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Abstract

Markov chain Monte Carlo (MCMC) methods have been used in many fields (physics,
chemistry, biology, and computer science) for simulation, inference, and optimization.
The essence of these methods is to simulate a Markov chain whose state X follows
a target probability X ∼ π(X). In many applications, π(X) is defined on a graph
G whose vertices represent elements in the system and whose edges represent the
connectivity of the elements. X is a vector of variables on the vertices which often
take discrete values called labels or colors. Designing rapid mixing Markov chain is a
challenging task when the variables in the graph are strongly coupled. Methods, like
the single-site Gibbs sampler, often experience long waiting time. A well-celebrated
algorithm for sampling on graphs is the Swendsen-Wang (1987) (SW) method. The
SW method finds a cluster of vertices as a connected component after turning off some
edges probabilistically, and flips the color of the cluster as a whole. It is shown to mix
rapidly under certain conditions. Unfortunately, the SW method is only applicable
to the Ising/Potts models and slow down critically in the presence of ”external fields”
i.e. likelihood in Bayesian inference.
In this paper, we present a general cluster sampling method which achieves the fol-
lowing objectives. Firstly, it extends the SW algorithm to general Bayesian inference
on graphs. Especially we focus a number of image analysis problems where the graph
sizes are in the order of O(103) − O(106) with O(1) connectivity. Secondly, the edge
probability for clustering the vertices are discriminative probabilities computed from
data. Empirically such data driven clustering leads to much improved efficiency.
Thirdly, we present a generalized Gibbs sampler which samples the color of a cluster
according to a conditional probability (like the Gibbs sampler) weighted by a product
of edge probabilities. Fourthly, we design the algorithm to work on multi-grid and
multi-level graphs. The algorithm is tested on typical problems in image analysis,
such as image segmentation and motion analysis, In our experiments, the algorithm
is O(102) orders faster than the single-site Gibbs sampler. In the literature, there
are several ways for interpreting the SW-method which leads to various analyses or
generalizations, including random cluster model (RCM), data augmentation, slice
sampling, and partial decoupling. We take a different route by interpreting SW as a
Metropolis-Hastings step with auxiliary variables for proposing the moves or we can
view it as a generalized hit-and-run method.

Keywords: Swendsen-Wang, Data Augmentation, Slice sampling, multi-grid sampling,

multi-level sampling.
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1 Introduction

Markov chain Monte Carlo (MCMC) methods are general computing tools for simulation,

inference, and optimization in many fields. The essence of MCMC is to design a Markov

chain whose transition kernel K has an unique invariant (target) probability π(X) pre-

defined in a task. For example, π(X) could be a Bayesian posterior probability or a proba-

bility governing the states of a physical system. In this paper, we are interested in Markov

chains with finite states X defined on graphs G =< V,E > where X = (x1, x2, ..., xn)

represents the states of the vertices V = {v1, v2, ..., vn}. Such problems are often referred

as graph coloring (or labeling) and have very broad applications in physics, biology, and

computer science.

Although the method presented in this paper is applicable to generally graphs and

target probabilities, we shall focus on a number of examples in image analysis, such as

image segmentation and motion analysis. For such applications, the graph G is very large

with O(104)−O(106) vertices which are image elements like pixels, and G has sparse nearest

neighbor connections, i.e. constant O(1) connectivity. That is, the connectivity of a vertex

does not grow with the number of vertices. The state xi is the color (or label) for image

segmentation or discretized motion velocity in motion analysis. The target probability

π(X) are usually Markov random fields whose conditional probabilities can be computed

locally.

In the literature, a generally applicable algorithm for Markov chain design is the Gibbs

sampler (Geman and Geman 1984) and its generalizations, such as multigrid (Goodman

and Sokal 1989), parameter expansion (Liu and Wu 1999), parallel tempering (Geyer and

Thompson 1995). The slow mixing of such methods is attributed to the strong coupling

between variables in the graph. One well celebrated algorithm is the Swendsen-Wang

(1987) method designed for simulating the Ising/Potts models (Ising 1925, Potts 1953) in

statistical physics. It is often called the cluster sampling method. In each iteration, the SW

method forms a cluster of vertices as a connected component by sampling Bernoulli variables

defined on each edge. Then it flips the color of all vertices in the cluster simultaneously.

The SW method is found to mix rapidly under certain conditions. For example, Cooper
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and Frieze (1999) shows that SW has polynomial mixing time for graphs with O(1) connec-

tivity, such as the Ising/Potts models even at near critical temperature. Gore and Sinclair

(1999) showed that SW has exponential mixing time when G is a complete graph. Huber

(2002) designed bounding chains for the SW method so as to diagnose exact sampling in

some temperature range of the Potts model (see Fig. 2). The SW convergence can also be

analyzed with a maximal correlation technique (Liu 2001, chapter 7). Despite its success,

the power of the SW method and its analyses are very limited for two reasons.

1. It is only applicable to the Ising/Potts models and cannot be applied to arbitrary

probabilities on general graphs.

2. It uses constant probability for the binary variables on edges, and does not make

use of the data information in clustering the vertices. Thus it slows critically in the

presence of ”external fields” (i.e. data).

In this paper, we present a general cluster sampling algorithm which extends the SW-

method in the following aspects.

1. Designed from the Metropolis-Hastings perspective, it is applicable to general prob-

abilities on graphs.

2. It utilizes discriminative probabilities computed from the input data on the edges for

compatibilities of the two adjacent vertices. Therefore the clustering step is informed

by the data (external field) and leads to significant speedup empirically.

3. In a modified version, it can be viewed as a generalized Gibbs sampler which samples

the color of a cluster according to a conditional probability (like the Gibbs sampler)

weighted by a product of a small number of edge probabilities. This can also be

viewed as a generalized hit-and-run method.

4. It is extended to multi-grid and multi-level graphs for hierarchic graph labeling.

In our two sets of experiments on image analysis (segmentation and motion), the algo-

rithm is O(102) times faster than the single-site Gibbs sampler (see Figs.8, 9, and 10).
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In the literature, there are two famous interpretations of the SW-method which leads

to various analyses or generalizations. Both view the SW method as a data augmentation

method (Tanner and Wong 1987).

1. The first is the Random Cluster Model (RCM) by Edwards and Sokal (1988). It

augments the target probability π(X) with a new set of binary variables U on the

edges. The joint probability pES(X,U) has a marginal probability π(X) and two

conditional probabilities pES(X|U) and pES(U|X) which are easy to sample. In this

model, the clustering and labeling are decoupled completely. It leads to the design of

bounding chain (Huber 2002) for exact sampling.

2. The second is the slice sampling and decoupling method by (Higdon 1996). It aug-

ments π(X) by a set of continuous variables W as the ”bond strength” on edges to

decouple the internal fields with the external fields, and thus sample the labels under

the constraints of these variables (i.e. slice sampling). Higdon applied this method

to some image analysis examples and also studied a partial decoupling method which

has a coupling factor controlled by the data.

In this paper, we take a third route by interpreting SW as a Metropolis-Hastings step

with auxiliary variables for proposing the moves. Each step is a reversible jump (Green

1995) and observes the detailed balance equations. The key observation is that the proposal

probability ratio can be calculated neatly as a ratio of products of probabilities on a small

number of edges on the border of the cluster.

The paper is organized in the following. We start with a background introduction on

the Potts model, SW, and two interpretations in Section (2). Then we derive a general-

ized method by the Metropolis-Hastings perspective in Section (3). A number of variant

methods are presented in Section (4), including the cluster Gibbs sampler and the multi-

ple flipping scheme. Section (5) shows the first experiment on image segmentation. Then

we proceed to the multi-grid and multi-level cluster sampling in Section (6). The motion

experiments are reported in Section (7). We will compare the design of our method with

the single site Gibbs sampler. The paper is concluded in Section (8) with discussions.
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2 Background: Potts, SW, and interpretations

In this section, we review the Potts model, SW method and its two interpretations. The

review is made concrete enough so that important results can be followed.

