

number of the targets is small. If the targets are clustered then the sources or

their expansion are converted to a local Taylor series (equation 7) which is then
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Figure 1: The fast gauss transform performs gaussian sums to a prescribed

degree of accuracy by using either direct evaluations of the Gaussian for isolated

sources and targets, or consolidates sources with Hermite series evaluation at

isolated targets, or consolidates many sources near a clustered target location

via Taylor series, or combines Hermite and Taylor series for clustered sources

and targets.

evaluated at each target in the box. The number of terms to be retained in

the series, p, depends on the required precision, the box size scale parameter

r and the standard deviation �. The break-even point when using expansion

is more eÆcient than direct evaluation is O(pd�1). Further details may be

obtained from [4]. The clustering operation is aided by the use of appropriate

data structures.

2.3 Fast Gauss Transform Experimental Results

Before presenting applications of the FGT to vision problems, we present some

experimental results, that illustrate further how the algorithm achieves its speedup.

The �rst experiment compares the performance of the FGT with di�erent choices

of the required precision � with direct evaluation for a 2D problem. Table 1 and

Figure 2 shows the CPU time using direct evaluation versus that using FGT

for di�erent precisions, � = 10�4; 10�6; and 10�8 for sources with � = 0:05.
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The box size scale parameter r was set to 0.51. The sources and targets were

uniformly distributed in the range [0,1] and the strength of the sources were

random between 0 and 1. Table 2 shows the division of work between the di�er-

ent components of the FGT algorithm for the � = 10�6 case. From the division

of work we notice that for relatively small number of sources and targets only

direct evaluation is performed. Although, in this case, the algorithm performs

only direct evaluations, it gives �ve to ten times speed up when compared with

direct evaluation because of the way the algorithm divides the space into boxes

and the locality of the direct evaluation based on the desired precision. i.e.,

the FGT algorithm does a smart direct evaluation. This is comparable to the

speed-ups reported by Fritsch and Rogina with their bucket-box data structure.

As the number of sources and targets increases and they become more clus-

tered, other evaluation decisions are made by the algorithm, and the algorithm

starts to show the linear (O(N +M)) performance. For very large number of

sources and targets, the computation are performed through Hermite expan-

sions of sources transformed into Taylor expansions as described above, and

this yields a signi�cant speedup. For example, for N =M = 105, the algorithm

gives more than 800 time speedup than direct evaluation for 10�4 precision.

From the �gures we also note that the FGT starts to outperform direct

evaluation for number of sources and targets as low as 60-80 based on the desired

accuracy. This break-even point can be pushed further down by increasing the

box size scale parameter, r. This will enhance the performance of the algorithm

for small N;M but will worsen the asymptotic performance.

Direct Fast Gauss

N=M Evaluation � = 10�4 � = 10�6 � = 10�8

50 0.7 0.8 0.9 1.1
100 2.7 1.3 1.7 2.0
200 10.8 2.9 3.7 4.6
400 43 8.2 10.8 14
800 174 27 36 46
1600 689 96 130 163
3200 2754 319 493 640
6400 11917 660 1281 1935
12800 58500 942 2022 3277

25600 234x 103 1429 3210 5113

51200 936x 103 2405 5602 8781

102400 3744x 103 4382 10410 16181

204800 14976x 103 8428 20191 31106

1024000 374x 106 43843 100263 153791

Table 1: Run time in milliseconds for direct evaluation vs. FGT with di�erent
precision

Figure 3 shows the performance of the algorithm for cases where the sources

and the targets are clustered di�erently. The direct evaluation is compared with

1The software was written in Visual C++ and the results were obtained on a 700MHz Intel

Pentium III PC with 512 MB RAM.
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Figure 2: Run time for direct evaluation vs. FGT with di�erent precision

Division of work (%) - Uniform sources and targets

Direct Taylor Hermit Hermit + Taylor
N=M Evaluation Expansion Expansion Expansion

� 800 100 0 0 0
1600 96.6 1.6 1.8 0
3200 65.7 15.6 15 3.7
6400 5.3 18.3 16.9 59.5
12800 0 0.3 0.3 99.4
� 25600 0 0 0 100

Table 2: Division of work between di�erent computational methods for uni-
formly distributed random sources and targets

the FGT for three con�gurations of sources and targets: in the �rst case, the

sources and targets are uniformly distributed between 0 and 1. In the second

case the sources are clustered inside a circle of radius 0.1 and the targets are

uniformly distributed between 0 and 1. In the third case, both the sources

and the targets are clustered inside a circle of radius 0:1. For all three cases the

desired precision was set to 10�6, the sources have a scale � = 0:05 and a random

strength between 0 and 1. The division of work for the three cases are shown

in Tables 2, 3, and 4. From the �gures we note that for the cases where sources

and/or targets are clustered the computation shows linear time behavior for

number of sources and targets as low as 100, which yields a signi�cant speedup.

