
Proceedings of the IEEE Workshop on Statistical and Computational Theories of Vision,

Fort Collins, CO, June, 1999. (Published on Web).

Learning low-level vision

William T. Freeman1 and Egon C. Pasztor1

Abstract

We show a learning-based method for low-level vision problems. We set-up a Markov
network of patches of the image and the underlying scene. A factorization approximation
allows us to easily learn the parameters of the Markov network from synthetic exam-
ples of image/scene pairs, and to e�ciently propagate image information. Monte Carlo
simulations justify this approximation. We apply this to the \super-resolution" problem
(estimating high frequency details from a low-resolution image), showing good results. For
the motion estimation problem, we show resolution of the aperture problem and �lling-in
arising from application of the same probabilistic machinery.

This is also distributed as MERL TR99-12, http://www.merl.com/reports/TR99-

12/index.html. For related technical reports, please see
http://www.merl.com/reports/TR99-08/index.html and
http://www.merl.com/reports/TR99-05/index.html.

1. MERL, a Mitsubishi Electric Res. Lab.
201 Broadway
Cambridge, MA 02139
freeman, pasztor@merl.com.

Copyright cMitsubishi Electric Information Technology Center America, 1999, all
rights reserved.

1



1 Introduction

We seek a machinery for learning low-level vision problems. These problems could include:
motion analysis, inferring shape and albedo from a photograph, or estimating colors. For
these problems, given image data, we want to estimate an underlying scene. The scene
quantities to be estimated could be projected object velocities, surface shapes, reectance
patterns, colors, or missing high frequency details.

Low-level vision problems are typically under-constrained, so Bayesian [3, 19, 31] and
regularization techniques [26] are fundamental. There has been much work and progress
(for example, [19, 20, 12]), but di�culties remain in working with complex, real images.
Typically, prior probabilities or constraints are made-up, rather than learned. A general
machinery for a learning-based solution to low-level vision problems would have many
applications.

A second research theme has been to learn the statistics of natural images. Researchers
have related those statistics to properties of the human visual system [23, 2, 30], or have
used statistical methods with biologically plausible image representations to analyse and
synthesize realistic image textures [11, 6, 34, 30]. These methods may help us understand
the early stages of representation and processing, but unfortunately, they don't address
how a visual system might interpret images, i.e., estimate the underlying scene.

We want to combine those two themes of scene estimation and statistical learning.
We study the statistical properties of a synthetically generated, labelled, visual world of
images with scenes, to learn how to infer scenes from images. Our prior probabilities can
be rich ones, learned from training data.

Several researchers have applied related learning approaches to low-level vision prob-
lems, but restricted themselves to linear models [17, 13], too weak for many applications.
We gather full statistics on local regions of images and scenes. We ask whether a visual sys-
tem can interpret an image if it models (1) the probability that any local scene generated
the local image, and (2) the probability that any local scene neighbors any other. The �rst
probabilities allow initial scene estimates; the second allow the estimates to propagate.

The resulting method applies the Bayesian machinery of graphical models [24, 16] to
low-level vision. We were inspired by the work of Weiss [32], who pointed out the speed
advantage of Bayesian methods over conventional relaxation methods for propagating local
measurement information.

Our method uses three approximations: the Markov assumption, a factorization ap-
proximation, and sampling. It is a general machinery that should apply to various prob-
lems. We show it working for three examples: (1) joint gaussian processes, where we can
compare our factorization approximation with the true answer, (2) estimating missing
image details, and (3) estimating motion.

2 Markov network

For given image data, y, we seek to estimate the underlying scene, x (we omit the vector
symbols for notational simplicity). We take a Bayesian approach [3]. We �rst calculate the
posterior probability, P (xjy), using Bayes rule, P (xjy) = cP (yjx)P (x). For this analysis,
we ignore the normalization, c = 1

P (y)
, a constant over x. P (yjx) is the likelihood; P (x) is

2



the prior. Under two common loss functions [3], the best scene estimate, x̂, is the mean
(minimum mean squared error, MMSE) or the mode (Maximum a posteriori, MAP) of
the posterior probability.