2.1 SW on Potts model

Let G =< V,E > be an adjacency graph, such as a lattice with 4 nearest neighbor connec-

tions. Each vertex vi ∈ V has a state variable xi with finite number of labels (or colors),

xi ∈ {1, 2, ..., L}. The total number of label L is pre-defined, and the Potts model for a

homogeneous Markov field is,

πPTS(X) =
1

Z
exp{β ∑

<i,j>∈E

1(xi = xj)}. (1)

1(xi = xj) is a Boolean function. It is equal to 1 if its condition xi = xj is observed, and

is 0 otherwise. In more general cases, β = β(vi, vj) may be position dependent. Usually

we consider β > 0 for a ferro-magnetic system which prefers same colors for neighboring

vertices. The Potts models and its extensions are used as a priori probabilities in many

Bayesian inference tasks.

xjxi

xk

uij

uik

xm

xn

uni

umi

(a)  G0 (b)  G (c)  CCP

Figure 1: Illustating the SW method. (a) An adjacency graph G and each edge < i, j >

is augmented with a binary variable µij ∈ {1, 0}. (b) A labeling of the Graph G where

the edges connecting vertices of different colors are removed. (c). A number of connected

component after turning off some edges in (b) probabilistically.
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As Fig.1.(a) illustrates, the SW method introduces a set of auxiliary variables on the

edges.

U = {µij : µij ∈ {0, 1}, ∀ < i, j >∈ E}. (2)

The edge < i, j > is disconnected (or turned off) if and only if µij = 0. µij follows a

Bernoulli distribution conditioning on xi, xj.

µij|(xi, xj) ∼ Bernoulli(ρ1(xi = xj)), ρ = 1 − e−β. (3)

µij = 1 with probability ρ if xi = xj, and µij = 1 with probability 0 if xi �= xj. The SW

method iterates two steps.

1. The clustering step. Given the current state X, it samples the auxiliary variables in

U according to eqn. (3). It first turns off all edges < i, j > deterministically if xi �= xj, as

Fig.1.(b) shows. Then it turns off the remain edges with probability ρ. The edge < i, j >

is divided into the ”on” and ”off” sets respectively depending on µij = 1 or 0.

E = Eon(U) ∪ Eoff(U). (4)

The edges in Eon(U) form a number of connected components shown in Fig. 1.(c). We

denote all the connected components given Eon(U) by,

CP(U) = {cpi : i = 1, 2, ..., K, with
K∑

i=1

cpi = V }. (5)

Vertices in each connected component cpi have the same color.

2. The flipping step. It selects one connected component cp ∈ CP at random and assign

a common color y to all vertices in cp. y follows a uniform probability,

xi = y ∀vi ∈ cp, y ∼ unif{1, 2, ..., L}. (6)

In this step, one may choose to repeat the random color flipping for all the connected

components in CP(U) independently, as they are decoupled given the edges in Eon(U).

In one modified version by Wolff (1989), one may choose a vertex v ∈ V and grow a

connected component following the Bernoulli trials on edges around v. This saves some

computation in the clustering step, and thus bigger components have higher chance to be

selected.
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2.2 SW Interpretation 1: data augmentation and RCM

The SW method described above is far from what was presented in the original paper

(Swendsen and Wang 1987). Instead our description follows the interpretation by Edward

and Sokal (1988), who augmented the Potts model to a joint probability for both X and

U,

pES(X,U) =
1

Z

∏

<i,j>∈E

[(1 − ρ)1(µij = 0) + ρ1(µij = 1) · 1(xi = xj)] (7)

=
1

Z
[(1 − ρ)|Eoff(U)| · ρEon(U)] · ∏

<i,j>∈Eon(U)

1(xi = xj). (8)

The second factor
∏

<i,j>∈Eon(U) 1(xi = xj) is in fact a hard constraint on X and U. Let

the space of X be

Ω = {1, 2, ..., L}|V |. (9)

Under this hard constraint, the labeling X is reduced to a quotient space Ω
CP(U)

where each

connected component must have the same label,

∏

<i,j>∈Eon(U)

1(xi = xj) = 1(X ∈ Ω

CP(U)
). (10)

The joint probability pES(X,U) observes two nice properties, and both are easy to

verify.

Proposition 1 The Potts model is a marginal probability of the joint probability,

∑

U

pES(X,U) = πPTS(X). (11)

The other marginal probability is the random cluster model πRCM,

∑

X

pES(X,U) = πRCM(U) =
1

Z
(1 − ρ)|Eoff(U)| · ρEon(U)L|CP(U)|. (12)

Proposition 2 The conditional probabilities of pES(X,U) are

pES(U|X) =
∏

<i,j>∈E

p(µij|xi, xj), with p(µij|xi, xj) = Bernoulli(ρ1(xi = xj)), (13)

pES(X|U) = unif[
Ω

CP(U)
] = (

1

L
)|CP(U)| for X ∈ Ω

CP(U)
; = 0 otherwise. (14)
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Therefore the two SW steps can be viewed as sampling the two conditional probabilities.

1. Clustering step: U ∼ pES(U|X), i.e. µij|(xi, xj) ∼ Bernoulli(ρ1(xi = xj)).

2. Flipping step: X ∼ pES(U|X), i.e. X(cpi) ∼ Unif{1, 2, ..., L}, ∀cpi ∈ CP(U).

As (X,U) ∼ pES(X,U), discarding the auxiliary variables U, we have X following the

marginal of pES(X,U). The goal is achieved,

X ∼ πPTS(X). (15)

The beauty of this data augmentation method (Tanner and Wong 1987) is that the labeling

of the connected components are completely decoupled (independent) given the auxiliary

variables. As ρ = 1 − e−β, it tends to choose smaller clusters if the temperature (T ∝ 1
β
)

in the Potts model is high, and in low temperature it chooses large clusters. So it can

overcome the coupling problem with single site Gibbs sampler.

2.3 Some theoretical results

Let the Markov chain have kernel K and initial state Xo, in t steps the Markov chain state

follows probability pt = δ(X − Xo)Kt where δ(X − Xo) (for δ(X − Xo) = 1 for X = Xo

and 0 otherwise) is the initial probability. The convergence of the Markov chain is often

measured by the total variation

||pt − π||TV =
1

2

∑

X

|pt(X) − π(X)|. (16)

The mixing time of the Markov chain is defined by

τ = max
Xo

min{t : ||pt − π||TV ≤ ε}. (17)

τ is a function of ε and the graph compexlity M = |Go| in terms of the number of ver-

tices and connectivity. The Markov chain is said to mix rapidly if τ(M) is polynomial or

logarithmic.

Empirically, the SW method is found to mix rapidly. Recently some analytic results

on its performance have surfaced. Cooper and Frieze (1999) proved using a path coupling

technique that SW mixs rapidly on sparsely connected graphs.
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Theorem 1 (Cooper and Frieze 1999) Let n = |V | and ∆ be the maximum number of

edges at any single vertex, and L the number of colors in Potts model. If G is a tree, then

the SW mixing time is O(n) for any β and L. If ∆ = O(1), then there exists ρo = ρ(∆)

such that if ρ ≤ ρo (i.e. higher than a certain temperature), then SW has polynomial mixing

time for all L.

A negative case was constructed by Gore and Jerrum (1997) on complete graph.

Theorem 2 (Gore and Jerrum 1997) If G is a complete graph and L > 2, then for β =

2(L−1) ln(L−1)
n(L−2)

, the SW does not mix rapidly.