For a very large number of sources and targets, the computations are performed

through Hermite expansions of sources transformed into Taylor expansions.

Figure 4 shows the same experiment with the three con�gurations of sources

and targets for the 3D case with precision set to 10�6 and r = 0:5. Note that the
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Figure 3: Run time for FGT with di�erent con�guration of sources and targets

layout

Division of work (%) - Clustered sources, Uniform targets

Direct Taylor Hermit Hermit + Taylor
N=M Evaluation Expansion Expansion Expansion

100 83.7 0 16.3 0
200 65.2 0 34.8 0
400 32.7 0 67.3 0
800 21.3 0 78.7 0
1600 17.1 0.3 81.4 1.2
3200 9.2 2.7 69.2 18.9
6400 1.8 5.6 22.5 70.1
12800 0 2.6 0.4 97
� 25600 0 0 0 100

Table 3: Division of work between di�erent computational methods for clustered
sources and uniformly distributed targets

algorithm starts to utilize computations using Hermite and/or Taylor expansion

only when the number of sources and/or targets in a box exceeds a break point

of order pd�1 which is higher in the 3D case. This causes the algorithm to do

mostly direct evaluation for the uniform sources and targets case while Hermite

and Taylor expansion computations were utilized for large number of clustered

sources and/or targets.

Figure 5 shows e�ect of the source scale on the run time of the FGT algo-

rithm. The �gure shows the run time for three cases where sources have scale

� = 0:1; 0:05; 0:01. For all the cases, the sources and targets were uniformly

distributed between 0 and 1. The box size scale parameter was set to r = 0:5

for all the cases. The run time in all the cases converges asymptotically to the

linear behavior.
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Division of work (%) - Clustered sources and targets

Direct Taylor Hermit Hermit + Taylor
N=M Evaluation Expansion Expansion Expansion

100 69.4 13.9 13.9 2.8
200 36.9 28.7 19.3 15.1
400 12.7 21.6 24.4 41.3
800 4.8 16.8 17.4 61.0
1600 2.8 15.1 13.0 69.1
3200 2.2 10.3 15.3 72.2
6400 0.8 6.8 9.3 83.1
12800 0.1 2.4 2.4 95.1
� 25600 0 0 2.4 97.6

Table 4: Division of work between di�erent computational methods for clustered
sources and targets
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Figure 4: Run time for 3D - FGT with di�erent con�guration of sources and

targets layout

3 Region Segmentation via Color Modeling

3.1 Color Density Estimation

In this application we utilize the fast Gauss algorithm for eÆcient density es-

timation of color distribution of a region. We use this approach to model the

color distribution on people's clothing and to segment major body parts based

on clothing. A variety of parametric and non-parametric statistical techniques

have been used to model the color and the spatial properties of colored regions.

In [10] the color properties of a region (blob) were modeled using a single Gaus-

sian in the three dimensional Y UV space. The use of a single Gaussian to

model the color of a blob restricts the blob to be of a single color which is not a

general enough assumption about the clothes people wear which usually contain
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Figure 5: Run time for 2D - FGT with uniformly distributed sources and targets

with di�erent scales.

patterns and have many colors. Fitting a mixture of Gaussian using the EM al-

gorithm provides a way to model blobs with a mixture of colors. This technique

was used in [11, 12] for color based tracking of a single blob and was applied for

tracking faces. The mixture of Gaussian technique faces the problem of choosing

the right number of Gaussians for the assumed model. Non-parametric tech-

niques using histograms have also been used for modeling color distributgions.

In [13] 3-dimensional adaptive histograms in RGB space were used to model

the color of the whole person. Color histograms have also been used in [14]

for tracking hands. The major drawback with color histograms is the lack of

convergence to the right density function if the data set is small.

