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1 Introduction

Along with the surge of Markov chain Monte Carlo methods in the scientific community, the

Metropolis algorithm with its variations soon became one of the most popular MCMC techniques,

in fact it appears on the top of the list of 10 most popular algorithms in a recent review (Sullivan,

2000). In this paper, we study a special case of the Metropolis algorithm – the Independence

Metropolis Sampler (IMS), for finite state spaces. The IMS is often used in designing compo-

nents of more complex Markov Chain Monte Carlo algorithms. Using an acceptance-rejection

mechanism described in section 3, the IMS simulates a Markov chain with target probability

p = (p1, p2, . . . , pn), by drawing samples from a more tractable probability q = (q1, q2, . . . , qn).

In the last two decades a considerable number of papers have been devoted to studying prop-

erties of the IMS. Without trying to be comprehensive, we shall briefly review some of the results

that were of interest to us. For finite state spaces, Diaconis (1992) and Liu (1996) proved various

upper bounds for the total variation distance between updated and target distributions for the

IMS. They showed that the convergence rate of the Markov chain is upper bounded by a quantity

that depends on the second largest eigenvalue:

λslem = 1−min
i
{ qi

pi
}.

A complete eigenanalysis of the IMS kernel was performed by Liu (1996). Smith and Tierney

(1996) have extended Liu’s results to obtain exact m-step transition probabilities for any m for

both discrete and continuous state spaces. In the continuous case, if denoting

r∗ = 1− inf
x
{q(x)
p(x)

},

they showed that if r∗ is strictly less than 1, the chain has a geometric rate of convergence, while

if r∗ is equal to 1, the convergence is not geometric anymore. Similar results were obtained by

Mengersen and Tweedie (1994). These results show that the convergence rate of the Markov chain

for the IMS is subject to a worst-case scenario. For the finite case, the state corresponding to

the least probability ratio qi/pi is determining the rate of convergence, that is just one state from

a potentially huge state space decides the rate of convergence of the Markov chain. A similar

situation occurs in continuous spaces. To illustrate it let us consider the following simple example.

Example: Let q and p be two Gaussians having equal variances and means slightly shifted.

Then q, as proposal distribution, will approximate the target p very well. However, it is easy
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to see that infx{q(x)/p(x)} = 0 and therefore the IMS algorithm will not have a geometric rate

of convergence. This dismal behavior motivated our interest for studying the mean first hitting

time as a measure of ”speed” for Markov chains. It is particularly appropriate when dealing with

stochastic search and optimization algorithms, when the focus could be on finding individual states

rather than on the global convergence of the chain.

The concept of first hitting times (f.h.t) has been widely used in various areas stretching from

search problems in artificial intelligence (Pearl, 1995) or sensitivity analysis (Cho, 1999) to finance

problems (Sodal, 2001).

In this paper, we present new results related to the f.h.t for the IMS. These results are expressed

mostly in terms of the eigenvalues of the transition kernel.

• We start with reviewing some formulas for first hitting times. Then, we derive a formula

for the mean f.h.t for ergodic kernels in terms of its eigen-elements and show that when the

starting distribution of the chain is equal to one of the rows of the transition kernel, the

mean f.h.t will have a particularly simple form.

Using this result together with the eigen-analysis of the IMS kernel (briefly reviewed in section 3),

we prove the main result, which gives an analytical formula for the mean f.h.t of individual states,

as well as bounds.

• We show that, if in running an IMS chain the starting distribution is the same as the

proposal distribution q, then after ordering the states according to their probability ratio,

and if denoting by λi the ith eigenvalue of the transition kernel, we have:

i) E[τ(i)] =
1

pi(1− λi)

ii)
1

min{qi, pi} ≤ E[τ(i)] ≤ 1
min{qi, pi}

1
1− ‖p− q‖TV

,

where τ(i) stands for the f.h.t of i, and ‖p−q‖TV denotes the total variation distance between

the proposal and target distributions.

The result can be extended from individual sets to some subsets of state space, as we shall see in

section 3. We then illustrate these findings through a simple example.

• We conclude the section by proving that when starting from j 6= i, the mean f.h.t of i are

decreasing, with the smallest being equal to the mean f.h.t of i when starting from q:
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If q1/p1 ≤ q2/p2 ≤ . . . ≤ qn/pn then :

E1[τ(i)] ≥ E2[τ(i)] ≥ . . . ≥ Ei−1[τ(i)] ≥ Ei+1[τ(i)] = . . . = En[τ(i)] = E[τ(i)], ∀i.

Section 3.5 is devoted to studying the tail distribution and the variance of the f.h.t for the IMS.

• We first give an exponential upper bound on its tail distribution: P (τ(i) > m) ≤ exp{−m(piw1)},
∀m > 0.

• Then, we analyze the variance of the f.h.t using similar techniques as for the expectation.

We find that, if Z denotes the fundamental matrix associated with the IMS kernel then:

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

, ∀i.

We also prove various bounds on the variance.

Finally, in section 4 we show how a special class of Metropolis-Hastings algorithms can outperform

the IMS in terms of mean first hitting times.

• We prove that if Q is a stochastic proposal matrix satisfying Qji/pi ≥ 1, Qij/pj ≥ 1, ∀i,∀j 6=
i, and R is the corresponding Metropolis-Hastings kernel then, for any initial distribution q,

EQ
q [τ(i)] ≤ 1 +

1− qi

pi
,

and as a corollary,

EQ
q [τ(i)] ≤ 1

min{qi, pi} ≤ EIMS
q [τ(i)] ∀i,

where we denoted by EIMS
q [τ(i)] the mean f.h.t of the IMS kernel associated to q and p.

2 General f.h.t for finite spaces

Consider an ergodic Markov chain {Xm}m on the finite space Ω = {1, 2, . . . , n}. Let K be the

transition kernel, p its unique stationary probability, and q the starting distribution. For each

state i ∈ Ω, the first hitting time is defined below.

Definition 2.1 The first hitting time for a state i is the number of steps for reaching i for the

first time in the Markov chain sequence, τ(i) = min{m ≥ 1 : Xm = i}.
E[τ(i)] is the expected first hitting time of i for the Markov chain governed by K.
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Let {λj}0≤j≤n−1 be the eigenvalues of K with the corresponding right and left eigenvectors

vj , uj such that U ′V = I, where U ′ = {uk}k, V = {v′k}k. As K is a stochastic matrix with

stationary probability p, we have λ0 = 1 and we can consider v0 = 1 and u0 = p respectively.