In general, x̂ can be di�cult to compute [19] without approximations. The �rst of our
three approximations is the Markov assumption. We divide both the image and scene into
patches, and assign one node of a Markov network [24, 16] to each patch. We connect
each scene patch to its corresponding image data patch, as well as to its nearest neighbors,
see Fig. 1a). (We also allow connections to scene or image nodes at di�erent resolutions
or orientations). The connections indicate statistical dependencies. This network implies
that knowing the scene at any position: (1) provides all the information about the image
there (it has the only link to y), and (2) gives some information about nearby scenes and
images (by links to nearby scene neighbors). We will call problems with this property
low-level vision problems.

(a) (b)

Figure 1: (a) Markov network for vision problems. Observations, y, have underlying scene

explanations, x. Connections between nodes of the graphical model indicate statistical

dependencies. (b) Con�guration of nodes used in explanation of factorization method,

Sect. 2.1.

This network description simpli�es the posterior probability [10, 9], and will allow es-
timating x̂ everywhere using only local operations. Solving a Markov network involves a
learning phase, where the parameters of the network connections are learned from training
data, and an inference phase, when the scene corresponding to particular image data is
estimated. Even using the Markov assumption, �nding the posterior probability distribu-
tion for the grid-structured Markov network is computationally expensive. A variety of
approximations have been proposed [10, 16].

If a network has no loops, the Markov assumption allows the posterior probability to
factorize in a useful way [24, 21, 32, 16, 8]. Our second approximation will be to solve
our loopy Markov network as if there were no loops, both during learning and inference.
Thus, in Sect. 2.1, we �rst derive the factorization rules for networks without loops. In
Sect. 3, we study the validity of our \factorization approximation" applied to networks
with loops.

2.1 Factorization

There are di�erent ways to factorize the posterior probability of a Markov network [24,
21, 32, 16, 8]. In a non-loopy network, they all give the same answer. We use a simple,
valid factorization that we believe to be new, resulting in interpretable messages passed
between nodes.

At each iteration, the scene estimate xj at each node, j, is optimal, given the obser-
vations that node j has heard from. We derive our message passing algorithm by �rst

3



considering the optimal estimate, then �nding what messages need to be passed to allow
its computation.

Before any messages are passed, scene node j has only heard from the observa-
tion yj. The MMSE estimate is the mean of the corresponding posterior, P (xjjyj) =
cP (yj jxj)P (xj) (c is a normalization constant). We call P (yjjxj) the local likelihood, and
P (xj) the local prior.

At the next iteration, scene node j receives messages from its connecting scene nodes,
say k and l (Fig. 1b). It has then \heard" from observations yj, yk, and yl, since scene
nodes k and l heard from observations yk, and yl on the previous iteration. The MMSE
estimate for xj is therefore the mean of the posterior probability, given the data it has
heard from: P (xj jyj; yk; yl) = cP (yj; yk; yljxj)P (xj). We call P (yj; yk; yljxj) a region

likelihood, the likelihood of a region of image data, given a scene node.
Now we exploit the Markov structure. If the network has no loops, then yj, yk, and

yl are conditionally independent, given xj, because they all link to xj by independent
paths.Thus we have P (yj; yk; yljxj) = P (yjjxj)P (ykjxj)P (yljxj). We see that if the mes-
sages that scene nodes k and l pass to scene node j were the region likelihoods P (ykjxj)
and P (yljxj), then node j could compute the appropriate posterior probability by multi-
plying together the region likelihoods passed from its neighbors, the local likelihood, and
the local prior. The passed messages should be those region likelihoods.

If we knew how to calculate the region likelihood to pass to a neighbor at the next
iteration, the algorithm would be complete. What message should node j pass to node l?
It should pass the region likelihood (given xl) of the observations that node j has heard
from, but node l has not: P (yj; ykjxl). We know this region likelihood, but given node
xj: P (yj ; ykjxj) = P (yjjxj)P (ykjxj). (This is the local likelihood times the messages from
all incoming nodes except the node being sent a message.) We want to swap xl for xj in
P (yj; ykjxj). If we multiply by the probability P (xj jxl) (\near given far"), and recognize
that the Markov assumption lets us add conditioning on xl, we have

P (yj; ykjxj)P (xj jxl) = P (yj ; ykjxj ; xl)P (xj jxl)

= P (yj ; yk; xj jxl): (1)

We then marginalize over xj to �nd the desired region likelihood, P (yj; ykjxl). That is the
message that node j passes to node l.