In the image analysis applications, our graph often observes the Copper-Frieze condition

and the graph is far from being complete.

Most recently an exact sampling technique was developed for SW on Potts by Huber

(2002) for very high or very low temperatures. It designs a bounding chain which assumes

that each vertex vi ∈ V has a set of colors Si initialized with the full set |Si| = L, ∀i. The

Bernoulli probability for the auxiliary variables µij is changed to

Ubd = {µbd
ij : µbd

ij ∈ {0, 1}, µij ∼ Bernoulli(ρ1(Si ∩ Sj �= ∅))}. (18)

Thus Ubd has more edges than U in the original SW chain, i.e. U ⊂ Ubd. When Ubd

collapses to U, then all SW chains starting with arbitrary initial states have collapsed into

the current single chain. Thus it must have converged (exact sampling). The step for

collapsing is called the ”coupling time”.

Theorem 3 (Huber 2002) Let n = |V | and m = |E|, at high temperature, ρ < 1
2(∆−1)

,

the bounding chain couples completely by time O(ln(2m)) with probability at least 1/2. At

lower temperature, ρ ≥ 1− 1
mL

, then the coupling time is O((mL)2) with probability at least

1/2.

In fact the Huber bound is not very tight as one may expect. Fig. 2(a) plots the results

on a 5 × 5 lattice with torus boundary condition on the Ising model for the empirical

coupling time against ρ = 1− e−β. The coupling time is large near the critical temperature
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(didn’t plot). The Huber bound for the high temperature starts with ρo = 0.16 and is

plotted by the short curve. The bound for the low temperature starts with ρo > 0.99 which

is not visible. Fig.2.(b) plots the coupling time at ρ = 0.15 against the graph size m = |E|
and the Huber bound.
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Figure 2: The coupling time empirical plots and the Huber bounds for Ising model.

Despite the encouraging success discussed above, the SW method is limited in two

aspects.

Limit 1. It is only valid for the Ising and Potts models, and furthermore it requires that

the number of colorings L is known. In many applications, such as image analysis, L is the

number of objects (or image regions) which has to be inferred from the input data.

Limit 2. It slows down quickly in the presence of external field, i.e input data. For

example, in the image analysis problem, our goal is to infer the label X from the input

image I and the target probability is a Bayesian posterior probability where πPTS(X) is

used as a prior model,

π(X) = π(X|I) ∝ L(I|X)πPTS(X). (19)

L(I|X) is the likelihood model, such as independent Gaussians N(Īc, σ
2
c ) for each coloring

c = 1, 2, ..., L,

L(I|X) ∝
L∏

c=1

∏

xi=c

1√
2πσc

exp{−(I(vi) − Īc)
2

2σ2
c

}. (20)
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The slowing down is partially attributed to the fact that the Bernoulli probability ρ =

1 − e−β for the auxiliary variable is calculated independently of the input image.

2.4 SW Interpretation 2: slice sampling and decoupling

In the presence of external field (data), the SW method can be interpreted and extended by

the auxiliary method proposed by Higdon (1998). Suppose we write the target probability

in a more general form,

π(X) =
1

Z

∏

vi∈V

φi(xi) ·
∏

<i,j>∈E

ψ(xi, xj), φ() > 0, ψ() > 0. (21)

For the Potts model above, we have ψ(xi, xj) = eβ1(xi=xj). Higdon (1998) introduced a

continuous variable on the edges as the bond strength,

W = {ωij : ωij ∈ [0, +∞), ∀ < i, j >∈ E} (22)

In contrast to the Bernoulli probability for the binary variable µij in eqn. (3), the bond

variables follow uniform probabilities, depending on X,

ωij|(xi, xj) ∼ Unif[0, ψ(xi, xj)] = ψ−1(xi, xj)1(0 ≤ ωij ≤ ψ(xi, xj)). (23)

Thus a conditional probability is constructed as

pHGD(W |X) =
∏

<i,j>∈E

p(ωij|xi, xj) =
∏

<i,j>∈E

ψ−1(xi, xj)1(0 ≤ ωij ≤ ψ(xi, xj)). (24)

This formula is chosen to cancel the internal field in a joint probability,

pHGD(X,W ) = π(X)p(W |X) =
1

Z
[

∏

vi∈V

φi(xi)] · [
∏

<i,j>∈E

1(0 ≤ ωij ≤ ψ(xi, xj))]. (25)

We have the second conditional probability by the Bayes rule,

pHGD(X|W ) =
1

Z ′ [
∏

vi∈V

φi(xi)] · [
∏

<i,j>∈E

1(0 ≤ ωij ≤ ψ(xi, xj))] (26)

That is, given the bond strength ωij, xi and xj must achieve higher probability factor so

that the condition ψ(xi, xj) ≥ ωij is observed. This idea is called ”slice sampling”. In case

of the Potts model, this becomes,

p(X|W ) =
1

Z ′ [
∏

vi∈V

φi(xi)] · [
∏

<i,j>∈E

1(0 ≤ ωij ≤ eβ1(xi=xj)] (27)
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Given W , the second product imposes a hard constraint on X. If ωij ≤ 1, 1(0 ≤ ωij ≤
eβ1(xi=xj)) = 1 is satisfied for any xi, xj, because β > 0 and eβ1(xi=xj) ≥ 1. Thus it imposes

no constraints on xi, xj. If ωij > 1, then it imposes the constraint that xi = xj. Thus the

auxiliary variables µij and ωij are linked by the following equation,

µij = 1(ωij > 1), ∀ < i, j >∈ E. (28)

Thus we have to turn on the edges if ωij > 1, otherwise we turn it off.

Eon(W ) = {e =< ij >: ωij > 1, < i, j >∈ E}. (29)

Given W , we have the set of connected components and the vertices in each component

receive the same color.

CP(W ) = {cpk : k = 1, 2, ..., K,∪K
i=1cpk = V }. (30)

As the hard constraints are absorbed by the connected component, the conditional proba-

bility in eqn. (27) becomes

pHGD(X|W ) =
K∏

k=1

∏

vi∈cpk

φi(xi). (31)

As we can see, the coloring of each connected component is independent of other vertices

(completely decoupled !). In the special case when φi(xi) = 1, it reduces to the RCM model

in the previous subsection.

In summary pHGD(X,W ), like pES(X,U) in eqn.(7), has marginal probability being the

target π(X) and has two conditional probabilities that are easy to sample. There are two

problems with this design.

Firstly, although the decoupling idea with conditional probability pHGD(W |X) in eqn. (26)

is valid for any pair clique Markov random field models and thus goes beyond the Potts

model, the hard constraints may become impractical to compute for non-Potts model. That

is, given W , the constraint conditions on X are no longer expressed as clustering. Many

slice sampling methods suffer from this problem.

Secondly, although the flipping step in eqn.(31) makes use of the data, the clustering

step in eqn. (24) does not. It is similar to the original SW method. This in practice often

make the formed cluster ineffective.
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3 Generalizing SW to arbitrary probabilities on graph

In this section, we generalize the SW to arbitrary probabilities from the perspective of

Metropolis-Hastings method (Metropolis et al 1953, Hastings 1970). Our method iterates

three steps: (i) a clustering step driven by data, (ii) a label flipping step which can introduce

new labels, and (iii) an acceptance step for the proposed labelling. A key observation is

the simple formula in calculating the acceptance probabilities.

We deliberate the three steps in the following three subsections, and then we show how

it reduces to the original SW with Potts models.

(a). Input image (b). atomic regions (c). segmentation

Figure 3: Example of image segmentation. (a). Input image. (b). Atomic regions by edge

detection followed by edge tracing and contour closing. each atomic region is a vertex in

the graph G. c. Segmentation (labeling) result where each closed region is assigned a color

or label.