Moreover, all the eigenvalues have real values and |λj | < 1, ∀j > 0.

There are two ways of looking at the mean and variance of the f.h.t.

2.1 Inverse matrix approach

Let i be the target state and let us denote by K−i the (n − 1) × (n − 1) matrix obtained from

K by deleting the i-th column and row, that is, K−i(k, j) = K(k, j), ∀k 6= i, j 6= i. Also let

q−i = (q1, ..., qi−1, qi+1, ..., qn). Then it is facile to show that P (τ(i) > m) = q−iKm−1
−i 1, where

1 = (1, 1, ..., 1)′ is a vector of ones. This leads to the following formula for the expectation:

Eq[τ(i)] = 1 + q−i(I−K−i)−11, (2.1)

where I denotes the identity matrix. The existence of the inverse of I − K−i is assured by the

substochasticity of K−i and the irreducibility of K (Bremaud, 1999).

Let us note that this is just a particular case of the more general formula for the mean f.h.t of

a subset A of Ω. That is, more generally,

Eq[τ(A)] = 1 + q−A(I−K−A)−11, ∀A ⊂ Ω. (2.2)

To be thorough, we give the corresponding formula for the variance, with the mention that we

shall not use it in our analysis.

V ar[τ(i)] = 2q−i(I−K−i)−21− q−i(I−K−i)−11− [q−i(I−K−i)−11]2, ∀i ∈ Ω. (2.3)

2.2 The fundamental matrix approach

The fundamental matrix Z is defined to be Z = (I − K + P )−1 or, equivalently, Z = I +
∑

k≥1 (Kk − P ), where P denotes the matrix having all rows equal to p. We summarize below

some of its properties:

i) (I−K)Z = Z(I −K) = I− P

ii) PZ = P, Z1 = 1.

Also, it is noted that Z and K share the same system of eigenvectors, while the eigenvalues

of Z are β0 = 1, βj = 1/(1 − λj), ∀1 ≤ j ≤ n − 1. To prove this, we note that (I −K + P )vk =
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vk −Kvk + Pvk = (1 − λk)vk, ∀k > 0, where we used u′0vk = 0, or Pvk = 0 and also that vk is a

right eigenvector of K corresponding to the eigenvalue λk. Now, as Z = (I−K + P )−1, it follows

that vk = (1−λk)Zvk or equivalently, Zvk = βkvk, k > 0. For k = 0 we use ii) from above. As the

right eigenvectors for Z and K coincide then the left eigenvectors will also be the same as it can

also be easily seen by repeating the above computations for uk.

Mean f.h.t can be described using the fundamental matrix in the following way. Let us denote

by Ej [τ(i)] the mean f.h.t of i when starting from state j. Then, for all j 6= i, one has

Ej [τ(i)] = (Zii − Zji)/pi. (2.4)

When we start from q instead from a fixed state j, we have:

Eq[τ(i)] = 1 +
∑

j 6=i

qjEj [τ(i)] = 1 +
1
pi

∑

j 6=i

qj(Zii − Zji), (2.5)

where the 1 corresponds to the first step of the chain. For the rest of the paper we shall drop the

subscript q from the expectation whenever this will not create any notation confusion.

The variance of the f.h.t can also be derived from the fundamental matrix Z. As before, the

formulas refer to the chain that starts from a fixed state j. It is known that the second moment

of τ(i), when starting from j, is determined by:

Ej [τ(i)]2 =
2
pi

(Z2
ii − Z2

ji)−
1
pi

(Zii − Zji) +
2
p2

i

Zii(Zii − Zji), ∀j 6= i, (2.6)

where the first term refers to the matrix Z2. Knowing this, it is immediate that the second moment

of the f.h.t when starting from q is just:

E[τ(i)2] = 1 +
2
pi

∑

j

qj(Z2
ii − Z2

ji)−
1
pi

∑

j

qj(Zii − Zji) +
2Zii

p2
i

∑

j

qj(Zii − Zji). (2.7)

For a detailed account on the properties of the fundamental matrix Z and its connections with

hitting times refer to Kemeny (1976).

Remark: We need to note that in our notation Ej [τ(i)] is not the same as Eη[τ(i)] for η = {δjl}l.

In Ej [τ(i)] we do not count starting from j as one step of the chain, while in Eη[τ(i)] we would

have to count it for consistence. For our purposes we shall only use Ej [τ(i)] per se and not as a

particular case of Eq[τ(i)].

It is worth showing briefly how formulas like (2.4) or (2.6) can be obtained. We shall illustrate

the method for (2.4).



Romeo Maciuca and Song-Chun Zhu 7

From (2.1) it follows that we need to compute (I − K−i)−11. With the hindsight that the

inverse will depend on Z let us compute (I −K)(aZ + b1′1) where a, b will be determined latter

on. Using i) and K1 = 1, we get (I−K)(aZ + b1′1) = a(I− P ). Now if we consider b such that

(aZ + b1′1)ii = 0, it will follow that

(I−K−i)(aZ + b1′1)−i = [(I−K)(aZ + b1′1)]−i = a(I− P )−i.

Writing this equality only for column i we get (I − K−i)(aZ·i + b1)−i = a(δi − pi1)−i or

equivalently,

(I−K−i)−11 = − b

api
1− Z·i

pi
.

But b is given by (aZ+b1′1)ii = 0 which leads to b = −aZii so finally, (I−K−i)−11 = Zii/pi−Z·i/pi

which is exactly (2.4).

As a matter of notation we have denoted by Z·i the ith column of Z and we used the subscript

−i to indicate that we eliminated row and column i (for matrices) or just component i for vectors.

For simplifying the notation we did not subscript Z·i with −i in the last two statements where it

appears. We also used I to stand for the identity matrix for both order n and order n− 1.

The second moment of the f.h.t could be determined in the same way, by computing (I −
K)(aZ2+bZ+c1′1) for a, b, c such that (aZ2+bZ+c1′1)ii = 0, and then equating (I−K)−i(aZ2+

bZ + c1′1)−i = (Zii−Z·i)/pi to get (I−K−i)−21. The same method would work for any moment

of the f.h.t, but we shall not go further on this route.