Summarizing this argument, after each iteration, the MMSE estimate at node j, x̂j is

x̂j =

Z
xj

xjP (xj)P (yj jxj)
Y
k

Lkj; (2)

where k runs over all scene node neighbors of node j. ~Llk is the region likelihood, given
xj, of all the observations that node k communicates to node j. We calculate Lkj from:

Lkj =

Z
xk

P (xkjxj)P (ykjxk)
Y
l 6=j

~Llk; (3)

where ~Llk is Llk from the previous iteration. The initial ~Llk's are 1. To learn the net-
work parameters, we measure P (xj), P (yjjxj), and P (xkjxj), directly from the synthetic
training data.

4



For a discrete probability representation, we replace the integral signs with sums over
the discrete states of the random variables. To use the MAP estimator, instead of MMSE,
the above arguments hold, with two changes (as with [33]): the \

R
xj

xj" in Eq. (2) becomes

argmaxxj , and \
R
xk
" in Eq. (3) becomes maxxk .

2.2 Loops

If the Markov network contains loops, then the di�erent region likelihoods arriving at a
node are not guaranteed conditionally independent, and the above factorization may not
hold. Both learning and inference then require more computationally intensive methods.
There are various exact or approximate methods to choose from [4, 16, 8].

We have found good results by using a somewhat non-standard approximation: we
apply the factorized learning and propagation rules to our very loopy network. Note the
appeal of doing so. We can learn the network parameters, P (xj), P (yj jxj), and P (xkjxj),
by measuring the statistics at a node and its local neighbors. Scene inference from image
data involves only local computations, Eq. (3).

Others have applied the factorized propagation rules during inference to networks of
one or two loops [8, 22, 33] and obtained good results. Weiss provides theoretical argu-
ments why this works for one-loop networks [33]. We want to know: is the approximation
accurate for our (larger) networks? Does it work for estimating the network parameters
(learning) as well as for propagation (inference)?

3 Example 1: Joint Gaussian Processes

We study these questions with gaussian random processes. We describe the joint proba-
bilities of all the image and scene vectors as a multi-dimensional gaussian. It is possible
to design a covariance matrix which respects the statistical dependencies de�ned by the
Markov network [16]. Thus, we can solve the problem two ways: (1) exactly, by condition-
ing the joint gaussian on a set of observations and �nding the posterior probability, and
(2) using our factorization approximation. We learn the conditional probabilities needed
for propagation, P (yjjxj) and P (xj jxk), by marginalizing the joint gaussian.

Because our experience with real images shows convergence in few iterations, we per-
formed our numerical experiments on relatively small grids of 3x3 and 4x4 nodes. We
used randomized covariance matrices, constrained to be translationally invariant. The
synthetic image data was drawn from the true joint gaussian (simulating seeing another
example from the world).

Figure 2 shows an example showing typical convergence results. The dotted red curves
are the true marginalized posterior at each node. The isolated gray curves are the priors;
the darker curves show the belief at di�erent iterations, ending up overlaid on the true pos-
terior's red curve. In our experiments, after 5 iterations (typical for our applications), 87%
of the runs were within 0.2 posterior probability standard deviations of the true posterior
mean, x̂; 71% were within 0.1 std. dev. On average, the factorization approximation gives
a very good solution to the true posterior even for loopy networks, for jointly gaussian
processes. This result encourages us to test the method on real scenes.

5



Figure 2: Showing good factorization approximation performance.

4 Probability Representations

Before continuing to applications, we need to choose a representation for the probabilities
of Eqs. (2) and (3). A discrete representation allocates a discrete set of symbols to images
and scenes. Propagation during inference is fast; Eq. (3) reduces to vector and matrix
operations. However, the learning phase poses a problem. One needs to measure P (yj jxj)
and P (xkjxj), using image/scene and scene/neighbor co-occurance histograms. In practise,
if the symbols are few enough to measure the co-occurance histograms well from the
training data, then that symbol alphabet will be too coarse to �t the image well.

