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Abstract

We introduce the g-factor which relates probability distributions on features to distributions on im-
ages. It arises when we seek to learn distributions from image data but it depends only on our choice of
features and lattice quantization and is independent of the training image data. We show that simple,
and plausible, approximations of the g-factor can throw light on aspects of Minimax Entropy Learning
(MEL) [19], which learns probability distributions on images in terms of Markov Random Fields with
clique potentials. Analyzing the g-factor allows us to determine when the clique potentials decouple for
different features. Moreover, when the approximations of the g-factor are valid then the clique potentials
in MEL can be computed analytically. Finally, we describe ways to extend these approximations by
computing approximations to the g-factor offline, thereby enabling rapid methods for computing the
clique potentials from new image data. Overall, we seek to give understanding of how MEL relates to
alternative methods of learning on images. (In this paper the features we are considering will be extracted
from the image by filters — hence we almost always use the terms “features” and “filters” synonymously.)
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1 Introduction

There has recently been a lot of interest in learning probability models for vision. The most common approach
is to learn histograms of filter responses or, equivalently, to learn probability distributions on features. This
has been applied to learning the statistics of textures [15], of images [14], of depth data [12], and foreground
and background models for image segmentation [11], [13], [2]. In this paper the features we are considering
will be extracted from the image by filters — hence we almost always use the terms “features” and “filters”
synonymously.

An alternative approach, however, is to learn probability distributions on the images themselves. The
Minimax Entropy Learning (MEL) theory [19] is a bold attempt to do this in which the maximum entropy
principle is used to learn distributions constrained by the observed histograms of feature responses (with a
feature pursuit stage to determine which features should be used to construct the probability distribution).
A key aspect of this approach that it learns cligue potentials on filter outputs to produce a Markov random
field [10]. So, for example, when applied to texture it gives a way to unify the filter based approaches (which
are often very effective) with the Markov random field approaches (which are theoretically attractive).

As we describe in this paper, distributions on images and on features can be related by a g-factor (such
factors arise in statistical physics, see [8]). It can be considered a phase factor because it relates different
representations of the same physical systems. Understanding the form of the g-factor, and making good
approximations to it, enable us to relate distributions on images to distributions on features. This helps
determine the tradeoffs between the image and feature based approaches.
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In particular, understanding the g-factor helps throw light on MEL and give understanding of some of
its more unintuitive aspects. For example, in MEL feature histograms are fed into a stochastic optimization
procedure which outputs clique potentials. Can one get understanding of why the clique potentials take
the form they do? Moreover, the clique potentials for different filters seem to be decoupled (i.e. the two
clique potentials corresponding to two features A and B are identical whether we learn them jointly or
independently). When, and why, does this occur? MEL proposes a filter pursuit method to determine which
filters are best to use. Can one get some simple intuitive understanding of this?

The g-factor is determined by the form of the features chosen and the spatial lattice and quantization
of the image grey-levels. It is completely independent of the training image data. Instead we can think of
the g-factor as corresponding to learning probability distributions where the training data corresponds to
the uniform distribution on the set of all images. As we will show, the form of the feature histograms for
this uniform image distribution play an important role in determining how easy it is to learn their clique
potentials. It should be stressed that the choice of image lattice and grey-level quantization can make a big
difference to the g-factor and hence to the probability distributions which are the output of MEL. There are
some paradoxical results. For example, our work shows that simple approximations to the g-factor are best
when the number of image grey-levels is large (i.e. the quantization is fine) while many practical algorithms
for MEL have, for computational reasons, worked with coarse quantization. In other words, the problem
gets easier the larger the number of grey-levels we allow.

In this paper we describe approximations to the g-factor and argue for their validity (in particular
when the quantization becomes fine). The approximations enable us to obtain analytic expressions for the
clique potentials in MEL. We hope this approach will give some insight into MEL and may help guide the
construction of effective algorithms. Moreover, our analysis helps show how simpler methods for learning
can be obtained as approximations to Minimax Entropy Learning.

Finally, we emphasize the bigger issue here. How do we relate probability distributions on images to
probability distributions on features extracted from images? The latter are often far easier to calculate but
may not correspond to consistent distributions on images.