2.3 The mean f.h.t for the general case

Here, we shall derive a formula for the expectation of the f.h.t in terms of its eigenvalues and eigen-

vectors. Let us expand the eigenvectors by denoting vk = {vkl}0≤l≤n−1 and uk = {ukl}0≤l≤n−1.

Proposition 2.1 Using the same notations as before, for any ergodic kernel K and any initial

distribution q, the mean first hitting time of i ∈ Ω is

E[τ(i)] = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki(vki −
∑

l

qlvkl).

In particular, if q is chosen to be row jth of K for arbitrary j ∈ Ω, then

E[τ(i)] =
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkj) +
δij

pi
.
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Proof: We use (2.5) which gives

E[τ(i)] = 1 +
1
pi

∑

j 6=i

qj(Zii − Zji). (2.8)

Knowing the complete eigenstructure of Z, we can apply the spectral decomposition theorem, to

get:

Zli =
n−1∑

k=0

βkvkluki = v0lu0i +
n−1∑

k=1

1
1− λk

vkluki = pi +
n−1∑

k=1

1
1− λk

vkluki,∀l, i.

Therefore, we can compute Zii − Zji in terms of eigen-elements of K:

Zii − Zji =
n−1∑

k=1

1
1− λk

(vki − vkj)uki. (2.9)

Combining (2.9) and (2.8), we get

E[τ(i)] = 1 +
1
pi

∑

j 6=i

qj(Zii − Zji) = 1 +
1
pi

∑

j 6=i

qj

n−1∑

k=1

1
1− λk

(vki − vkj)uki,

which, by changing the summation order, turns into

E[τ(i)] = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki

∑

j 6=i

qj(vki − vkj). (2.10)

We note that we can rewrite
∑

j 6=i qj(vki − vkj) as vki −
∑

l qlvkl. Hence, from (2.10), we get the

desired form for E[τ(i)], that is:

E[τ(i)] = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki(vki −
∑

l

qlvkl).

Now, assume that q = Kj·. This implies that
∑

l qlvkl =
∑

l Kjlvkl = (Kvk)j . But as vk is a right

eigenvector associated with the eigenvalue λk, we get
∑

l qlvkl = λkvkj and by plugging this into

the above expression of the expectation one will get

E[τ(i)] = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki(vki − λkvkj) = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkj + (1− λk)vkj).

Splitting the above in two parts

E[τ(i)] = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkj) +
1
pi

n−1∑

k=1

ukivkj . (2.11)

We have to consider two cases:
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i) j = i.

In this case,
∑n−1

k=1 ukivkj =
∑n−1

k=0 ukivki − pi = 1− pi, as
∑n−1

k=0 ukivki = 1 from U ′V = I.

Therefore, from (2.11) it follows that E[τ(i)] = 1/pi, the first sum cancelling for j = i.

ii) j 6= i.

Then, again,
∑n−1

k=1 ukivkj =
∑n−1

k=0 ukivkj − pi = δij − pi = −pi. Now, using (2.11)

E[τ(i)] = 1 +
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkj)− 1 =
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkj). 2

3 Hitting time analysis for the IMS

Here, we shall capitalize on the previous result to prove our main theorem. But first, let us set

the stage by briefly introducing the IMS.

3.1 The Independence Metropolis Sampler

The IMS is a Metropolis-Hastings type algorithm with the proposal independent of the current

state of the chain. It has also been called Metropolized Independent Sampling (Liu, 1996). Let

Ω = {1, 2, . . . , n} be the state space. As for any MCMC algorithm, the goal is to simulate

a Markov chain {Xm}m≥0 taking values in Ω and having stationary distribution p (the target

probability) . To do this, at each step a new state j ∈ Ω is sampled from the proposal probability

q = (q1, q2, . . . , qn) according to j ∼ qj , which is then accepted with probability

α(i, j) = min{1,
qi

pi

pj

qj
}.

Therefore, the transition from Xm to Xm+1 is decided by the transition kernel having the form

K(i, j) =





qjα(i, j) j 6= i,

1−∑
k 6=i K(i, k) j = i.

The initial state could be either fixed or generated from a distribution whose natural choice in

this case is q. We shall see later, in section 3.3, why it is more efficient to generate the initial state

from q instead of choosing it deterministically.

It is easy to show that p is the invariant (stationary) distribution of the chain. In other words,

p K = p. Since from q > 0 it follows that K is ergodic, then p is also the equilibrium distribution

of the chain. Therefore, the marginal distribution of the chain at step m, for m large enough, is

approximately p.
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However, instead of trying to sample from the target distribution p, one may be interested in

searching for a state i∗ with maximum probability: i∗ = arg maxi∈Ω pi. Here is where the mean

f.h.t can come into play. E[τ(i)] is a good measure for the speed of search in general. As a special

case we may need to know E[τ(i∗)] for the optimal state.

As it shall become clear later, a key quantity to the analysis is the probability ratio wi = qi/pi.

It measures how much knowledge the heuristic qi has about pi, or in other words how informed is

q about p for state i. Therefore we define the following concepts.

Definition 3.1 A state i is said to be over-informed if qi > pi and i is under-informed if qi < pi.

There are three special states defined below.

Definition 3.2 A state i is exactly-informed if qi = pi. A state i is most-informed (or least-

informed) if it has the highest (or lowest) ratio wi: imax = arg maxi∈Ω{wi}, imin = arg mini∈Ω{wi}.

Let us observe that because of its special form, the transition kernel can be written in a simpler

form by reordering the states increasingly according to their informedness. Noticing that for i 6= j,

Kij = qj min{1, wi/wj}, if w1 ≤ w2 ≤ . . . ≤ wn it follows that

Kij =





wipj i < j,

1−∑
k<i qk − wi

∑
k>i pk i = j,

qj = wjpj i > j.

Without loss of generality, we shall assume for the rest of the paper that the states are indexed

such that w1 ≤ w2 ≤ . . . ≤ wn, to allow for this more tractable form of the transition kernel.