We use a non-parametric approach to model the color distribution of a uni-

form region. Given a sample S = fxig taken from the region where i = 1:::N

and xi is a d-dimensional vector representing the color, we can estimate the

density function at any point y of the color space directly from S using kernel

density estimation [2]

P̂ (y) =
1

N�1:::�d

NX
i=1

dY
j=1

K

�
yj � xij

�j

�
; (9)

where the same kernel function is used in each dimension with a di�erent band-

width �j for each dimension of the color space.

Theoretically, kernel density estimators can converge to any density shape

with enough samples [2]. Unlike histograms, even with a small number of sam-

ples, kernel density estimation leads to a smooth continuous density estimate. If

the underlying distribution is a mixture of Gaussians, kernel density estimation

converges to the right density with a small number of samples. Unlike paramet-

ric �tting of a mixture of Gaussians, kernel density estimation is a more general
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approach that does not require the selection of the right number of Gaussians

to be �tted. One other important advantage of using kernel density estimation

is that the adaptation of the model is trivial by adding new samples.

If Gaussian kernels K�(t) =
�p

2��
�
�1
e�1=2(t=�)

2

are used then the Fast

Gauss transform computational framework gives an eÆcient way to compute

the density estimate in equation 9 at many points, y, of the space in batches.

In this case, each sample xi is considered a source point and each evaluation

point, y, is considered as a target point. This batch evaluation is suitable in

many computer vision applications since it is usually desired to evaluate the

density estimate at many pixels of the image at once. Since color spaces are low

in dimension, the use of fast Gauss transform will out perform direct evaluation

at a low break point. Another reason that favors the use of fast gauss in color

modeling applications is that the sources (the samples) are clustered in the space

as well as the targets (the evaluation points).

3.2 Color-based Body Part Segmentation

We use the described color modeling approach to segment foreground regions

corresponding to tracked people into major body parts. The foreground regions

are detected using background subtraction [15]. People can be dressed in many

di�erent ways, but generally the way people are dressed leads to a set of major

color regions aligned vertically (shirt, T-shirt, jacket etc., on the top and pants,

shorts, skirts etc., on the bottom) for people in upright pose. We consider the

case where people are dressed in a top-bottom manner which yields a segmen-

tation of the person into a head, torso and bottom. Generally, a person in an

upright pose is modeled as a set of vertically aligned blobs M = fAig where a

blob Ai models a major color region along the vertical axis of the person rep-

resenting a major part of the body as the torso, bottom or head. Each blob is

represented by its color distribution as well as its spatial location with respect

to the whole body. Since each blob has the same color distribution everywhere

inside the blob and since the vertical location of the blob is independent of the

horizontal axis, the joint distribution of pixel (x; y; c) (the probability of observ-

ing color c at location (x; y) given blob A) is a multiplication of three density

functions [16].

PA(x; y; c) = fA(x)gA(y)hA(c);

where hA(c) is the color density of blob A and the densities gA(y),fA(x) repre-

sents the vertical and horizontal location of the blob respectively.

Estimates for the color density hA(c) can be calculated using the kernel

density estimation as was shown in 9. We represent the color of each pixel as

a 3-dimensional vector X = (r; g; s) where r = R
R+G+B

; g = G
R+G+B

are two

chromaticity variables and s = (R +G + B)=3 is a lightness variable. Given a

sample of pixels SA = fXi = (ri; gi; si)g from blob A, an estimate ĥA(�) for the
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color density hA(�)can be calculated as

ĥA(r; g; s) =
1

N

NX
i=1

K�r(r � ri)K�g (g � gi)K�s(s� si);

whereK�(t) = 1=�K(t=�). Using Gaussian kernels, i.e.,K�(t) =
�p

2��
�
�1
e�1=2(t=�)

2

with di�erent bandwidths in each dimension, the density estimation can be eval-

uated as a sum of Gaussians as

ĥA(r; g; s) =
1

N
� C

NX
i=1

e�1=2(
r�ri
�r

)2e
�1=2(

g�gi
�g

)2

e�1=2(
s�si
�s

)2

where C is a constant. At each new frame, it is desired to evaluate this proba-

bility at di�erent locations. The FGT algorithm is used to eÆciently compute

these probabilities. Here the sources are the sample locations SA;while the tar-

gets are the vectors (r; g; s) at each evaluation location. The estimation of the

bandwidths for each dimension is done o�ine by considering batches of regions

with a single color distribution taken from images of people's clothing and es-

timating the variance in each color dimension. This model is not restricted to

a particular color space, and can be extended to any three dimensional color

space.