This might argue for a continuous representation. One could represent the probabilities
as mixtures of gaussians, and the images and scenes as vectors of real values. This approach
allows images and scenes to be �t well, and the learning phase is feasible, using EM [5].
But now propagation is di�cult: the mixtures must be multiplied. This requires a pruning
and merging step, to avoid a runaway of gaussians in the product of mixtures, making
inference slow.

We developed a hybrid approach, which we call sampled inference. We use a continu-

ous representation during the learning phase, which allows us to �t real-world image data
well, and learn the required probabilities. We use a discrete representation during infer-
ence, which allows fast message propagation. (We were inspired by other sample-based
algorithms [14, 6].) This is the third of our three approximations.

For the image observation at each node, we form a \line-up of suspects"{ a collection
of scene values, each of which accounts for the observation. We search the training data
for the k (usually 10) closest observations to the image at this node. The corresponding
scenes from the training data forms the group of suspects1. We focus our computation to
those scenes that explain the local image.

In this discretization, the conditional probabilities, P (xj jxk), used in propagation,

Eq. (3), become linking matrices. They are the ratio of two mixtures of gaussians,
P (xj ;xk)

P (xk)
,

evaluated at the outer product of all xj scenes with all xk scenes. (Evaluating this ratio
only at valid scenes also avoids the singularity problems of computing the conditional
everywhere).

This method reduced propagation times for the super-resolution problem from 24 hours
to 2 minutes, with no quality reduction. However, each image still requires 45 minutes to
initialize all the linking matrices. We are studying speed-up approximations.

1One could also gather the candidate scenes at node j by sampling from the mixture �t to P (yj ; xj),

evaluated at the observation yj

6



5 Example 2: super-resolution

For the super-resolution problem, the input \image" is a low-resolution image. The \scene"
to be estimated is a higher resolution image. A visually appealing solution to this problem
would allow image data to be treated in a resolution-independent manner. Applications
could include enlargment of digital or �lm photographs, upconversion of video from NTSC
format to HDTV, or image compression.

At �rst, the task may seem impossible, after all, the high resolution data is not there.
However, we can see edges in the low-resolution image that we know should remain sharp
at the next resolution level. Based on the successes of recent texture synthesis methods
[11, 6, 34, 30], we might expect to handle textured areas well, too.

Others [29] have used a Bayesian method, making-up the prior probability. In con-
trast, the Markov network will build its prior from large amounts of training data, and
achieves better results. Among the non-Bayesian methods, fractal image representation
[27] (Fig. 5c) only gathers training data from the one image, while selecting the nearest
neighbor from training data [25] misses important spatial consistancy constraints (Fig. 3c).

We apply the Markov network as follows. The \image" we start from is a small
image that has been linearly interpolated to twice the pixel resolution. The \scene" to be
estimated is the high frequency image one needs to add-in to create the true image at the
higher pixel resolution.

By downsampling (with anti-aliasing) training images, we can construct a training set
of blurred and sharp image pairs. To ease the modeling burden, we bandpass �lter the
blurred image, and use its local contrast [15] to normalize both itself and the desired output
highpassed image, because we believe their relationship should be contrast independent.
We undo that normalization after estimation.

We extracted center-aligned 7x7 and 3x3 pixel patches from the images and scenes
(the image patches overlapped). Applying PCA [5] to the training set, we summarize each
3-color patch of image or scene by a 9-d vector. From 40,000 image/scene pair samples,
we �t 15 cluster gaussian mixtures to the local probabilities, assuming spatial translation
invariance.

To infer the high frequency scene for a given image, we found the 10 training samples
closest to the image data at each node (patch). The 10 corresponding scenes are the

\suspects" for that node. We evaluated
P (xj ;xk)

P (xk)
at the 100 scene points (10 xj � 10 xk

points) to form a unique linking matrix between scene neighbors. We propagated the
probabilities by Eq. (3). We found more visually pleasing reconstructions by using a
maximum likelihood reconstruction (omitting the conservative local prior in Eq. (2).