Proposition 2.1 can be used to compute mean first hitting times whenever an eigen-analysis for

the transition kernel is available. In practice, this situation is quite rare though. However, such

an eigen-analysis is available for the IMS when the state space is finite. We review these results

below and then proceed with our results.

3.2 The eigenstructure of the IMS

A first result concerns the eigenvalues and right eigenvectors of the IMS kernel.

Theorem 3.1 (J. Liu, 1996) Let Tk =
∑

i≥k qi and Sk =
∑

i≥k pi. Then the eigenvalues of

the transition matrix K are λk = Tk − wk · Sk, ∀ 1 ≤ k ≤ n − 1, and they are decreasing as

1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0. Moreover, the right eigenvector corresponding to λk is

vk = (0, · · · , 0, Sk+1,−pk, · · · ,−pk), where for k > 0 the first k − 1 entries are 0.
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Obviously, v0 = (1, 1, . . . , 1)′.

Remark: It is easy to see now that the eigenvalues of K are ”incorporated” in the diagonal

terms of K through the equality Kii = λi + qi, which will be often used later on.

Smith and Tierney (1996) computed the exact k-step transition probabilities for the IMS. One

of their results reveals in fact the very structure of the left eigenvectors.

Suppose δk is the unit vector with 1 in the k’th position (1 ≤ k ≤ n) and 0 everywhere else.

They showed that:

Proposition 3.2 (Smith and Tierney, 1996) For 1 ≤ k ≤ n− 1,

δk = pkv0 +
1
Sk

vk − pk

k−1∑

j=1

vj

SjSj+1

while for k = n,

δn = pnv0 − pn

n−1∑

j=1

vj

SjSj+1
.

As a corollary, the left eigenvectors of K are given by:

Corollary 3.3

u0 = p, uk = (0, 0, . . . , 0,
1
Sk

,− pk+1

SkSk+1
, . . . ,− pn

SkSk+1
)T , 1 ≤ k ≤ n− 1,

where for k > 0 the first k − 1 entries are 0.

3.3 Our Main Result

We are now able to compute the mean f.h.t for the IMS and provide bounds for it, by making use

of the eigenstructure of the IMS kernel as well as of Proposition 2.1.

Theorem 3.4 If K corresponds to the IMS kernel and the initial distribution of the chain is the

same as the proposal probability q, then, using previous notations:

i) E[τ(i)] =
1

pi(1− λi)
, ∀i ∈ Ω,

ii)
1

min{qi, pi} ≤ E[τ(i)] ≤ 1
min{qi, pi}

1
1− ‖p− q‖TV

,

where we define λn to be equal to zero and ‖p− q‖TV denotes the total variation distance between

p and q. Equality is attained for the three special states from Definition 3.2.
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Proof: i) Let us first note that we are in the situation from the second part of Proposition 2.1.

That is, after reordering the states according to their probability ratios, our initial distribution q

is equal to the nth row of K as it can easily be seen.

Then, from Proposition 2.1, one has:

E[τ(i)] =
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkn) +
δin

pi
. (3.1)

Let us note that from Theorem 3.1, vki = vkn,∀k < i while from Corollary 3.3, uki = 0 for k > i,

hence uki(vki − vkn) = 0, ∀k 6= i. If i = n then the only term left in the above expression of the

expectation is δin/pi = 1/pn = 1/[pn(1− λn)], meanwhile for i < n one has

E[τ(i)] =
uii(vii − vin)
pi(1− λi)

.

But, using the eigenanalysis for the IMS, uii(vii−vin) is nothing more than (Si+1−(−pi))/Si =

Si/Si = 1, so the average f.h.t becomes

E[τ(i)] =
1

pi(1− λi)
,

and the proof of i) is completed.

ii) By using i) it is obvious that E[τ(i)] ≥ 1/pi since 0 ≤ λi < 1. Therefore, the proof of the

lower bound reduces to showing that 1− λi ≤ wi which would imply that E[τ(i)] ≥ 1/qi. Noting

that λi = qi + qi+1 + . . . + qn − (pi + pi+1 + . . . + pn)wi, we need to prove that

wi =
qi

pi
≥ q1 + q2 + . . . + qi−1

p1 + p2 + . . . + pi−1
.

This is quite obvious since for any j < i, wj ≤ wi ⇐⇒ qj ≤ pjwi. By summing the last inequality

with j from 1 to i− 1 we get the desired result.

To prove the upper bound, let us first get a more tractable form for ‖p− q‖TV . We partition

the state space into two sets: under-informed and over-informed with the exactly-informed states

in either set: Ω = Ωunder ∪ Ωover. As the states are sorted, let k ≤ n be their dividing point

Ωunder = {i ≤ k : qi ≤ pi}, Ωover = {i > k : qi > pi},

where Ωover can be the empty set if q = p. By definition, ‖p − q‖TV = 1
2

∑
i |pi − qi|. Since

∑
i∈Ω(pi − qi) = 0, we have

‖p− q‖TV =
1
2

∑

i∈Ω

|pi − qi| = 1
2

∑

i∈Ωunder

(pi − qi) +
1
2

∑

i∈Ωover

(qi − pi)

=
∑

i∈Ωover

(qi − pi) = Tk+1 − Sk+1, (3.2)
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where we define Tn+1 = Sn+1 = 0. We prove the upper bound for the under-informed and over-

informed states respectively.

Case I. upper bound for under-informed states i ≤ k.

For under-informed states, qi = min{pi, qi}. As λi = Ti − wiSi, it follows that:

pi(1− λi) = pi(1− Ti) + qiSi = pi(1− Ti+1)− piqi + qiSi+1 + qipi = pi(1− Ti+1) + qiSi+1.

Therefore, pi(1 − λi) ≥ qi(1 − Ti+1 + Si+1). By using (3.2), we get min{pi, qi}(1 − ‖p − q‖TV ) =

qi(1− Tk+1 + Sk+1). Thus, we only need to show that Si+1 − Sk+1 ≥ Ti+1 − Tk+1. By definition,

this is equivalent to pi+1 + pi+2 + . . . + pk ≥ qi+1 + qi+2 + . . . qk, which is obviously true because

states i + 1, . . . , k are under-informed.

The equality is attained, as noticed from the proof, when pj = qj , ∀j ∈ [i, k], which is at the

exactly-informed states.