We illustrate the algorithm by an example on image segmentation shown in Fig. 3.

Fig. 3.(a) is an input image I on a lattice Λ, which is decomposed into a number of ”atomic

regions” to reduce the graph size in a preprocessing stage. Each atomic region has nearly

constant intensity and is a vertex in the graph G. Two vertices are connected if their

atomic regions are adjacent (i.e. sharing boundary). Fig. 3.(c) is a result by our algorithm

optimizing a Bayesian probability π(X) = π(X|I) (see section (5) for details). The result

X assigns a uniform color to all vertices in each close region which hopefully corresponds

to an object in the scene or a part of it. Note that the number of objects or colors L is

unknown, and we do not distinguish the different permutations of the labels.
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3.1 Step 1: data-driven clustering

We augment the adjacency graph G with a set of binary variables on the edges U =

{µij :< i, j >∈ E}, as in the original SW method. Each µij follows a Bernoulli probability

depending on the current state of the two vertices xi and xj,

µij|(xi, xj) ∼ Bernoulli(qij1(xi = xj)), ∀ < i, j >∈ E. (32)

qij is a probability on edge < i, j > which tells how likely the two vertices vi and vj have

the same label. In Bayesian inference where the target π(X) is a posterior probability, then

qij can be better informed by the data.

For the image segmentation example, qij is computed based on the similarity between

image intensities at vi and vj (or their local neighborhood) and it may be an approximate

to the marginal probability of π(X|I),

qij = q(xi = xj|I(vi), I(vj)) ≈ π(xi = xj|I). (33)

There are many ways for computing q(xi = xj|I(vi), I(vj)) using so called discriminative

methods, and it is beyond this paper to discuss details.

Our method will work for any qij, but a good approximation will inform the clustering

step and achieve faster convergence empirically. Fig. 4 shows nine clustering examples of

the horse image. In these examples, we set all vertices to the same color (X = c) and

sample the edge probability independently,

U|X = c ∼ ∏

<i,j>∈E

Bernoulli(qij). (34)

The connected components in CP(U) are shown by different regions. We repeat the clus-

tering step nine times. As we can see, the edge probabilities lead to ”meaningful” clusters

which correspond to distinct objects in the image. Such effects cannot be observed using

constant edge probability.
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Figure 4: Nine examples of the connected components for the horse image computed using

discriminative edge probabilities given that X is a uniform color X = c for all vertices.

3.2 Step 2: flipping of color

Let X = (V1, V2, ..., Vn) be the current coloring state, and the edge variables U sampled

conditional on X further decompose X into a number of connected components

CP(U|X) = {cpi : i = 1, 2, ..., N(U|X)}. (35)

Suppose we select one connected component R ∈ CP(U|X) with color XR = � ∈ {1, 2, ..., n},
and assign its color to �′ ∈ {1, 2, ..., n, n + 1} with probability q(l′|R,X) (to be designed

shortly), obtaining new state X′. There are three cases shown in Fig. 5.

1. The canonical case: R ⊂ V� and �′ ≤ n. That is, a portion of V� is re-grouped into an

existing color V�′ , and the number of colors remains L = n in π′. The moves between

XA ↔ XB in Fig. 5 are examples.

2. The merge case: R = V� in X is the set of all vertices that have color � and �′ ≤
n, � �= �′. That is, color V� is merged to V�′ , and the number of distinct colors reduces

to n − 1 in X′. The moves XC → XA or XC → XB in Fig. 5 are examples.
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3. The split case: R ⊂ V� and �′ = n + 1. V� is split into two pieces and the number of

distinct color increases to n + 1 in X′. The moves XA → XC in Fig.5 are examples.

state A state B

R

V1

V2

V1

V2

R

state C

V1

V2

R

Figure 5: Three labeling states XA,XB,XC which differ only in the color of a cluster R.

Note that this color flipping step is also different from the original SW with Potts model

as we allow new colors in each step. The number of color L is not fixed.

3.3 Step 3: accepting the flipping

The previous two steps basically have proposed a move between two states X and X′ which

differ in coloring a connected component R. In the third step we accept the move with

probability,

α(X → X′) = min{1, q(X′ → X)

q(X → X′)
· π(X′)

π(X)
}. (36)

q(X′ → X) and q(X → X′) are the proposal probabilities between X and X′. If the

proposal is rejected, the Markov chain stays at state X. The transition kernel is

K(X → X′) = q(X → X′)α(X → X′), ∀X �= X′. (37)

For the canonical case, there is a unique path for moving between bX and X′ in one

step – choosing R and changing its color. The proposal probability ratio is the product

of two ratios decided by the clustering and flipping steps respectively: (i) the probability

ratio for selecting R as the candidate in the clustering step in both states X and X′, and

(ii) the probability ratio for selecting the new labels for R in the flipping step.

q(X′ → X)

q(X → X′)
=

q(R|X′)
q(R|X)

· q(XR = �|R,X′)
q(XR = �′|R,X)

. (38)
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For the split and merge cases, there are two paths between X and X′. But this does not

change the conclusion (see Appendix B).

Now we compute the probability ratio q(R|X′)
q(R|X)

for proposing R.

Definition 1 Let X = (V1, V2, ..., VL) be a coloring state, and R ∈ CP(U |X) a connected

component, the ”cut” between R and Vk is a set of edges between R and Vk\R,

C(R, Vk) = {< i, j >: i ∈ R, j ∈ Vk\R}, ∀k.

One of our key observation is that this ratio only depends on the cuts between R and rest

vertices.

Proposition 3 In the above notation, we have

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V�)(1 − qij)

∏
<i,j>∈C(R,V�′ )(1 − qij)

. (39)

qij’s are the edge probabilities.

[Proof] We put the proof in the appendix A for clarity.

The crosses in Fig.5.(a) and (b) show the cut C(R, V1) and C(R, V2) respectively. In

Fig.5.(c), R = V3 and thus C(R, V3) = ∅ and
∏

<i,j>∈C(R,V3)(1 − qij) = 1.

Summarizing the results in eqns.(36), (38) and (39), we have the following theorem.

Theorem 4 The acceptance probability for the proposed cluster flipping is,

α(X → X′) = min{1,
∏

<i,j>∈C(R,V�′ )(1 − qij)
∏

<i,j>∈C(R,V�)(1 − qij)
· q(XR = �|R,X′)
q(XR = �′|R,X)

· π(X′)
π(X)

}. (40)

[Proof] The proof is given in Appendix B. It has to account for the split and merge

cases which have two possible paths between the states X and X′.

Example. In image analysis, π(X) is a Bayesian posterior π(X|I) ∝ L(I|X)po(X) with

the prior probability po(X) being a Markov model (like Potts in Eqn. (20)). Therefore one

can compute the ratio of the target probabilities in the local neighborhood of R, i.e. ∂R.

π(X′)
π(X)

=
L(IR|XR = �′)
L(IR|XR = �)

· po(XR = �′|X∂R)

po(XR = �|X∂R)
(41)

Note that X∂R = X′
∂R in the above equation.
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The second ratio in eq. (40) is easy to design. For example, we can make it proportional

to the likelihood,

q(XR = �|R,X) = L(IR|XR = �), ∀�. (42)

Therefore,
q(XR = �|R,X′)
q(XR = �′|R,X)

=
L(IR|XR = �)

L(IR|XR = �′)
(43)

It cancels the likelihood ratio in eqn.(41). We get

Proposition 4 The acceptance probability for the proposed cluster flipping using the pro-

posal (42) is,

α(X → X′) = min{1,
∏

<i,j>∈C(R,V�′ )(1 − qij)
∏

<i,j>∈C(R,V�)(1 − qij)
· po(XR = �′|X∂R)

po(XR = �|X∂R)
}. (44)

The result above states that the computation is limited to a local neighborhood of R

defined by the prior model. This result is also true if one changes the clustering step by

growing R from a vertex, i.e. the Wolff modification.