Figure 3 shows the relevant full-frequency and bandpassed images, trained on simple
world of random variations of the scene elements depicted. As with all these super-
resolution examples, the algorithm converges after 2 or 3 iterations. Figure 4 applies our
algorithm to a very low-resolution input image, 48x55 pixels, (zooming twice) showing
that the results properly reect the training data. Figure 5 shows a higher resolution test
image (a, 70x70). The resulting twice zoomed estimate is very good, (d) and (e). There is
little di�erence between using a training set taken at the same time as the test image (d),
and using a set of unrelated pictures (e). Both results look much better than competing
methods, cubic spline interpolation in Adobe Photoshop (b), and fractal expansion (c).

7



(a)
(b) (c) (d) (e) (f) (g)

Figure 3: (a) Sub-sampled input. Bandpassed frequency components follow. (b) The true

high freqs. (c) Nearest neighbor: use scene patch corresponding to the nearest image patch

in the training data. Many high freq. scenes render to the same low-res image, giving

choppiness. (d) Markov network inference MAP solution, iteration 0 (no message passing).

(e), (f), and (g): iterations 1, 2, and 20. Note the line continuations over iterations 0, 1,

and 2. Note the stable and spatially consistent solution after few iterations.

(d) noise (e) rectangles (f) generic

(a) Actual (b) Input (mag. x4) (c) Cubic spline (g) Train: noise (h) Train: rects (i) Train: generic

Figure 4: Super-resolution example. (a) was blurred, and subsampled by 4 in each dimen-

sion to yield the low-resolution input, (b). Cubic spline interpolation to full resolution in

Adobe Photoshop loses the sharp edges, (c). We recursively zoomed (b) up two factors of

two using the Markov network trained on 10 images from 3 di�erent \worlds": (d) random

noise, (e) colored rectangles, and (f) a generic collection of photographs. The estimated

high resolution images, (g), (h), and (i), respectively, reect the statistics of each training

world.

8



(a) Input (magni�ed x4) (b) Cubic spline (c) Fractal

(d) \Picnic" training set (e) \Generic" training set (f) Actual full-resolution

Figure 5: (a) Low-resolution input image. (b) Cubic spline 400% zoom in Adobe Pho-

toshop. (c) Zooming luminance by public domain fractal image compression routine [27],

set for maximum image �delity (chrominance components were zoomed by cubic spline, to

avoid color artifacts). Both (c) and (d) are blurry, or have serious artifacts. (d) Markov

network reconstruction using a training set of 10 images taken at the same picnic, none of

this person. This is the best possible fair training set for this image. (e) Markov network

reconstrution using a training set of generic photographs, none at this picnic or of this per-

son, and fewer than 50% of people. The two Markov network results show good synthesis

of hair and eye details, with few artifacts, but (d) looks slightly better (see brow furrow).

Edges and textures seem sharp and plausible. (f) is the true full-resolution image.

9



6 Example 3: Motion Estimation

To show the breadth of the technique, we apply it to the problem of motion estimation.
The scene to be estimated are the projected velocities of moving objects. The image data
are two successive image frames. We made this application before we developed sampled
inference, and we used a discrete representation for both learning and inference [7].

Luettgen et.al. [21] applied a related message-passing scheme in a multi-resolution
quad-tree network to estimate motion, using gaussian probabilities. While the network did
not contain loops, its structure generated artifacts along quad-tree boundaries, arti�cial
statistical boundaries of the model.

To show the algorithm working on simple test cases, we generated a synthetic world
of moving blobs, of random intensities and shapes. We wrote a tree-structured vector
quantizer, to code 4 by 4 pixel by 2 frame blocks of image data for each pyramid level into
one of 300 codes for each level, and likewise for scene patches.

During training, we presented approximately 200,000 examples of irregularly shaped
moving blobs of a contrast with the background randomized to one of 4 values. Using
co-occurance histograms, we measured the relevant local statistics for Eqs. (2) and (3).