Case II. upper bound for over-informed states i > k.

As min{pi, qi} = pi, it suffices to show that pi(1−λi) ≥ pi(1−Tk+1+Sk+1), or λi ≤ Tk+1−Sk+1.

As λi ≤ λk+1, it is enough to prove that

λk+1 ≤ Tk+1 − Sk+1,

or Tk+1 − wk+1Sk+1 ≤ Tk+1 − Sk+1,

or Sk+1(1− wk+1) ≤ 0.

The last step becomes trivial since wk+1 ≥ 1 for over-informed states.

Equality in this case is obtained if λi = λi−1 = . . . = λk+1 and wk+1 = 1 which is equivalent

to wk+1 = wk+2 = . . . = wi = 1.

Theorem 3.4 can be extended by considering the first hitting time of some particular sets. We

give the following corollary:

Corollary 3.5 Let A ⊂ Ω of the form A = {i + 1, i + 2, . . . , i + k}, with w1 ≤ w2 ≤ . . . ≤ wn.

Also, let us define pA = pi+1 + pi+2 + . . . + pi+k, qA = qi+1 + qi+2 + . . . + qi+k and wA = qA/pA.

We denote λA = (qi+1 + . . . + qn)− (pi+1 + . . . + pn)wA. Then,

i) E[τ(A)] =
1

pA(1− λA)
,

ii)
1

min{qA, pA} ≤ E[τ(A)] ≤ 1
min{qA, pA}

1
1− ‖p− q‖TV

.
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Proof: In the following, we will only prove part i) since for ii) the proof is similar to the one we

made for part ii) of Theorem 3.4.

Let A = {i + 1, i + 2, . . . , i + k}.
First, we observe that w1 ≤ w2 ≤ . . . ≤ wi ≤ wA ≤ wi+k+1 ≤ . . . ≤ wn. Therefore, if we

consider A to be a singleton, the problem of computing the average first hitting time of A reduces

to computing the average f.h.t of the singleton A in the ”reduced” space ΩA := {1, 2, . . . , i, {A}, i+
k + 1, . . . , n}. The new proposal (respectively target) probability will be q restricted on the space

ΩA by putting mass qA on the state {A} (similarly for p).

It is easy to check that K−A = K−{A}, where the last matrix is obtained if we consider A to

be a singleton (it is essential that the ordering of the states according to the probability ratios is

the same in Ω as in ΩA).

Now, we can apply (2.2) to obtain

EΩ[τ(A)] = 1 + q−A(I−K−A)−11′ = 1 + q−{A}(I−K−{A})−11,

and by applying Theorem 3.4 for ΩA

EΩ[τ(A)] = EΩA
[τ({A})] =

1
pA(1− λA)

.

We used subscripts Ω or ΩA to indicate which space we are working on. 2

In the introduction we have hinted at motivating why generating the initial state from q is

preferable to starting from a fixed state j 6= i. The following result attempts to clarify this issue.

Proposition 3.6 Assuming the states are ordered as w1 ≤ w2 ≤ . . . ≤ wn, the following holds:

E1[τ(i)] ≥ E2[τ(i)] ≥ . . . ≥ Ei−1[τ(i)] ≥ Ei+1[τ(i)] = . . . = En[τ(i)] = E[τ(i)], ∀i ∈ Ω.

Proof: We have seen that

Ej [τ(i)] =
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkj),

for j 6= i.

i) j > i. Then, uki(vki − vkj) = uki(vki − vkn),∀k > 0 since for k > i, uki = 0 and for

k ≤ i, vkj = −pk = vkn. Therefore,

Ej [τ(i)] =
1
pi

n−1∑

k=1

1
1− λk

uki(vki − vkn) = E[τ(i)],
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as the last equality has been already proven in (3.1).

ii) j < i. Let us compute the difference Ej [τ(i)]− Ej+1[τ(i)] for arbitrary j.

Ej [τ(i)]− Ej+1[τ(i)] =
1
pi

n−1∑

k=1

1
1− λk

(vki − vkj)uki − 1
pi

n−1∑

k=1

1
1− λk

(vki − vk(j+1))uki =

=
1
pi

n−1∑

k=1

1
1− λk

(vk(j+1) − vkj)uki (3.3)

If j < i−1 then for k < j we have vk(j+1) = 0 = vkj while for j+1 < k < i, vk(j+1) = −pk = vkj ,

so in both cases the difference is zero, which cancels the corresponding terms in (3.3). The terms

for k > i cancel also because uki = 0. The only remaining terms are those for k = j, j + 1.

Therefore,

Ej [τ(i)]− Ej+1[τ(i)] =
1
pi

[ 1
1− λj

(vj(j+1) − vjj)uji +
1

1− λj+1
(v(j+1)(j+1) − v(j+1)j)u(j+1)i

]

We now note that, according to the eigen-analysis,

(vj(j+1) − vjj)uji = (−pj − Sj+1)(− pi

SjSj+1
) =

pi

Sj+1
.

And similarly

(v(j+1)(j+1) − v(j+1)j)u(j+1)i = (Sj+2 − 0)(− pi

Sj+1Sj+2
) = − pi

Sj+1
.

Hence,

Ej [τ(i)]−Ej+1[τ(i)] =
1
pi

( 1
1− λj

− 1
1− λj+1

) pi

Sj+1
=

1
Sj+1

( 1
1− λj

− 1
1− λj+1

)
.

This is obviously a positive quantity since λj ≥ λj+1. The equality case is obtained if wj = wj+1

which would imply that λj = λj+1. Therefore, if states j and j + 1 have the same informedness,

it would make no difference from which one of them the sampler would start.

The only thing left to prove is that Ei−1[τ(i)] ≥ E[τ(i)]. To do this, we note that one can write

(3.3) with i− 1 in the place of j and i + 1 instead of j + 1. This gives

Ei−1[τ(i)]− Ei+1[τ(i)] =
1
pi

i∑

k=1

1
1− λk

(vk(i+1) − vk(i−1))uki.