Given a set of samples S = fSAi
g corresponding to each blob and initial

estimates for the position of each blob yAi
, each pixel is classi�ed into one of

the three blobs based on maximum likelihood classi�cation assuming that all

blobs have the same prior probabilities

X 2 Ak s.t. k =argkmaxP (X j Ak)

= argkmax gAk
(y)hAk

(c) (10)

where the vertical density gAk
(y) is assumed to have a Gaussian distribution

gAk
(y) = N(yAk

; �Ak
). Since the blobs are assumed to be vertically above each

other, the horizontal density fA(x) is irrelevant to the classi�cation.

A horizontal blob separator is detected between each two consecutive blobs

by �nding the horizontal line that minimizes the classi�cation error. Given the

detected blob separators, the color model is recaptured be sampling pixels from

each blob. Blob segmentation is performed and blob separators are detected at

each new frame as long as the target is isolated and tracked.

Model initialization is done automatically by taking three samples S =

fSH ; ST ; SBg of pixels from three con�dence bands corresponding to the head,

torso and bottom. The locations of these con�dence bands are learned o�ine

as follows: A set of training data2 is used to learn the location of blob sepa-

rators (head-torso, torso-bottom) with respect to the body for a set of people

in upright pose where these separators are manually marked. Figure 6-a shows

2The training data consists of 90 samples of di�erent people from both genders in di�erent

orientations in upright pose.
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Figure 6: a- Blob separator histogram from training data. b- Con�dence bands.

c - Blob segmentation. d- Detected blob separators

a histogram of the locations of head-torso (left peak) and torso-bottom (right

peak) in the training data. Based on these separator location estimates, we can

determine the con�dence bands proportional to the height where we are con�-

dent that they belong to head, torso and bottom and use them to capture initial

samples S = fSH ; ST ; SBg. Figure 6-b shows initial bands used for initialization
where the segmentation result is shown in 6-c and the detected separators are

shown in 6-d.

Figure 7: Example results for blob segmentation

Figure 7 illustrates some blob segmentation examples for various people. No-

tice that the segmentation and separator detection is robust even under partial

occlusion of the target as in the rightmost result. Also in some of these examples

the clothes are not of a uniform color. In [16] we showed how this representation

can be used to segment foreground regions corresponding to multiple people in

occlusion.
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4 People Tracking Application

In this application we show how the fast Gauss transform algorithm can be used

to eÆciently compute estimate for the gradient of the density as well as estimate

for the density itself. Estimation of density gradient is useful in applications

that use the mean shift algorithm [17, 18, 19, 20]. We utilize the color-spatial

joint distribution of a region as a constraint that is used to locate that region

in subsequent frames and therefore to track this region. The color-spatial joint

density is estimated using kernel density estimation. An estimate of the gradient

of the joint density is used to drive a gradient based search that is used to track

that region. In order to reduce the dimensionality of the problem, we use one

spatial dimension and two color dimensions to represent the joint color-spatial

density. This is justi�ed, since for the majority of clothing for people in upright

pose, the color distribution is independent of the horizontal axis and depends

only on the vertical axis. That is, we are most likely to observe the same color

distribution orthogonal to the vertical axis. (Note that this does not assume

constant horizontal color). This allows us to use only the vertical dimension in

our representation of the joint color-spatial density. The independence of the

color distribution from the abscissa makes the representation robust to rotation

in depth.