Figure 7 shows six iterations of the inference algorithm (Eqs. 2 and 3) as it con-
verges to a good estimate for the underlying scene velocities. The local probabilities we
learned, P (x), P (yjx), and P (xnjx), lead to �gure/ground segmentation, aperture prob-
lem constraint propagation, and �lling-in (see caption). The resulting inferred velocities
are correct within the accuracy of the vector quantized representation.

Figure 6: (a) First of two frames of image data (in gaussian pyramid), and (b) vector

quantized. (c) The optical ow scene information, and (d) vector quantized. Large arrow

added to show small vectors' orientation.

7 Discussion

The sampled inference propagation scheme has similarities with relaxation labelling [28]:
both update a vector of beliefs through linking matrix connections to neighbors. How-
ever, the message update algorithm is quite di�erent (the relaxation labelling algorithm is
heuristically derived), as is the algorithm behavior: belief propagation converges quickly,
while relaxation labelling convergence is typically slow [18].

The local probabilities our method learns, P (y), P (yjx), and P (xjxn), are powerful.
They embody the particular vision algorithm. These probabilities, learned in the same
way, but for di�erent problems, can lead to very di�erent propagation behavior, depending
on the problems. For super-resolution, image contours often extend along the direction
of the contour, Fig. 3. For motion estimation, the �lling-in travels perpendicularly to the

10



Figure 7: The most probable scene code for Fig. 6b at �rst 6 iterations of Bayesian belief

propagation. (a) Note initial motion estimates occur only at edges. Due to the \aperture

problem", initial estimates do not agree. (b) Filling-in of motion estimate occurs. Cues for

�gure/ground determination may include edge curvature, and information from lower res-

olution levels. Both are included implicitly in the learned probabilities. (c) Figure/ground

still undetermined in this region of low edge curvature. (d) Velocities have �lled-in, but

do not yet all agree. (e) Velocities have �lled-in, and agree with each other and with the

correct velocity direction, shown in Fig. 6.

direction of the object contour, Fig. 7. In both cases, the behavior was appropriate to the
problem, and learned by the same general machinery.

8 Summary

We have applied a Bayesian learning method to the problem of scene estimation. We treat
patches of images and scenes as nodes in a Markov network. From synthetic training ex-
amples, we learn the statistical relationship between local images and scenes, and between
neighboring scenes.

A factorization approximation lets us learn the network parameters simply, and prop-
agate local information by local update rules. Monte Carlo simulations show that, for
random draws from gaussian processes, the estimated posterior accurately approximates
the true posterior of the Markov network.

The local probabilities learned from the training data form the heart of the vision
algorithm: the local prior, the local likelihood, and the joint probability for neighboring
scenes. We identify the messages passed between nodes in our scheme as region likelihoods.
These local probabilities can \learn" di�erent propagation behavior, appropriate to each
algorithm.

The technique of \sampled inference" computes the posterior probability only for a
group of candidate scenes which all satisfy the image data. In practise, this speeds up the

11



algorithm without sacri�cing quality.
The main approach of this paper{propagate local estimates to �nd a best, global

solution{ has a long tradition in computational vision [1, 28, 12, 26]. Here, we apply ma-
chine learning techniques to learn the potentially rich details governing the initial estimates
and the propagation.

Applied to super-resolution, this method gives results that we believe are the state of
the art. Applied to motion estimation, the same method resolves the aperture problem
and appropriately �lls-in motion over a �gure. The technique may apply to related vi-
sion problems as well, such as line drawing interpretation, or distinguishing shading from
reectance.

AcknowledgementsWe thank E. Adelson, A. Blake, J. Tenenbaum, P. Viola, and Y. Weiss

for helpful discussions.

References

[1] H. G. Barrow and J. M. Tenenbaum. Computational vision. Proc. IEEE, 69(5):572{595,

1981.

[2] A. J. Bell and T. J. Senjowski. The independent components of natural scenes are edge �lters.

Vision Research, 37(23):3327{3338, 1997.

[3] J. O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

[4] J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussion).

J. Royal Statist. Soc. B, 36:192{326, 1974.

[5] C. M. Bishop. Neural networks for pattern recognition. Oxford, 1995.