As before, all the terms cancel except for k = i − 1, i and then, the same way as above, after

making the calculations we end up with

Ei−1[τ(i)]−Ei+1[τ(i)] =
1
Si

( 1
1− λi−1

− 1
1− λi

)
,

which is again positive since λi−1 ≥ λi. As we have already proved that Ei+1[τ(i)] = Ej [τ(i)] =

E[τ(i)], ∀j > i, the proof of Proposition 3.6 is completed.2
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3.4 Example

We can illustrate the main results in Theorem 3.4 through a simple example. We consider a space

with n = 1000 states. Let p and q be mixtures of two discretized Gaussians with tails truncated

and then normalized to one. They are plotted as solid (p), dashed (q) curves in Fig.1a .
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Figure 1: Mean f.h.t and bounds
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Fig.1b plots the logarithm of the expected first hitting-time lnE[τ(i)]. The lower and upper

bounds from Theorem 3.4 are plotted in logarithm scale as dashed curves which almost coincide

with the hitting-time plot. For better resolution we focused on a portion of the plot around

the mode, the three curves becoming more distinguishable in Fig.1c. We can see that the mode

x∗ = 333 has p(x∗) ≈ 0.012 and it is hit in E[τx∗ ] ≈ 162 times on average for q. This is much

smaller than n/2 = 500 which would be the average time for exhaustive search. In comparison,

for an uninformed (i.e uniform) proposal the result is E[τx∗ ] = 1000. Thus, it becomes visible how

a ”good” proposal q can influence the speed of such a stochastic sampler.

3.5 Other properties of the f.h.t for the IMS

In this section we discuss additional properties of the f.h.t for the IMS. Two items will be of interest

here: the distribution and the variance of the f.h.t.

3.5.1 The Tail Distribution

It is known (Abadi, 2001) that the distribution of first hitting times is generally well approximated

by an exponential distribution after some waiting time. Our simulations showed that for the IMS

this is indeed the case and moreover, the approximation seems to be good at all times. We illustrate

this assertion in Figure 2 for a state space with N = 10 states, with p and q being discretized

mixtures of Gaussians as before.

On the next page, Fig. 2a and b plot the tail distributions of the first hitting times for all the

states of the space. It is apparent that their shapes resemble exponential tails. In Fig. 2c, we have

plotted both the tail distribution of the f.h.t and the corresponding exponential distribution for

an arbitrary state (taken to be i = 3). One notes that the fit is quite good. Even though we were

not able to quantify the approximation error, we can give an exponential upper bound on the tail

distribution of the f.h.t. This was depicted in Fig. 2d.

Proposition 3.7 For all i ∈ Ω, P (τ(i) > m) ≤ (1− qi)(1− piw1)m ≤ exp{−m(piw1)}, ∀m > 0.

Proof: For all j 6= i we can write Kji = pi min{wi, wj}. This shows that Kji ≥ piw1, ∀j 6= i. Or,

equivalently, 1−Kji ≤ 1−piw1, ∀j 6= i. By writing this set of inequalities in matrix form, one gets

K−i1 ≤ (1− piw1)1. Now, we can iterate this inequality and therefore, Kl
−i1 ≤ (1− piw1)l1, ∀l.

We recall that P (τ(i) > m) = q−iKm−1
−i 1. Hence, by taking l = m − 1 we shall obtain

P (τ(i) > m) ≤ (1− piw1)m−1q−i1, or finally, P (τ(i) > m) ≤ (1− qi)(1− piw1)m−1.
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For the second of the inequalities we note that wi ≥ w1, so 1 − qi ≤ 1 − piw1, which readily

gives P (τ(i) > m) ≤ (1 − piw1)m. But (1 − piw1)m ≤ exp{−m(piw1)}, since exp{−x} ≥ 1 − x,

∀x, and the proof is completed. 2

Remark: We note that the last of the inequalities in Proposition 3.7 holds also for the expo-

nential distribution µ(i), having mean equal to E[τ(i)]. That is, P (µ(i) > m) ≤ exp{−m(piw1)},
∀m > 0. To see why it is so, note that λi ≤ λ1 = 1−w1, so E[τ(i)] = 1/[pi(1− λi)] ≤ 1/(piw1) or

1/E[τ(i)] ≥ piw1. Now, it suffices to say that P (µ(i) > m) = exp{−m/E[τ(i)]} ≤ exp{−m(piw1)}.

3.5.2 The Variance

In this section, we derive a formula for the variance of the f.h.t for the IMS which, as the mean,

will be a function of pi and λi and it will also depend on an extra term, that is Zii.

Theorem 3.8 Let Z be the fundamental matrix associated to the IMS kernel K. Then, the vari-

ance of the first hitting time takes the form:

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

,∀i ∈ Ω,

with λn := 0.

Proof: Already knowing the expectation of the f.h.t reduces the problem of computing the variance

to finding E(τ(i)2). This is given by (2.7):

E[τ(i)2] = 1 +
2
pi

∑

j

qj(Z2
ii − Z2

ji)−
1
pi

∑

j

qj(Zii − Zji) +
2Zii

p2
i

∑

j

qj(Zii − Zji).

We can rewrite the above as:

E[τ(i)2] = 1 +
2
pi

(Z2
ii −

∑

j

qjZ
2
ji)−

1
pi

(Zii −
∑

j

qjZji) +
2Zii

p2
i

(Zii −
∑

j

qjZji). (3.4)

Let us note that
∑

j qjZji =
∑

j KnjZji = (KZ)ni. Also, recall that

KZ = Z + P − I. (3.5)

Thus,
∑

j qjZji = Zni + pi − δni. Similarly,
∑

j qjZ
2
ji =

∑
j KnjZ

2
ji = (KZ2)ni. Also, from (3.5) it

follows that KZ2 = Z2 + P − Z so
∑

j qjZ
2
ji = Z2

ni + pi − Zni. Let us for now only consider the

case i < n. Doing the necessary replacements in (3.4) we get

E[τ(i)2] = 1 +
2
pi

(Z2
ii − Z2

ni − pi + Zni)− 1
pi

(Zii − Zni − pi + δni) +
2Zii

p2
i

(Zii − Zni − pi + δni)
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By regrouping and cancellations one will further get

E[τ(i)2] =
2
pi

(Z2
ii − Z2

ni)−
3
pi

(Zii − Zni) +
2Zii

p2
i

(Zii − Zni) +
δni

pi
(
2Zii

pi
− 1) (3.6)

For i = n (3.6) becomes E[τ(n)2] = (2Znn − pn)/p2
n, so V ar[τ(n)] = E[τ(n)2] − (E[τ(n)])2 =

(2Znn − pn)/p2
n − 1/p2

n or finally,

V ar[τ(n)] =
2Znn − pn − 1

p2
n

,

which is what I wanted since λn = 0.