An early version of this work appeared in NIPS’98, [4], where we introduced the g-factor and investigated
ways of approximating it. This paper emphasizes, and extends, the second approach (which was only briefly
mentioned in [4]).

In Section (2), we briefly review Minimax Entropy Learning. Section (3) introduces the g-factor and
determines conditions for when clique potentials are decoupled. In Section (4) we describe a simple approxi-
mation which enables us to learn the clique potentials analytically. Section (5) shows how this approximation
can be extended if the size N of the image is sufficiently large.

2 Minimax Entropy Learning

Suppose we have training image data which we assume has been generated by an (unknown) probability
distribution Pry...(Z) where ¥ represents an image. The task is to learn a probability distribution that
approximates Pryy.(Z).

We attempt to approximate Pry(Z) by observing image statistics ¢(Z) [7]. Then we apply the maximum
entropy principle with the constraint that these statistics have observed (mean) values Jobs. This gives:

P(Z[A) = —=—, 1)
Z[A]
where X is a parameter chosen such that Y PEN(X) = Dops- Or equivalently, so that mogiy\z[;‘] =1

(This result follows by maximizing the entropy — »° . P(%) log P(Z) subject to the constraints ). P(&) (@)
Yops. Equivalently we can obtain equation (1) by assuming P(:E'|X) is of exponential form ~ eN4(@ where
X* =arg maxs X Pobe /Z[X]. Tt is straightforward to show that X* is the Maximum Likelihood estimate of X.)

The Minimax Entropy Learning (MEL) approach [19] proceeds in two stages. First, it uses the Maximum

Entropy principle described above to generate probability distributions, see equation (1), for any choice of
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sufficient statistics J;() Secondly, it uses a Minimum Entropy principle to determine which statistics should
be used. Intuitively, statistics which yield Maximum Entropy distributions with small entropy are preferred
because the smaller the entropy the “sharper” the model. (See Coughlan and Yuille [4] for a discussion
of how both aspects of Minimax Entropy have very simple interpretations in terms of Amari’s theory of
information geometry [1].)

In practice, MEL has usually chosen the sufficient statistics to be the histograms of filter responses.
(There is no reason in principle why other statistics should not be considered but, historically, MEL has
concentrated on histograms.) The Jobs are therefore the empirical histograms of the filters.

More precisely, if F represents an intensity image then if we apply a shift-invariant filter f(.) to the image
we obtain a set of responses {f;(Z) : i = 1,..., N} where 4 labels position in the image and N denotes the
number of pixels in the image. The empirical histograms 1 can be written as 1, = ¢, (&) = + Zf;l Oa,f:(7)
where a indicates the (quantized) filter response values. We define () to be the number of values a can
take, so that the components v, of psi are indexed in the range a = 1, ...,Q. (We also denote 1, by ¥(a).)
Observe that, by construction, we have 22221 ¥(a) = 1. Moreover, all components of 1 are non-negative.

Indeed 15 can be interpreted as a probability distribution on feature space.
Choosing the statistics to be a filter histogram makes the resulting MEL model into a simple MRF or
Gibbs form. To see this, observe that

Q N
K60 = 5 20 3 Moy = 5 DA, )

a=1 i=1

and so P(&|X) becomes a Gibbs distribution with clique potentials given by A(f;(#)). This determines a
Markov random field with the clique structure given by the filters {f;}.

To make this more concrete, consider a one-dimensional image where the filters are chosen to be difference
operators, so that f;(Z) = x;41 — z;. The empirical statistics of such filters have been evaluated on many
intensity images, and depth images, and typically take the form given in figure (1) (left panel). When the
potentials corresponding to these histograms are estimated by MEL they are typically of the form given by
figure (1) (right panel). This gives a Markov random field probability distribution of form:

1 ¢n~
P(f) = E@Z,':l ’\(Ei+1*mi)7 (3)

which is similar to models proposed in the early eighties by Blake and Zisserman [3] and Geman and Geman
[10]. (These models may appear to be different because they included additional line-process variables
but these can be eliminated, see Geiger and Girosi [9], and then the resulting models are very similar to
equation (3).)