In the experiments on image analysis, our cluster sampling method is empirically O(100)

times faster than the single site Gibbs sampler in terms of CPU time. We refer to plots

and comparison in Figs.(8), (9) and (10) in section (5) for details.

3.4 SW Interpretation 3: the Metropolis-Hastings perspective

Now we are ready to derive the original SW method as a special case.

Proposition 5 If we set the edge probability to a constant qij = 1 − e−β, then

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V�)(1 − qij)

∏
<i,j>∈C(R,V�′ )(1 − qij)

= exp{β(|C(R, V�′)| − |C(R, V�)|)}, (45)

where |C| is the cardinality of the set.

As X and X′ only differ in labeling R, the potentials for the Potts model only differs

at the ”cracks” between R and V� and V�′ respectively.

Proposition 6 For the Potts model π(X) = po(X) = πPTS(X),

πPTS(XR = �′|X∂R)

πPTS(XR = �|X∂R)
= exp{β(|C(R, V�)| − |C(R, V�′)|)} (46)
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Therefore, following eq. (40) (where the proposal probabilities for the labels are uni-

form), the acceptance probability for the Potts model is always one, due to cancellation.

α(X → X′) = 1. (47)

Therefore the third acceptance step is always omitted. This interpretation is related to the

Wolff (1989) modification (see also Liu 2001, p157).

4 Variants of the cluster sampling method

In this section, we briefly discuss two variants of the cluster sampling method.

4.1 Cluster Gibbs sampling — the ”hit-and-run” perspective

R

V1

V2

V6

V5

V4 V3

C(R, V2)C(R, V5)

(a) (b)

Figure 6: Illustrating the cluster Gibbs sampler. (a) The cluster R has a number of

neighboring components of uniform color. (b) The cuts between R and its neighboring

colors. The sampler follows a conditional probability modified by the edge strength defined

on the cuts.

With a slight change, we can modify the cluster sampling method to a generalized Gibbs

sampler.

Suppose that R ∈ CP(U |X) is the candidate chosen in the clustering step, and Fig. 6

shows its cuts with adjacent sets

C(R, Vk), k = 1, 2, ..., L(X).
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We compute the edge weight γk as the strength of connectivity between R and Vk\R,

γk =
∏

<i,j>∈C(R,Vk)

(1 − qij). (48)

Proposition 7 Let π(X) be the target probability, in the notation above. If R is relabelled

probabilistically with

q(XR = k|R,X) ∝ γkπ(XR = k|X∂R), k = 1, 2, ...., N(X), (49)

then the acceptance probability is always 1 in the third step.

[Proof] See Appendix C.

This yields a generalized Gibbs sampler which flips the color of a cluster according to

a modified conditional probability.

Cluster Gibbs Sampler

1. Cluster step: choosing a vertex v ∈ V and group a cluster R from v by the Bernoulli

edge probability µij.

2. Flipping step: relabel R according to eqn. (49).

The tranditional single site Gibbs sampler (Geman and Geman 1984) is a special case

when qij = 0 for all < i, j > and thus R = {v} and γk = 1 for all k.

One may also view the above method from the perspective of hit-and-run. In continuous

state space, a hit-and-run method (see Gilks etc 1996) chooses a new direction �e (random

ray) at time t and then sample on this direction by a ∼ π(x + a�e). Liu and Wu (1999)

extended it ray to any compact groups of actions. In finite state space Ω, one can choose

any finite sets Ωa ⊂ Ω and then apply the Gibbs sampler within the set. 1

But it is difficult to choose good directions or subsets in hit-and-run methods. In the

cluster Gibbs sampler presented above, the subset is selected by the auxiliary variables on

the edges.

1Persi Diaconis once discussed a unifying view of hit-and-run for MCMC in a talk in 2002.
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4.2 The multiple flipping scheme

Given a set of connected components CP(U|X) (see eqn. (35)) after the clustering step,

instead of flipping a single component R, we can flip all (or any chosen number of) connected

components simultaneously. There is room for designing the proposal probabilities for

labeling these connected components, independently or jointly. In what follows, we assume

the labels are chosen independently for each connected component cp ∈ CP(U|X), by

sampling from a proposal probability q(Xcp = l|cp). Suppose we obtain a new label X′

after flipping. Let Eon(X) ⊂ E and Eon(X
′) ⊂ E be the subsets of edges that connect the

vertices of same color in X and X′ respectively. We define two cuts by the differences of

the sets

C(X → X′) = Eon(X
′) − Eon(X), and C(X′ → X) = Eon(X) − Eon(X

′), (50)

We denote the set of connected components which have different colors before and after

the flipping by D(X,X′) = {cp : Xcp �= X′
cp}.

Proposition 8 The acceptance probability of the multiple flipping scheme is

α(X → X′) = min{1,
∏

<i,j>∈C(X→X′)(1 − qij)
∏

<i,j>∈C(X′→X)(1 − qij)

∏
cp∈D(X,X′) q(X′

cp|cp)
∏

cp∈D(X,X′) q(Xcp|cp)
· p(π′)

p(π)
} (51)

[Proof] See Appendix D.

Observe that when D = {R} is a single connected component, this reduces to Theo-

rem 4.

It is worth mentioning that if we flip all connected components simultaneously, then

the Markov transition graph of K(X,X′) is fully connected, i.e.

K(X,X′) > 0, ∀X,X′ ∈ Ω. (52)

This means that the Markov chain can walk between any two partitions in a single step.

5 Experiment 1: image segmentation

Our first experiment tests the cluster sampling algorithm in an image segmentation task.

The objective is to partition the image into a number of disjoint regions (as Figs.3 and
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(a) input image (b) atomic regions (c) segmentation result                        

            

Figure 7: More results for image segmentation.

4 have shown) so that each region has consistent intensity in the sense of fitting to some

image models. The final result should optimize a Bayesian posterior probability π(X) ∝
L(I|X)po(X).

In such problem, G is an adjacency graph with vertices V being a set of atomic regions

(see Figs.(3) and (4)). Usually |V | = O(102). For each atomic region v ∈ V , we compute
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a 15-bin intensity histogram h normalized to 1. Thus the edge probability is calculated as

qij = p(µe = on|I(vi), I(vj)) = exp{−1

2
(KL(hi||hj) + KL(hj||hi))}, (53)

where KL() is the Kullback-Leibler divergence between the two histograms. Usually

qij should be close to zero for < i, j > crossing object boundary. In our experiments, the

edge probability leads to good clustering as Fig. 4 shows.

Now we briefly define the target probability in this experiment. Let X = (V1, ..., VL) be

a coloring of the graph with L being a unknown variable, and the image intensities in each

set Vk is consistent in terms of fitting to a model θk. Different colors are assumed to be

independent. Therefore, we have,

π(X) = π(X|I) ∝
L∏

k=1

[L(I(Vk); θk)po(θk)]po(X). (54)

We selected three types of simple models for the likelihood models to account for differ-

ent image properties. The first model is a non-parametric histogram H, which in practice

is represented by a vector of B-bins (H1, ...,HB) normalized to 1. It accounts for cluttered

objects, like vegetation.

I(x, y; θ0) ∼ H iid, ∀(x, y) ∈ Vk. (55)

The other two are regression models for the smooth change of intensities in the two-

dimensional image plane (x, y), and the residues follow the empirical distribution H (i.e.

the histogram).