Let S = fXigi=1::n be a set of sample pixels from the target region so

that Xi = (xi; yi; ui) where xi; yi is the sample pixel location around an origin

o, and ui 2 Rd is a d-dimensional color vector. Given the sample S as a

model for the target region, the joint spatial-color probability of observing a

pixel X at location (x; y) with color u can be expressed as two independent

density functions (since the color distribution is assumed to be independent of

the horizontal axis and depends only on the vertical axis)

P (x; y; u) = F (x)H(y; u); (11)

where H(y; u) represents the joint density between the vertical location and

the color features and F (x) represents the distribution along the horizontal

axis. If we use two chromaticity variables u = (u1; u2) with diagonal covariance

matrix to represent the color for each pixel, then we can estimate joint density

Ĥ(y; u j S) as:

Ĥ(y; u) =
1

N

NX
i=1

K�y (y � yi)K�u1
(u1 � ui1)K�u2

(u2 � ui2);

where �y; �u1 ; �u2 are the kernel bandwidths in the three dimensions. Given a

translation of the region origin to a location (xc; yc) and a scaling hc, we can

estimate the probability of a pixel X = (x; y; u) coming from S by shifting and

scaling as

Ĥ(yc;hc)(y; u) =
1

N

NX
i=1

K�y

�
y � yc

hc
� yi

�
K�u1

(u1� ui1)K�u2
(u2� ui2): (12)
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Let R(c) be a region that represents the target with respect to a location

and a scaling hypothesis c = (xc; yc; hc), we de�ne the likelihood function  (c)

by integrating log probabilities over R as:

 (c) =

Z
R

wc(x; y)L(P̂c(x; y; u))dx (13)

where P̂c(x; y; u) is an estimate of the joint density in 11, L(�) is a log function
and wc(x; y) is a weight kernel. Practically, we can assign more weights to pixel

inside the region and less weights for pixels on the region boundary since their

inclusion in R is expected to be noisy. The target localization at frame t can be

formalized as a search for a 2-D translation and a scaling that maximizes  (c).

i.e., the location and scale hypothesis c = (xc; yc; hc) that maximizes  (c):

c = argcmax (c)

Given the joint density in equation 11 the likelihood function can be written as

 (c) =
X

(x;y;u)2R

wc(x; y)L(Fc(x)) + wc(x; y)L(Ĥc(y; u)) (14)

We can drop the �rst term since this will be the same for all hypotheses, and

so we can rede�ne  (:) in a simpler way as

 (c) =
X

(x;y;u)2R

wc(x; y)L(Ĥc(y; u)) (15)

For the weights wc(x; y), we use Gaussian kernels N(xc; �xhc); N(yc; �yhc)

where �x; �y are scaling constants in the horizontal and vertical direction.
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Figure 8: Likelihood function surface

The optimal target hypothesis represents a local maxima in the discrete three

dimension search space. The log likelihood function is continuous and di�eren-

tiable and, therefore, a gradient based optimization technique would converge

to that solution as long as the initial guess is within a small neighborhood of

that maxima. Figure 8 shows a plot of the function  (c) for each location in
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the image as a hypothesis for the target origin. For this plot, R was de�ned as

a vertical ellipse of the same size as the target.

The derivation of the gradient of the objective function yields (after some

manipulation):

(�xh)
2 �

rx (c)

 (c)
=

P
(x;y) xwc(x; y)L(Ĥc)P
(x;y)wc(x; y)L(Ĥc)

� xc

(�yh)
2 �

ry (c)

 (c)
=

0
@(�yh)2

P
(x;y)wc(x; y)

ryĤc

ĤcP
(x;y)wc(x; y)L(Ĥc)

+

P
(x;y) ywc(x; y)L(Ĥc)P
(x;y)wc(x; y)L(Ĥc)

!
� yc

where the term
ryĤc

Ĥc

is the normalized gradient of the joint density Hc which

can be derived from equation 12 and can be expressed as

ryĤc(x; y; u)

Ĥc(x; y; u)
=

�1
�2h

� (16)

 PN
i=1 xiK�y (

y�yc
hc

� yi)K�u1
(u1 � ui1)K�u2

(u2 � ui2)PN
i=1K�y (

y�yc
hc

� yi)K�u1
(u1 � ui1)K�u2

(u2 � ui2)
�
y � yc

hc

!