Figure 1: Left panel: The typical histogram {¢,5s(a)} of a difference filter when evaluated on image or
range data. Right panel: the corresponding clique potentials {—A(a)} are similar to those used by Blake and
Zisserman or Geman and Geman but sharper at the bottom, leading to less small-scale, fractal, fluctuations.
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The Minimum Entropy stage of MEL says that we should evaluate the statistics by computing the entropy
— >z P(Z|\) log P(Z|A) for each choice of statistic (with small entropies being preferred). A filter pursuit
procedure was described to determine which filters should be considered.

3 The g-Factor

This section defines the g-factor in subsection (3.1) and starts investigating its properties in subsection (3.2).
In particular, when, and why, do clique potentials decouple? More precisely, when do the potentials for
filters A and B learned simultaneously differ from the potentials for the two filters when they are learnt
independently?

3.1 Basic Properties of the g-Factor

We now address these issues by introducing the g-factor g(¢). This is defined for any value J of the statistics

-

¢(Z) by:

9(1/-;) = 2543‘(5),1;- (4)

It is important to realize that the g-factor is completely independent of the observations Jobs. It depends
only on the form of the filters {f;} used to compute the statistics ¢ and on the choice of lattice and quanti-
zation. Tt is used to relate probability distributions P(.) on feature space to probability distributions P(&)
on image space.

X space —) 1y space

g(y) = number of images X
with histogram v/

Figure 2: The g-factor g(z/?) counts the number of images & that have statistics ¢. Note that the g-factor
depends only on the choice of filters and is independent of the training image data.

The g—f_g),ctor is essentially a combinational factor which counts the number of ways that one can obtain
statistics ¢, see figure (2). One can give it a probabilistic interpretation by dividing it by L™ where L is
the number of values that any x; can take (i.e. L is the number of grey-scale levels, N is the total number
of pixels on the lattice, and L¥ is the total number of all possible images). Then Py(¢) = (1 /LN )g(1h)
is the induced distribution on 1; where the & are assumed to be distributed by the uniform distribution
U(Z) = 1/LN for any image Z. In other words, we can define the g-factor distribution:

o) = 7o), (5)

and consider it to be the default distribution on J corresponding to complete lack of structure in the image
(i.e. images are generated by the uniform distribution). The top row of figure (3) shows a sample image and
histogram from the uniform distribution, along with corresponding samples of a natural image for contrast.
More generally, we can use the g-factor to compute the induced distribution P(zﬂi) on the statistics
determined by MEL, see equation (1), and also the partition function Z [X] These are given by:
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Figure 3: Image samples (left column), the corresponding empirical histograms of 9/0z (middle column),
and the mean histograms (right column). The image on the top left was drawn from the uniform distribution
U(Z). Tts empirical histogram (middle) is close to the mean value {a(a)} induced by U(Z), which is calculated
exactly [5] and shown on the right. On the bottom left, a natural image with a histogram (middle) that is
close to the mean value (right) across a dataset of natural images.

L X-¢(#) Nex ¥ o e
PEN = b5 g = L 0= o ©)
z ¥

Observe that both P(4|X) and log Z[X] are sufficient for computing the parameters X. The X can be
found by solving either of the following two (equivalent) equations:

U dlog Z[N -
S PR = Gune, o TEIN i, ™)
7

which shows that knowledge of the g-factor aAnd_’ef*Z are all that is required to do MEL.
Observe from equation (6) that we have P(y)|A = 0) = Py(¢)). In other words, setting A = 0 corresponds
to a uniform distribution on the images Z.

3.2 Decoupling Filters

We now derive an important property of the minimax entropy approach. As mentioned earlier, it often
seems that the potentials for filters A and_‘B decouple. In other words, if one applies MEL to two filters A, B
simultaneously by letting ¢ = (4, ¢5), X = (X, XB), and P55 = (4,95 ), then the solutions X4, X to
the equations

ZP (@X, XP) (@4 (@), 87 (@) = (Poas Vons): (®)
are the same (approximately) as the solutions to the equations ). P (F|XA)$A(Z) = s and Y- P( F|XB)GB(Z) =
7B
obs*



Draft submitted to SCTVO01

We illustrate this decoupling with an example where the features are 8/0x and 0/9y. The clique potentials
found by MEL are given in figure (4).