I(x, y; θ1) = β0 + β1x + β2y + H iid, ∀(x, y) ∈ Vk. (56)

I(x, y; θ2) = β0 + β1x + β2y + β3x
2 + β4xy + β5y

2 + H iid, ∀(x, y) ∈ Vk. (57)

In all cases, the likelihood is expressed in terms of the entropy of the histogram H

L(I(Vk); θk) ∝
∏

v∈Vk

H(Iv) =
B∏

j=1

Hnj

j = exp(−|Vk|entropy(H)). (58)

The model complexity is penalized by a prior probability po(θk) and the parameters θ in

the above likelihoods are computed deterministically at each step as the best least square

fit. The deterministic fitting could be replaced by the reversible jumps together with the

flipping of color. This was done in (Tu and Zhu, 2002) and is beyond the scope of our

experiments.
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The prior model po(X) encourages large and compact regions with small number of

colors, as it was suggested in (Tu and Zhu 2002). Let r1, r2, ..., rm, m ≥ L be the connected

components of all Vk, k = 1, ..., L. Then the prior is

po(X) ∝ exp{−α0L − α1m − α2

m∑

k=1

Area(rk)
0.9}. (59)
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(a) convergence CPU time in seconds (b) Zoomed-in view of the first 5 seconds.

Figure 8: The plot of − ln π(X) over computing time for both the Gibbs sampler and our

algorithm for the horse image. Both algorithms are measured by the CPU time in seconds

using a Pentium IV PC. So they are comparable. (a). Plot in the first 1, 400 seconds.

The Gibbs sampler needs a high initial temperature and slow annealing step to achieve the

same energy level. (b). The zoomed-in view of the first 5 seconds.

For the image segmentation example (horse) shown in Figs. 3 and 4, we compare the

cluster sampling method with the single-site Gibbs sampler and the results are displayed

in Fig. 8. Since our goal is to maximize the posterior probability π(X), we must add an an-

nealing scheme with a high initial temperature To and then decreases to a low temperature

(0.05 in our experiments). We plot the − ln π(X) over CPU time in seconds with a Pentium

IV PC. The Gibbs sampler needs to raise the initial temperature high (say To ≥ 100)) and

uses a slow annealing schedule to reach good solution. The cluster sampling method can

run at low temperature. We usually raise the initial temperature to To ≤ 15 and use a

fast annealing scheme. Fig. 8.(a) plots the two algorithms at the first 1, 400 seconds, and
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Fig. 8.(b) is a zoomed-in view for the first 5 seconds.

We run the two algorithms with two initializations. One is a random labeling of the

atomic regions and thus has higher − ln π(X), and the other initialization sets all vertices

to the same color. The clustering methods are run five times on both cases. They all

converged to one solution (see Fig.3.(c)) within 1 second, which is O(102) times faster than

the Gibbs sampler.

Fig.7 shows four more images. Using the sample comparison method as in the horse

image, we plot − ln π(X) against running time in Figs. 9 and 10 for the images in the

first and second row of Fig.7 respectively. In experiments, we also compared the effect

of the edge probabilities. The clustering algorithm are O(100) times slower if we use a

constant edge probability µij = c ∈ (0, 1) as the original SW method does. For example

the single-site Gibbs sampler is an example with qij = 0, ∀ i, j.
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(a) (b)

Figure 9: Convergence comparison between the clustering method and Gibbs sampler in

CPU time (seconds) on the artificial image (circles, triangle and rectangles) in the first row

of Fig.7. (a). The first 1,200 seconds. (Right) Zoomed-in view of the first 30 seconds. The

clustering algorithm is run 5 trials for both the random and uniform initializations.
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Figure 10: Convergence comparison between the clustering method and Gibbs sampler in

CPU time (seconds) on the cheetah image. (Left) The first 1,200 seconds. (Right) Zoomed-

in view of the first 15 seconds. The clustering algorithm is run 5 times for both the random

and uniform initializations.

6 Multi-grid and Multi-level cluster sampling

When the graph size G is big, for example, |V | = O(104) ∼ O(106) in image analysis, a clus-

tering step has to flip many edges and is costly computationally. This section presents two

strategies for improving the speed – the multi-grid and multi-level cluster sampling. Our

methods are different from the multi-grid and multi-level samplings ideas in the statistical

literature (see Gilks et al 1996 and Liu 2001)

6.1 Rationale for multi-grid and multi-level cluster sampling

In multi-grid clustering sampling, we introduce an ”attention window” Λ (see Fig.12) which

may change location and size over time. The cluster sampling is limited to within the

window at each step, and this is equivalent to sampling a conditional probability,

XΛ ∼ π(XΛ|XΛ̄). (60)

The multi-level cluster sampling is motivated by the problem of hierarchic graph la-

beling. Fig. 11 illustrates an example in motion segmentation. Suppose we are given two

consecutive image frames in a video, and our goal consists of three parts: (i) calculate the
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Figure 11: Cluster sampling on multi-level of graphs for motion segmentation. A connected

component with the same color is frozen and collapsed into a single vertex in the level above.

planar velocity (i.e. optical flow) of the pixels in the second frame based on the displace-

ment between pixels in two frames, (ii) segment (group) the pixels into regions of coherent

intensities, and (iii) further group the regions into moving objects, such as the running

cheetah and the grass background where each object should have both consistent intensity

and motion velocity in the image planar.

This problem can be represented in a three-level labeling with X = (X(0),X(1),X(2)),

and this label forms three levels of graph shown in Fig. 11,

{G(s) =< V (s), E(s) > : s = 0, 1, 2}. (61)

G(0) is the image lattice with each vertex being a pixel. The pixels are labeled by X(0)

according to their planar motion velocity and thus grouped into a number of small regions of

nearly constant velocity in G(1). The vertices in G(1) are further labeled by X(1) according

to their intensities and grouped into a smaller graph G(2), which is in turn labeled by X(2).

The vertices has reduced from O(105) in G(0) to O(102) in G(1) and to O(10) in G(2).

We should discuss more details in the next two subsections. In the rest of this subsection,

we discuss the theoretical justifications for the multi-grid and multi-level cluster sampling.

The essence of the cluster sampling design is that its Markov chain kernel observes the
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detailed balance equations as a result of the Metropolis-Hastings design.

π(X)K(X,Y) = π(Y)K(Y,X), ∀X,Y. (62)

The detailed balance equation is a sufficient condition for K satisfying the invariant condi-

tion,
∑

X

π(X)K(X,Y) = π(Y), ∀Y. (63)

In practice, one may design a set of Markov chain kernels, each corresponding to a

specific MCMC dynamics,

∆ = {Ka, a ∈ A}, (64)

The overall Markov chain kernel is a mixture of these dynamics with probability qa,

K(X,Y) =
∑

a∈A
qaKa(X,Y), ∀X,Y. (65)

There are two basic design criteria for ∆, which are easily observed in the finite state space.

1. The Kernels in ∆ are ergodic so that for any two points X and Y, there is a path

of finite length (X,X1, ...,XN ,Y) between X and Y consisting of the N + 1 kernels

k(0), ..., K(N) ∈ ∆, with

Kk(0)(X,X1) · Kk(1)(X1,X2) · · · Kk(N)(XN ,Y) > 0.

2. Each sub-kernel observes the detailed balance equations, and thus the overall kernel

satisfies them.

The multigrid and multi-level design in the next two subsections are ways for designing

the sub-kernels that observe the detailed balance equations.

6.2 Multigrid clustering sample

Let Λ be an “attention window” on graph G, and X = (V1, V2, ..., VL) the current labeling

state. Λ divides the vertices into two parts,

V = VΛ ∪ VΛ̄, and X = (XΛ,Xλ̄). (66)
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Figure 12: Multigrid flipping: computation is restricted to different “attention” windows

Λ of various sizes, with the rest of the labels fixed.

For example, Fig.12 displays a rectangular window Λ (in red dashed) in a lattice G.