The main computation overhead is the calculation of the joint density esti-

mate Ĥc(y; u1; u2) and its gradient, ryĤc(x; y; u). That is, the evaluation of

Gaussian summation

S1(�y; u1; u2) = C1

NX
i=1

e
�

1
2
(
�y�yi
�y

)2

e
�

1
2
(
u1�ui1
�u1

)2

e
�

1
2
(
u2�ui2
�u2

)2

and a weighted version of it

S2(�y; u1; u2) = C2

NX
i=1

yie
�

1
2
(
�y�yi
�y

)2

e
�

1
2
(
u1�ui1
�u1

)2

e
�

1
2
(
u2�ui2
�u2

)2

Where C1,C2 are normalization constants and N is the number of samples in

the target model. At each iteration We need to evaluate these sums at each

pixel (x; y; u1; u2) in the region de�ned by each new region origin hypothesis

c = (xc; yc; hc) where �y = y�yc
hc

. These summation is evaluated using Fast

Gauss algorithm where the sources are the sample points (yi; ui1; ui2)i=1::n and

the targets are the evaluation pixels (y; u1; u2) in candidate region R(c). Notice

that in the second summation each source is assigned a strength yi=
PN

i=1 yi
To achieve eÆcient implementation, we developed a two phase version of the

fast Gauss algorithm where in the �rst phase all the source data structures and

expansions are calculated from the samples. Then, at each new frame, these
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Figure 9: Tracking result

structures and expansions are reused to evaluate the new targets. Since targets

(evaluation points) are expected to be similar from frame to frame, the results of

each evaluation are kept in a look up table to avoid doing repeated computation.

Figure 9 shows four frames from the tracking result for a sequence. The

sequence contains 40 frames taken at about 5 frames per second rate. The

tracker successfully locate the target at this low frame rate. Notice that the

target changes his orientation during the tracking. Figure 10-left shows the

performance of the tracker on this sequence using Fast Gauss only (no look up

tables). The average run-time per frame is about 200-300 msec. Figure 10-right

shows the performance of the tracker with look up tables used in conjunction

with fast Gauss transform to save repeated computation. In this case, the run

time decreases with time and the average run time per frame is less than 20

msec. This is more than 10 times speed up per iteration.

Figure 11 shows examples of tracking under partial occlusion. The target in

this case is waiting for the elevator and is not moving signi�cantly. The results

shows that the tracker continued to locate the target successfully throughout

several signi�cant occlusion situation. Notice also that the horizontal location of

the located region is not a�ected if some parts of the body are occluded. Since

there is no signi�cant motion in most of these sequence, motion based tracking

would fail in such a sequence. Also algorithms based on adaptive background

subtraction might adapt to the target. Figure 12 shows results of tracking a

person in a crowd. These results are for videos captured at 10-12 frame per

second. The tracker successfully locates the targets at this low frame rate. The

bandwidths for the joint distribution kernels were set to 5%, 1%, 1% of each

dimension space size for �y,�u1 and �u1 respectively. The weight kernel w is

narrow in the horizontal direction (�x = 0:5 � width
2

) and wide in the vertical

direction (�y = 1:8 � height
2

). Figure 13 shows a plot of the number of iterations
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Figure 10: Performance of the tracker using Fast Gauss. Top: number of iter-

ations per frame. Middle:run time per frame. Bottom: run time per iteration.

Right: Performance using FGT with results look up tables.

needed for convergence for the sequence shown in �gure 12.

5 Conclusion

In this paper we investigate the use of Fast Gauss Transform to speedup kernel

density estimation techniques. We presented the use of kernel density estimation

in modeling the color of homogeneous regions and used this modeling approach

to segment foreground region corresponding to people into major body parts

based on color. We also presented the use of kernel estimation of the joint color-

spatial density in tracking people. The tracking algorithm is robust to partial

occlusion and rotation in depth. It can be used from moving or stationary

platforms. In both applications, the FGT was used to eÆciently compute the

kernel density estimation and the gradient of the density, resulting in real-time

performance. The Fast Gauss transform can be useful to many vision problems

that use kernel density estimation, and as such our paper serves to introduce

the algorithm to this community. Kernel density estimation is a better way to

estimate the densities in comparison with classical parametric methods in cases

where the underlying distribution are not known or when it is hard to specify

the right model. Also kernel density estimation is better than use of histogram

techniques, since a smooth and continuous estimate of the density is obtained,

and the method has signi�cantly improved memory complexity. The version of
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Figure 11: Tracking under partial occlusion

the FGT algorithm that we presented here is a generalization of the original

algorithm as it uses a diagonal covariance matrix instead of a scalar variance.

Similar generalizations to the variable scale case will be reported elsewhere.
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Figure 12: Tracking person in a crowd
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Figure 13: Number of iterations for convergence
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