Therefore, we can now only consider i < n and let us rewrite (3.6) again, in this case, for

clarity:

E[τ(i)2] =
2
pi

(Z2
ii − Z2

ni)−
3
pi

(Zii − Zni) +
2Zii

p2
i

(Zii − Zni). (3.7)

As in section 2, we shall use again the spectral decomposition theorem, for Z2 this time:

Z2
li = pi +

n−1∑

k=1

1
(1− λk)2

vkluki,∀ l, i.

Therefore, we have

Z2
ii − Z2

ni =
n−1∑

k=1

1
(1− λk)2

uki(vki − vkn),

which, just as before, leads to

Z2
ii − Z2

ni =
uii(vii − vin)

(1− λi)2
=

1
(1− λi)2

. (3.8)

It is also noted that Zii − Zni = piEn[τ(i)]. At the same time, from Proposition 3.6, En[τ(i)] =

E[τ(i)] = 1/[pi(1− λi)]. Therefore,

Zii − Zni =
1

1− λi
. (3.9)

Now using (3.8) and (3.9) in (3.7) we obtain

E[τ(i)2] =
2

pi(1− λi)2
− 3

pi(1− λi)
+

2Zii

p2
i (1− λi)

.

Or

E[τ(i)2] =
2Zii(1− λi)− 3pi(1− λi) + 2pi

p2
i (1− λi)2

.

Now, as V ar[τ(i)] = E[τ(i)2]− E[τ(i)]2 and E[τ(i)] = 1/(pi(1− λi)), it is immediate that

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

. 2
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3.5.3 Bounds for the variance

Two corollaries of Theorem 3.8 will offer bounds on the variance of the f.h.t.

By bounding the term Zii in Theorem 3.8, we obtain Corollary 3.9, which gives bounds for the

variance mainly in terms of the expectation of the f.h.t:

Corollary 3.9 Let K be the IMS kernel and let us denote Ei := E[τ(i)], for any i ∈ Ω.Then,

Ei(Ei − 1) ≤ Ei[(1 + 2qi)Ei − 3] ≤ V ar[τ(i)] ≤ Ei[
2(1 + qi)

w1pi
−Ei − 3]

with equality if wi = wi−1 = . . . = w1.

Proof: For the proof we first need to prove the following lemma:

Lemma 3.10
1 + qi − pi

1− λi
≤ Zii ≤ 1 + qi − pi

w1

with equality if and only if wi = wi−1 = . . . = w1.

Proof of the lemma: We recall that

Zii = pi +
n−1∑

k=1

1
1− λk

vkiuki.

As 1/(1− λk) = 1 + λk/(1− λk), we can rewrite Zii as

Zii = pi +
n−1∑

j=1

vkiuki +
n−1∑

k=1

λk

1− λk
vkiuki = 1 +

n−1∑

k=1

λk

1− λk
vkiuki = 1 +

i∑

k=1

λk

1− λk
vkiuki.

As 1/(1− λi) ≤ 1/(1− λj) ≤ 1/(1− λ1), ∀ 1 ≤ j ≤ i, we get

1 +
1

1− λi

i∑

k=1

λkvkiuki ≤ Zii ≤ 1 +
1

1− λ1

i∑

k=1

λkvkiuki.

But as we have already seen before,

i∑

k=1

λkvkiuki =
n−1∑

k=1

λkvkiuki = Kii − pi = qi + λi − pi,

and therefore,

1 +
qi + λi − pi

1− λi
≤ Zii ≤ 1 +

qi + λi − pi

1− λ1
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Or
1 + qi − pi

1− λi
≤ Zii ≤ 1 + qi − pi + λi − λ1

1− λ1
.

The lemma is proved if, for the right hand side term, we use 1−λ1 = w1 and λi ≤ λ1. Clearly,

equality on both sides is obtained if and only if wi = wi−1 = . . . = w1.

Going back to the proof of Corollary 3.9, we note that, starting from the left side, the first

inequality is trivial since Ei ≥ 1/qi. Also, proving that Ei[(1 + 2qi)Ei − 3] ≤ V ar[τ(i)] is just a

matter of applying Lemma 3.10 and regrouping the terms.

For the upper bound we notice that w1 = 1−λ1 ≤ 1−λi which gives pi ≤ pi(1−λi)/w1 which

when combined with the upper bound for Zii will give

Zii(1− λi) + pi ≤ (1 + qi − pi)(1− λi)
w1

+
pi(1− λi)

w1
=

(1 + qi)(1− λi)
w1

.

But according to Theorem 3.8,

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

.

Hence

V ar[τ(i)] ≤ 2(1 + qi)(1− λi)/w1 − 3pi(1− λi)− 1
p2

i (1− λi)2
,

which easily turns into the pursued upper bound since, from Theorem 3.4, Ei = 1/[pi(1 − λi)].

The equality case shows up if λi = λi−1 = . . . = λ1 which is equivalent to wi = wi−1 = . . . = w1.

The bounds given by Corollary 3.9 can be further simplified, but weakened at the same time,

if one uses the known lower bound for Ei on the left and maximizes the upper bound with respect

to Ei. Thus, one gets:

Corollary 3.11 If Mi := 1/min{qi, pi}, for any i ∈ Ω, then

Mi(Mi − 1) ≤ Mi[Mi(1 + 2qi)− 3] ≤ V ar[τ(i)] ≤
(1 + qi

w1pi
− 3

2

)2
.

Proof: Obviously, for the lower bounds we apply inequality Ei ≥ Mi to the previous corollary. To

prove the upper bound, we refer again to Corollary 3.9 and for simplicity, let us denote

2
(1 + qi)
w1pi

− 3 := a.