- L L L L L I L L L L L ,
15 -10 -5 [ 5 10 15 15 -10 -5 [ 5 10 15

Figure 4: Evidence for decoupling of features. The left and right panels show the clique potentials learnt for
the features 0/0z and 0/0y respectively. The solid lines give the potentials when they are learnt individually.
The dashed lines show the potentials when they are learnt simultaneously. (The stochastic nature of these
computations means that the estimates of the potentials may not have converged to their true values, and so
it is possible that the potentials are even more nearly similar.) Figure courtesy of Prof. Xiuwen Liu, USF.

We now show how this decoupling property arises naturally if the g-factor for the two filters factorizes.
This factorization, of course, is a property only of the form of the statistics and is completely independent of
whether the statistics of the two filters are dependent for the training data.

Property I: Suppose we have two sufficient statistics ¢A( 7), #B (%) which are independent on the lattice

in the sense that (¥4, 98) = gA(p2)gB (YB), then we have:

log Z[X4, XP] = log ZA[XA] + log ZB[XP], P(44,9") = PA(*)PB (9P), 9)

which implies that the parameters XA,XB can be solved from the independent equations

dlog ZAXA] _ —,  Blog ZP[XP] _ - BA (A
P =i, P o SN =T SRR = 00
oA oX PA

- -

Moreover, the resulting distribution P(Z) can be obtained by multiplying the distributions (1/Z A)e’\A"/’A(i)
and (1/28)eX° 9% @) together.

_The point here is that the potential terms for the two statistics JA,JB decouple if the phase factor
g(p4,¢P) can be factorized. We conjecture that this is effectively the case for many linear filters used in
vision processing. For example, it is plausible that the g-factor for features 0/0z and 0/0y factorizes — and
figure (4) shows that their clique potentials do decouple (approximately). Clearly, if factorization between
filters occurs then it gives great simplification to the system.

It may, however, be questioned whether this decoupling is desirable. Recall that this “factorization” is
purely a property of the filters and the lattice (plus quantization) and is completely independent of the training
image data. If the g-factor factorizes then MEL (using the feature marginals) will imply that 15(1/7’4, B )=
PAWAYPB(4B) and so will predict that the joint histograms ¢0b8,¢obs are statistically independent and
uncorrelated. If the observed feature histograms (of the training image data) are correlated then MEL is
clearly suboptimal (if the marginal histograms are used).

Recall that the g-factor is proportional to the distribution of the features when the input images are
uniformly distributed. This enables us to define a diagnostic test which warns us whenever the features are
independent for uniformly distributed images but are dependent for the training data images. If this warning
occurs then we should the joint histograms of the features, or some other statistics, as input into MEL rather
than the feature marginals.
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4 Approximating the g-factor for a Single Histogram

We now consider the case where the statistic is a single histogram. Our aim is to understand why features
whose histograms are of stereotypical shape (see left panel of figure (1)) give rise to potentials of the form
given by the right panel of figure (1).

Our results, of course, can be directly extended to multiple histograms if the filters decouple, see subsec-
tion (3.2). We first describe the approximation in subsection (4.1) and then explore its relevance for filter
pursuit (i.e. the “min” part of Minimax Entropy Learning) in subsection (4.2).

4.1 The Multinomial

We assume that the statistic zﬁ is a histogram of form:

1 N
DI (11)
i=1

where the {f; : i = 1,..., N} are filter outputs quantized to take @ discrete values labelled by a. The terms
1 (a) are the components of the vector 1.
For statistics of this form, it is convenient to rescale the A variables by N so that we have:

P — eNX-6(2) . L eNXY "
(@) = I P) = g(¥) 70 (12)

where we have written P(%) and P(¢)) as shorthand for P(#|X) and P(|X), respectively.

We now consider the approximation that the filter responses {f;} are independent of each when the
images are uniformly distributed. For this assumption to be valid it does not matter at all whether the filter
responses are dependent or not for the real data.