The window Λ cuts some edges within each subset Vk, k = 1, 2, ..., L, and we denote them

by,

C(Vk, Λ) = {< s, t >: s ∈ Vk ∩ VΛ, t ∈ Vk ∩ VΛ̄}.
In Fig.12 the window Λ intersects with three subsets V1 (white), V2 (black), and V3 (grey),

and all edges crossing the (red) rectangle window are cut.

multi-grid cluster sampling

1. Select an attention window Λ ⊂ G.

2. Cluster the vertices within Λ and select connected component R.

3. Flip the label of R.

4. Accept the flipping with probability uses XΛ̄ as the boundary condition.

Following the same procedure as in Section (3), we can derive the proposal probability

ratio for selecting R in the two states XA and XB within Λ.

Proposition 9 The probability ratio for proposing R as a candidate cluster within window

Λ at two states X and X′ is

q(R|X, Λ)

q(R|X′, Λ)
=

∏
<i,j>∈C(R,V�)−C(V�,Λ)(1 − qij)

∏
<i,j>∈C(R,V�′ )−C(V�′ ,Λ)(1 − qij)

.
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In Fig. 12), we have X = XA and X′ = XB (� = 1, �′ = 3).

The difference between this ratio and the ratio in proposition 3 is that some edges in

C(V�, Λ) ∪ C(V�′ , Λ) no longer participate in the computation.

Proposition 10 The Markov chain simulated by the multi-grid scheme has invariant prob-

ability π(XΛ|XΛ̄) and its kernel K observes the detailed balance equation,

π(XΛ|XΛ̄)K(XΛ,YΛ) = π(YΛ|XΛ̄)K(YΛ,XΛ). (67)

Proposition 11 Let π(X) be a target probability defined on a graph G =< V,E > and

Λ ⊂ V a window, if a cluster sampling step has a kernel Ka that observes the detailed bal-

ance equation with respect to a conditional probability, then it observes the detailed balance

equations,

π(XΛ)K(XΛ,YΛ) = π(YΛ)K(YΛ,XΛ), (68)

The proofs for the two propositions are straightforward.

6.3 Multi-level cluster sampling

Level 1 Level 2

Figure 13: Multi-level cluster sampling. Computation is performed at different levels of

granularity, where the connected components from the lower level collapse into vertices in

the higher level.
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Following the notations in Section (6.1), the problem is hierarchic labeling with G =

(G(0),G(1),G(2)) and X = (X(0),X(1),X(2)). Each level of labeling X(s) is equivalent to a

partition of the lattice with connected components.

CP(X(s)) = {cp(s)
1 , cp

(s)
2 , ..., cp

(s)

m(s)}, s = 0, 1, 2. (69)

Note that vertices in each connected component have the same label and two disconnected

components may share the same label.

Definition 2 The hierarchic labels X = (X(0),X(1),X(2)) are said to be ”nested” if

∀cp(s) ∈ CP(X(s)), ∃cp(s+1) ∈ CP(X(s+1)) so that cp(s) ⊂ cp(s+1), s = 0, 1.

A nested X has a tree structure for the levels of labels. A vertex in level s+1 has a number

of children vertices in level s.

multi-level cluster sampling

1. Select a level s, usually in an increasing order.

2. Cluster the vertices in G(s) and select connected component R.

3. Flip the labeling of R.

4. Accept the flipping with probability uses the other levels (denoted by X(−s)) as the

boundary condition.

Proposition 12 Let π(X) be a target probability with nested labeling X = (X(0),X(1),X(2)),

the cluster sampling on the three levels of graphs have kernels K(0), K(1) and K(2) respec-

tively. If they observe the detailed balance equations with respect to the conditional proba-

bilities,

π(X(s)|X(−s))K(s)(X(s),Y(s)) = π(Y(s)|X(−s))K(s)(Y(s),X(s)), s = 0, 1, 2. (70)

where X(−s) means X except X(s), then it observes the detailed balance equation (62).
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image frame I1 image frame I2

Figure 14: Two consecutive image frames with two moving objects in the foreground and

background respectively. The pixels in area φ1 are not seen in I2 and reversely the pixels

in φ1 are not seen in image I1, and they are called ”half-occluded” images. Other pixels

can be mapped between the two frames. The displacement stands for the planar motion.

7 Experiment 2: hierarchic motion segmentation

Now we report the experiments on motion analysis using multi-grid and multi-level cluster

sampling.

Let I1, I2 be two consecutive image frames in a video as Fig. 14 illustrates, due to motion

occlusion, some points are visible in only one image, say the shadow areas φ1 in I1 and φ2

in I2 which are called ”half-occluded” points, and all other points can be mapped between

the two image frames ρ1 and ρ2. The mapping function is called the ”optical flow” field,

(u, v) : ρ2\φ2 �→ ρ1\φ1. (71)

For any point (x, y) in the first frame, (u(x, y), v(x, y)) is the displacement for the planar

motion velocity. Usually one can assume that the intensity of a point will be constant

(with stable illumination and Lambertian surfaces) between two frames, and the residue

is modeled by Gaussian noise n ∼ Gaussian(0, σ2
o). Let’s take the second image as the

reference frame,

I2(x, y) = I1(x − u(x, y), y − v(x, y)) + n(x, y), ∀ (x, y) ∈ ρ2\φ2. (72)

We discritize the image planes ρ1 and ρ2 into lattices Λ1 and Λ2 respectively. In the
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motion analysis problem, we consider discrete pixels in the second image frame G(0) = Λ2,

and each pixel has three labels x = (x(0), x(1), x(2)).

1. Its velocity x(0) = (u, v) which is discretized into 13 × 13 = 169 different planar

velocities. We assume the maximum displacement in the lattice between two con-

secutive frames to be −3 ≤ u, v ≤ 3 with 1/2 pixel precision. That leads to 169

possible planar velocities. Then for pixels which do not have corresponding pixels

in the first frame, i.e. pixels in φ2, their velocities cannot be decided and denote it

by nil. It can be estimated based on context information on their intensity through

image segmentation. Thus we have x(0) ∈ {nil, 1, 2, ..., 169} as its velocity label.

2. Its intensity label x(1) ∈ {1, 2, ..., L(1)} for image segmentation. That is, the image

lattice is partitioned into a number of regions with coherent intensities in terms of

fitting to the three families of image models in Section (5).

3. Its object label x(2) ∈ {1, 2, ..., L(2)}. That is, the image lattice is partitioned into a

number of L(2) objects which have coherent intensity and motion.

To fix notation, we divide the image frames into two parts,

I1 = (I1,φ1 , I1,φ̄1
), I2 = (I2,φ2 , I2,φ̄2

)

The target probability is the Bayesian posterior,

π(X) = π(X(0),X(1),X(2)|I1, I2) ∝ L(I1,φ̄1
|I2,φ̄2

,X(0))L(I2|X(1))πo(X). (73)

The first likelihood is specified by the optical flow model,

L(I1,φ̄1
|I2,φ̄2

,X(0)) =
∏

(x,y)∈Λ2\φ2

1√
2πσo

exp{− 1

2σo

(I2(x, y) − I1(x − u(x, y), y − v(x, y)))2}.
(74)

The second likelihood is the same as the image segmentation likelihood in Section (5).

The prior probability assumes piecewise coherent motion. That is, each moving object

o = 1, 2, ..., L(2) has a constant planar velocity co ∈ {1, 2, ..., 169} plus a Markov model for

the adjacent velocities. Also each object (and region) has compact boundary.
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πo(X) ∝
L(2)∏

o=1

exp{−α
∑

v,x(2)(v)=o

|x(0)(v) − co|2 − β
∑

v′∈∂v

|x(0)(v′) − x(0)(v)|}

L(1)∏

l=1

exp{−γ|∂V
(1)
l |}

L(0)∏

i=1

exp{−δ|∂V
(0)
i |} exp{−λ0L(0) − λ1L(1) − λ2L(2)} (75)

Now we define the edge probability at the three levels of graph for the auxiliary variables.