[6] J. S. DeBonet and P. Viola. Texture recognition using a non-parametric multi-scale statistical

model. In Proc. IEEE Computer Vision and Pattern Recognition, 1998.

[7] W. T. Freeman and E. C. Pasztor. Learning to estimate scenes from images. In M. S. Kearns,

S. A. Solla, and D. A. Cohn, editors, Adv. Neural Information Processing Systems, volume 11,

Cambridge, MA, 1999. MIT Press.

[8] B. J. Frey. Graphical Models for Machine Learning and Digital Communication. MIT Press,

1998.

[9] D. Geiger and F. Girosi. Parallel and deterministic algorithms from MRF's: surface recon-

struction. IEEE Pattern Analysis and Machine Intelligence, 13(5):401{412, May 1991.

[10] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restora-

tion of images. IEEE Pattern Analysis and Machine Intelligence, 6:721{741, 1984.

[11] D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In ACM SIG-

GRAPH, pages 229{236, 1995. In Computer Graphics Proceedings, Annual Conference Series.

[12] B. K. P. Horn. Robot vision. MIT Press, 1986.

[13] A. C. Hurlbert and T. A. Poggio. Synthesizing a color algorithm from examples. Science,

239:482{485, 1988.

[14] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. In

Proc. European Conf. on Computer Vision, pages 343{356, 1996.

[15] B. Jahne. Digital Image Processing. Springer-Verlag, 1991.

12



[16] M. I. Jordan, editor. Learning in graphical models. MIT Press, 1998.

[17] D. Kersten, A. J. O'Toole, M. E. Sereno, D. C. Knill, and J. A. Anderson. Associative learning

of scene parameters from images. Applied Optics, 26(23):4999{5006, 1987.

[18] J. Kittler and J. Illingworth. Relaxation labelling algorithms{a review. Image and Vision

Computing, (11):206{216, 1985.

[19] D. Knill and W. Richards, editors. Perception as Bayesian inference. Cambridge Univ. Press,

1996.

[20] M. S. Landy and J. A. Movshon, editors. Computational Models of Visual Processing. MIT

Press, Cambridge, MA, 1991.

[21] M. R. Luettgen, W. C. Karl, and A. S. Willsky. E�cient multiscale regularization with

applications to the computation of optical ow. IEEE Trans. Image Processing, 3(1):41{64,

1994.

[22] D. J. C. Mackay and R. M. Neal. Good error{correcting codes based on very sparse matrices.

In Cryptography and coding { LNCS 1025, 1995.

[23] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive �eld properties by learning

a sparse code for natural images. Nature, 381:607{609, 1996.

[24] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-

gan Kaufmann, 1988.

[25] A. Pentland and B. Horowitz. A practical approach to fractal-based image compression. In

A. B. Watson, editor, Digital images and human vision. MIT Press, 1993.

[26] T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature,

317(26):314{139, 1985.

[27] M. Polvere. Mars v. 1.0, a quadtree based fractal image coder/decoder, 1998.

http://inls.ucsd.edu/y/Fractals/.

[28] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation operations.

IEEE Trans. Systems, Man, Cybern., 6(6):420{433, 1976.

[29] R. R. Schultz and R. L. Stevenson. A Bayesian approach to image expansion for improved

de�nition. IEEE Trans. Image Processing, 3(3):233{242, 1994.

[30] E. P. Simoncelli. Statistical models for images: Compression, restoration and synthesis. In

31st Asilomar Conf. on Sig., Sys. and Computers, Paci�c Grove, CA, 1997.

[31] R. Szeliski. Bayesian Modeling of Uncertainty in Low-level Vision. Kluwer Academic Pub-

lishers, Boston, 1989.

[32] Y. Weiss. Interpreting images by propagating Bayesian beliefs. In Adv. in Neural Information

Processing Systems, volume 9, pages 908{915, 1997.

[33] Y. Weiss. Belief propagation and revision in networks with loops. Technical Report 1616, AI

Lab Memo, MIT, Cambridge, MA 02139, 1998.

[34] S. C. Zhu and D. Mumford. Prior learning and Gibbs reaction-di�usion. IEEE Pattern

Analysis and Machine Intelligence, 19(11), 1997.

13