One way to verify this assumption is by calculating the Kullback-Leibler dlvergence between the dis-
tribution Py(fi,..., fv) induced by the lattice and the factorized approximation Hz 1 Py(fi). We nor-
malize this divergence by the entropy of the distribution Py(fi, ..., fx), i-e. yielding the expression M =
D(Po(f1y s IN)] Hil Py(£))/H(Po(f1,..., fn)), and evaluate it for different values of image size (N) and
different quantization levels (). Our computer simulations show that the approximation becomes increasingly
better as N and @ becomes large, see figure (5). (We note that computer implementations of MEL have
typically required coarse quantization of the image lattice to speed up calculations.)

If the filters responses are independent, of each when the images are uniformly distributed then we call this
the multinomial approximation, because it implies that we can express the phase factor as being proportional
to a multinomial distribution:

W= g @t @ PO = g g e 1)

where E(;?:l 1o = 1 (by definition) and the {a,} are the means of the components {1, } with respect to the

distribution By(}). As we will describe later, the {a,} will be determined by the filters {f;}. See technical
report [5] for details of how to compute the {a,}.

This approximation enables us to calculate MEL analytically.

Theorem With the multinomial approximation we can compute the log partition function to be:

Q
log Z[X = Nlog L + N log{z eratlogaay (14)

a=1

and the “potentials” {\,} can be solved in terms of the observed data {1ops,e} to be:
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Figure 5: Evidence for the Multinomial approximation. The feature is /0x and we plot the Kullback-Leibler
divergence normalized by the entropy of the distribution Py({f;}) (i.e. the quanity M, see text for details).
This quantity is plotted on the vertical axis as a function of L, the number of grayscale levels (which is
related to @ for this particular feature by the equation @ = 2L — 1). Five plots are shown, one for each of
five image lattice sizes (N = 102,202, 302, 402,502 from top curve to bottom curve). The results show that
the approximation gets better as the image size N and the quantization levels ) get large. (Note: these
calculations are exact and do not use MCMC or other stochastic techniques, see [5].)

g} =0 g £ 00 m S0 ey =Y

Figure 6: Left to right: {t¢,5s(a)} measured from a dataset of natural images, {a(a)} calculated exactly, and
{=X\(a)} as given by multinomial approximation for 8/0z.

Ao = log % a=1,..,Q. (15)

We note that there is an ambiguity Ao — A\, + K where K is an arbitrary number (recall that Zanl P(a) =
1). We fix this ambiguity by setting X=0 ifd = Jobs (in other words, X=0 if the histogram Jobs of the
filter on the training data is equal to the histogram & of the filter for uniformly distributed input data).

- - -

Proof. We have Z[\] = ZJ eNX"/;g(zp). We use the multinomial approzimation for g(v) and the fact that

NI [T, alVve = [[9, eNvelatlosaa}  We now sum over the {1} using properties of multinomial
distribution to get Z[N = {Z(?:l e Hos N - We can then solve the equations (9log Z[X])/(OX) = Nty
(recall we rescaled " above) to determine the {\,} analytically.

We see at once that this simple approximation gives the typical potential forms generated by Markov
Chain Monte Carlo (MCMC) algorithms for Minimax Entropy Learning. Compare the multinomial approx-
imation results of figure (6) to those of figure (1).

4.2 Filter Pursuit for the Multinomial Approximation

Filter pursuit is required to determine which filters carry most information. MEL [19] prefers filters (statis-
tics) which give rise to low entropy distributions (this is the “Min” part of Minimax).
It is straightforward to show that the entropy for distributions generated by MEL are of form:
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Q
H(P)= =" P(#X)log P(Z|X) =log Z[X] = Y Aata- (16)

a=1

For the multinomial approximation it is straightforward to show that the entropy is:

Q
NlogL =N t,log

a=1

Ya
—. 17
e a7

This gives a very simple interpretation of the MEL feature pursuit procedure. It says, very intuitively,
that we should prefer to pick filters whose statistical response to the image training data is as large as possible
from their responses to uniformly distributed images. This is measured by the Kullback-Leibler divergence

Q 1 Ya
Za:l 11/)11 Og Qg "

Recall that if the multinomial approximation is used for multiple filters then we should simply add
together the entropies of different filters.