Then, Corollary 3.9 gives V ar[τ(i)] ≤ Ei(a − Ei). One consequence of this is that a ≥ Ei > 0,

since the variance is a positive number. Hence, we could maximize function f(x) := x(a − x) on

(0, a). As the maximum value of f is obtained for x = a/2, we conclude that f(Ei) ≤ a2/4, which

is the upper bound.
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4 Comparison between the IMS and general Metropolis-Hastings

kernels

We have seen that for the IMS the mean f.h.t is always bounded below by 1/pi, for all proposal

probabilities q. We shall prove that for more general Metropolis kernels, the mean f.h.t can be

lower than 1/pi, and thus show formally, what was otherwise clear intuitively, that, because of its

independence from the current state, the IMS kernel can be inferior to other samplers in terms of

speed of hitting a certain state.

Firstly, we recall that a Metropolis-Hastings kernel R, induced by a proposal stochastic matrix

Q is of the form

Rij = Qij min{1,
Qjipj

Qijpi
},

for any i 6= j (Hastings, 1970).

Theorem 4.1 Let Q be a stochastic proposal matrix satisfying the condition

Qji

pi
≥ 1,

Qij

pj
≥ 1, ∀i,∀j 6= i.

Let R be the Metropolis-Hastings kernel associated to the proposal Q and the target probability p.

Then, for any initial distribution q,

EQ
q [τ(i)] ≤ 1 +

1− qi

pi
, ∀i ∈ Ω,

with equality if Q is the stationary matrix.

Proof: Let i ∈ Ω. As Qji ≥ pi and Qij ≥ pi, it follows that Rji = min{Qji, Qijpi/pj} ≥ pi, ∀j 6= i.

This implies that 1 − Rji ≤ 1 − pi or Rj·1 ≤ 1 − pi, since the sum of all elements on row j of R

is 1. As the previous inequality holds true for all j 6= i, we get R−i1 ≤ (1 − pi)1 or equivalently

(I−R−i)1 ≥ pi1.

As seen before, in section 2, the inverse of I − R−i always exists and it is equal to
∑

m Rm
−i

(see [3]), and therefore it is true that (I − R−i)−1 ≥ 0. This said, we can multiply the inequality

(I−R−i)1 ≥ pi1 by (I−R−i)−1 and get (I−R−i)−11 ≤ (1/pi)1 which is immediately equivalent

to q−i(I−R−i)−11 ≤ (1− qi)/pi or finally,

EQ
q [τ(i)] ≤ 1 +

1− qi

pi
,
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where we have used formula (2.1) for the mean f.h.t when starting from q. We have equality if

Rji = pi, ∀j 6= i, which is fulfilled if Q equals the stationary matrix. Naturally, there are also other

Q’s that accomplish equality, the condition being that either Qji = pi or Qij = pj , ∀j 6= i. 2

Combining Theorem 3.4 and Theorem 4.1, one gets:

Corollary 4.2 For any initial distribution q and Q satisfying the assumption in Theorem 4.1,

EQ
q [τ(i)] ≤ max{ 1

pi
,

1
qi
} ≤ EIMS

q [τ(i)],

where we denoted by EIMS
q [τ(i)] the average f.h.t of the IMS kernel associated to q and p.

Proof: If using the two specified theorems the proof is immediate since, obviously, 1 + (1 −
qi)/pi ≤ max{1/pi, 1/qi}, with equality if and only if qi = pi or, in other words, if i is an exactly-

informed state for q. 2

We would like to note that there are known examples of samplers that satisfy the condition in

Theorem 4.1. Such a sampler is the ”Metropolized Gibbs Sampler” (Liu, 2001) or simply MGS.

One of the most recent applications of this sampler is described in Tu, Zhu(2003).

For the MGS, the proposal matrix Q is defined as : Qij = pj/(1− pi), ∀i 6= j. Thus, obviously,

Q satisfies the condition in Theorem 4.1. Naturally, in practice the sampler will have to use an

approximative version of Q, since p is not usually known.

Interestingly, the MGS can be viewed as a particular case of the IMS. To see this, let us

remark that after metropolizing Q through the usual acceptance-rejection mechanism, one gets

the transition kernel having elements:

Rij =





pj

1−pi if i < j,

1−∑
k 6=i Rki if i = j,

pj

1−pj if i > j.

Without loss of generality, we assumed that p1 ≤ p2 ≤ . . . ≤ pn. With this assumption and by

denoting with

qi =
pi

1− pi
, ∀i < n and qn = 1−

∑

i<n

qi,

we note that R is equal to the IMS kernel matrix corresponding to p and q for w1 ≤ w2 ≤ . . . ≤ wn.

Therefore, if using as initial distribution the newly defined q, all the previous results pertaining to

the IMS apply also to the MGS.
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To conclude, we would like to point out the fact that, conceptually, there is a different way of

arriving at the formulas of the expectation and variance that are based on the eigen-elements of

K. To briefly describe the method, let K be an ergodic kernel and {λj}0≤j≤n−1 be its eigenvalues

with the corresponding right and left eigenvectors vj , uj such that uT
k vl = δkl,∀k, l ∈ Ω. As K is a

stochastic matrix with stationary probability p, one has λ0 = 1 and v0 = 1, u0 = p respectively.

Also, let us denote by {bl}l≥0, bl := (Kl)ii, and let {al}l≥0 be defined as a0 = b0 = 1, al =

bl−1 − bl,∀l > 0.

The next step is to define the sequence {fk}k≥0 recursively, by the formula:

fk =
k−1∑

l=0

ak−lfl, f0 = 1.

Further more, we denote

Fj,m :=
m∑

k=0

λm−k
j fk, 0 ≤ j ≤ i,∀m ≥ 0.

Theorem 4.3 Using the previous notations, ∀m ≥ 0 and for all initial distributions q,

i) P (τ(i) > m + 2) = 1− qi −
n−1∑

k=0

λkukiFk,m

∑

l 6=i

qlvkl

ii)
∞∑

m=0

Fk,m =
1

pi(1− λk)
, ∀k ≥ 1

iii)
∞∑

m=0

(m + 2)Fk,m =
1

pi(1− λk)

(
1 +

1
1− λk

+
1
pi

n−1∑

j=1

1
1− λj

vjiuji

)
, ∀k ≥ 1.

For proof and details refer to Maciuca(2004). This result allows the computation of the expec-

tation and second moment in a straightforward way, and could also offer insights into properties

of the tail distribution for the IMS which, as we saw, has a readily available eigen-analysis.
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