5 Beyond Multinomial: Large N Approximations

The multinomial is a nice approximation because it gives very simple results (and is plausible in some cases).
We now discuss how to go beyond it.

5.1 Large N Behaviour

-

First, we observe that P(¢)) = g(¢)e X%, We can write g() = eV (%) where the scaling argument comes
from Wu et al [17]. Then we have:

P = eN{p(D)+A4} (18)

-

For large N, the mean }° Y P()) will be dominated by ¢* = arg maxw-{p(zg) + X-4}. In other words,
1;* satisfies:

6p(¢) Tx Y _
PP +5=0 (19)

Now to relate this to real data 1,/_;0;)3 we need to find the parameter X which satisfies equation (19) with
¥* = 1ops. This gives us a simple equation for A:

-,

v Op() -
A= 61; (¢obs)- (20)

The difficulty is in estimating p(zﬁ) If we can do this analytically then MEL would simply reduce to
evaluating the derivative of p(¢) (at least in the large N limit).

-

The question is how to approximate p(1). The factorization approach gives one possibility which we will
explore in the next subsection, see subsection (5.2), where it can be obtained as the limit of the multinomial
case as N — oo. An alternative quadratic approximation was presented by the authors in [4]. We showed that
this approximation gave reasonable values for the potentials for some image statistics. As an approximation,
however, it was limited by having no clear intuition behind it (unlike the multinomial approximation).
X8(@)
o The
paradox is that the most probable state Z* is not necessarily one that obeys the condition that (5(5:’*) = Jobs.

The large N analysis also clears up an apparent paradox about the distribution P(a':’|X) =
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To check this observe that the conditions say that the mean value of J is equal to Jobs but the mode of J
might be quite different. (In fact they will be the same when the multinomial approximation is made, see
subsection (5.2).) But for N — oo the mean and the mode become identical. In this limit MEL becomes
equivalent to the Julesz ensemble formulated in [17], in which all images #* such that (5(:?:’*) is close t0 ops
become equally probable and all other images have zero probability.

5.2 The Large N Limit for Multinomials

We first investigate the large N behaviour of the multinomial approximation (or factorization assumption).
This is helpful for developing more advanced approximations (even though we can solve the multinomial
case exactly).

Consider the large N limit of P(«ﬁ) assuming the multinomial approximation. By applying Stirling’s

approximation log N! =~ Nlog N — N to the expression for the phase factor g(v) we obtain logg(v) =
-N 22221 Y log 1, + Nzgzl 1, log a,. This gives us the expression:

7NZG,Q=1 "/}a 105 Ya

P e agela

P(W) = 70 . (21)

Observe that the exponent of equation (21) is of Kullback-Leibler divergence between the {1,} and the
{aqer}.

As N — oo, the distribution of equation (21) will become sharply peaked at J* given by ¢ =
kage*s, a = 1,..,Q where k is a normalization constant (to ensure that 22221 1, = 1). We can now
solve for the potentials {A,} by requiring that D* = 1ops (the observed data). This gives the same result as
before. This can be considered a saddle point or Laplace approximation which is valid as N — oc.

Sanov’s theorem [6] can be used to put bounds on the probabilities of the errors which are caused by this
large N approximation. It can be used to determine how much data is required in order to obtain accurate
estimates of the potentials {A,}. It will also tell us how fast the asymptotic results kick in.

5.3 Beyond Multinomial

We now want to go beyond the multinomial approximation for g(1}).

To do this, we reformulate the problem in terms of the {f;} filter responses which are used to construct
the histogram. This is exactly analogous to the derivation which we used for the g-factor. See figure (7)
for a schematic showing the relationships among the g-factor and two other related combinatorial factors we
introduce in this section.

We define an h-factor on the {f;} by counting the number of images consistent with specified filter
responses:

N
h{fih) =Y 1 0n@.5- (22)
T i=1
We can then get an induced distribution on the {f;} to be:
PR = M (23
T

From this we can obtain a distribution on J by:
ﬁ("ﬁ) = Z 5J,$({fi})p({fi})- (24)

{fi}

10
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-

In this picture, the multinomial approximation for g(+) is equivalent to a factorizable assumption for
h({f;})- In other words, if we assume that h({f;}) = Hfil p(f;) (for some choice of p(.)) then g(¢)) is a

multinomial. (We obtain g(¢) from h({f;}) by using equation (24) in the special case where X = 0.)

We also observe that the factorization assumption on the h({f;}) is equivalent, after normalization, to ap-
plying a maximum entropy principle to estimate h({ f;}) using sufficient statistics ¢o({fi}) = (1/N) >_,; a,f;-
In other words, this uses the same sufficient statistics on the filter responses to estimate h({f;}) before we
have any data as we do after we get the data.

To go further, we estimate the h({f;}) by maximum entropy using additional statistics. The mathematics
greatly simplifies if we use statistics of form F"(qi_)’({ fi})) and apply maximum entropy to this. This will give:

B eNE-F($({£:})) (25)
if) = T
Z[)
where ji is determined by MEL where the input are the filter responses {f;} with image data generated by
the uniform distribution U(Z). Determining f can be done off-line (i.e. it is independent of the training
image data).
We can now calculate the distribution on {f;} caused by MEL. It is of form:

NX-G({fi}) NiE-F($({£:}))

~ e
P{fi}) = o (26)
Z[A 2]
We now induce a distribution on 15 by using the relationship v, = % > i 0a,r;,- We compute:
A - ~ eNX";eNﬁF‘(qg) -
P(p) = P{{fi}) = — =z —m@) (27)
2 AR

{fi:6({F:H=4

where

m@)= > 1 (28)

{r:e{fih=9
can be thought of as another g-factor that counts the number of combinations of filter responses {f;} (across
the entire lattice) having histogram J After normalization, this term becomes the distribution on the v,/_;
induced by assuming that the {f;} are generated by a uniform distribution on the {f;}. In this case, the

distribution is simply the multinomial distribution with mean value equal to 1/Q.
This gives

~ - ]_ Lo
PO (¢) = eu~F(w)e— EGQ=1 Pq log ¢a. (29)

Zji

—%

Hence we can make the approximation:

Q
() = = talogie + ji- F(4). (30)
a=1

It should be appreciated that i are completely independent of the image and hence can be estimated
off-line.

Using this form of p(.) we can use equation (20) to solve for the clique potentials X in closed form.

It may, however, be questioned whether we should be using different statistics to estimate h({f;}) from
the uniform data than we use to estimate the distribution from the true data. In other words, if the
histogram statistic ¢(F) is not sufficient to estimate the distribution from the uniform data, then why should
it be adequate to estimate the statistic from the real data? Surely the additional dependencies which occur
in the real data should require even more statistics? In short, we probably should use the same statistics to
learn h({f;}) as we do to learn the true distribution.

11
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Figure 7: Schematic summarizing the combinatorial factors in MEL that relate a probability distribution
in one space (at the left end of each dotted line) to the induced distribution in another space (at the other
end of each dotted line). g(lﬁ) counts the number of images having a specified histogram, h({f;}) counts the
number of images having specified filter responses across the entire lattice, and m(lﬁ) counts the number of
combinations of filter responses across the entire lattice consistent with a specified histogram (and hence is

proportional to a multinomial distribution).

6 Discussion

This paper introduced the g-factor which depends on the lattice and quantization and is independent of the
training image data. Alternatively it can be thought of as being proportional to the feature responses when
the input images are uniformly distributed.

We showed that the g-factor can be used to relate probability distributions on features to distributions
on images. In particular, we described approximations which, when valid, enable MEL to be computed
analytically. In addition, we can determine when the clique potentials for features decouple.

These approximations throw light on MEL and help relate it to alternative ways of learning image
statistics. Moreover, they also give guidelines, or diagnostic tests, to determine whether marginal histograms
should be used as input to MEL (or whether more complicated statistics such as joint distributions are
needed).

Our approach also emphasizes the importance of understanding the feature properties independent of
the dataset and, in particular, to determine what the feature histograms are when the input images are
uniformly distributed. This depends strongly on the quantization procedure used to describe the images.
We also point out that the problem of estimating clique potentials may get simpler for fine quantization
(because the approximations become more accurate) although empirical tests of MEL have usually been
done using coarse quantization, see [19], for computational reasons.
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