At level X(0), let (x, y) and (x′, y′) be two adjacent pixels, and (u, v) the common motion

velocity of both pixels, The edge probability is defined as

q(0)(v, v′) = min
(u,v)

exp{−[|I2(x, y) − I1(x − u, y − v)| + |I2(x
′, y′) − I1(x

′ − u, y′ − v)|]/7
= −|I2(x, y) − I2(x

′, y′)|/10}.

At the region level X(1), the edge weights between two adjacent nodes v, v′ (each being

a set of pixels) are based on the KL divergence between their intensity histograms hu, hv,

as in Section 5.

At the object level X(2), the edge weights between two adjacent nodes v, v′ (each

being a set of pixels) are based on the KL divergence between their motion histograms

hm(v), hm(v′). We maintain the histogram of the motion velocities in each object.

q(2)(v, v′) = exp{−1

2
(KL(hm(v)||hm(v′)) + KL(hm(v′)||hm(v))}. (76)

We run the multi-grid and multi-level SW-cut on a number of synthetic and real world

motion images. We show four results in Fig.15. The first image shows two moving rectangles

where only the 8 corners provide reliable local velocity (aperture problem) and the image

segmentation is instrumental in deriving the right result. For the other three sequences,

the algorithm obtains satisfactory results despite large motion and complex background.

The cheetah image in Fig.11 is a fifth example.

We choose the segmentation example – the cheetah image in Fig. 7 for comparison of the

different cluster sampling methods. In section (5), the pixels are grouped deterministically

into atomic regions in a pre-processing stage. Now we do the cluster sampling in two levels

and the atomic regions are generated by one level of the cluster sampling process.

34



frame I1 frame I2 image segmentation motion segmentation

Figure 15: Hierarchical motion analysis. From left to right: first frame I1, second frame I2,

image segmentation, motion segmentation. The image segmentation is the result at level

s = 1 and the motion segmentation is the result at level s = 2. For the color images (the

3rd and 4th rows) we treated the three R,G, B color bands each as a grey image.

We plot in Fig.?? the − ln π(X) vs the CPU time for various methods. This figure should

be compared with Fig. 10. The multi-level cluster sampling was run in two initializations.

Firstly, the two level cluster sampling is much slower than the the one level clustering.

The latter assumed deterministic atomic regions. But the two level cluster sampling can

reach a deeper minimum as it has more flexibility in forming the atomic regions.

Secondly, the multi-grid method is the fastest among the methods that work directly

on pixels.

Thirdly, the Gibbs sampler plotted in Fig. 10 run on the deterministic atomic regions

not the pixels. If it is running on the pixels, we cannot get it converge to the minimum in
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Figure 16: Convergence comparison of multigrid and multi-level cluster sampling for the

cheetah image in Fig. 7. (see text for explanation)

any short time.

8 Discussion

In this paper, we only report the empirical speed of the cluster sampling methods. In the

literature, there are no analytic results for even the original Swendsen-Wang method in the

presence of external fields, for it is difficult in quantifying the external fields. In our case, it

is impractical to quantify the natural images with a reasonable model. In our experiment,

the cluster Gibbs sampler with acceptance probability 1 does not necessarily mix faster

than the cluster sampling with rejection. The former is more computationally costly in

each step. These problems remain open for further investigation.
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Appendix A Proof of Proposition 3

Consider a reversible jump between two states X and X′ which differ only in the labeling

of R,

XR = � �= �′ = X′
R, XR̄ = XR̄. (77)

Our objective is to derive the proposal probability ratio q(R|X)
q(R|X′) for selecting R in X and

X′. This ration depends on the probabilities in the clustering and flipping steps.
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Let U|X and U′|X′ be the auxiliary variables following the Bernoulli probabilities in the

flipping step, and they leads to two sets of connected components CP(U|X) and CP(U′|X′)

respectively. We divide U into two sets for the on and off edges respectively,

U = Uon ∩ Uoff . (78)

Uon = {µij : µij = 1}, Uoff = {µij : µij = 0}.
We are only interested in the U’s (and thus CP’s) which yield the connected component

R. We collect all such U given X in a set,

Ψ(R|X) = {U : R ∈ CP(U|X)}. (79)

In order for R being a connected component in X, all edges between R and V�\R must be

cut (turned off), otherwise R is connected to other vertices in V� and can not be a connected

component. So, we denote the remaining ”off” edges by −Uoff ,

Uoff = C(R, V�) ∪ −Uoff , ∀U ∈ Ψ(R|X). (80)

Similarly, we collect all U′ in state X′ which produce the connected component R,

Ψ(R|X′) = {U′ : R ∈ CP(U′|X′)}. (81)

In order for R to be a connected component in U′|X′, the clustering step must cut all the

edges between R and V�′ . Thus we have

U′ = U′
on ∩ U′

off (82)

with

U′
off = C(R, V�′) ∪ −U′

off , ∀U′ ∈ Ψ(R|X′). (83)

A key observation is that there is a one-to-one mapping between Ψ(R|X) and Ψ(R|X′).

Proposition 13 For any U ∈ Ψ(R|X), there exists one and only one U′ ∈ Ψ(R|X′) such

that

CP(U|X) = CP(U′|X′) (84)

and

Uon = U′
on,

− Uoff =− U′
off . (85)

That is, U and U′ differ only in the cuts C(R, V�) and C(R, V�′).
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Suppose that we choose R ∈ CP with probability q(R|CP), the probability for choosing

R at X is the sum over all possible U ∈ Ψ(R|X) with the probability of choosing U ∈
Ψ(R|X) times the probability of choosing R from CP(U|X),

q(R|X) =
∑

U∈Ψ(R|X)

[q(R|CP(U|X))
∏

<i,j>∈Uon

qij

∏

<i,j>∈−Uoff

(1−qij)]
∏

<i,j>∈C(R,V�)

(1−qij). (86)

Similarly, the probability for choosing R ⊆ V�′ at X′ is

q(R|X′) =
∑

U′∈Ψ(R|X′)
[q(R|CP(U′|X′))

∏

<i,j>∈U′
on

qij

∏

<i,j>∈−U′
off

(1 − qij)]
∏

<i,j>∈C(R,V�′ )
(1 − qij).

(87)

Dividing eqn. (86) by eqn. (87), we obtain the ratio in eqn. (39) due to cancelation

following the observations in Proposition 13.

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V�)(1 − qij)

∏
<i,j>∈C(R,V�′ )(1 − qij)

. (88)

In a special case when R = V�, then C(R, V�) = ∅ and
∏

<i,j>∈C(R,V�)(1 − qij) = 1.

End of Proof.

Note that the proof holds for arbitrary design of qij, arbitrary design of q(R|CP(U|X))

on arbitrary graphs. When the graph is very densely connected, then the cuts C(R, V�)

and C(R, V�′) will become large. For the graphs with O(1) connectivity as in the image

applications, the sizes of the cuts C(R, V�) are in the order of the perimeter if the component

R, i.e. O(|∂R|).

Appendix B Proof of Theorem 4

[Proof] For the canonical case, there is a unique path moving between X and X′ in one

step – choosing R and changing its label. Therefore we rewrite eqn.(38),

q(X → X′)
q(X′ → X)

=
q(R|X)

q(R|X′)
· q(XR = �′|R,X)

q(XR = �|R,X′)
. (89)

Plug it in the Metropolis-Hastings eqn.(36), we obtain the result.

For the split and merge cases (see Section 3.2), there are two paths moving between X

and X′ in one step. The proposal probability is the sum of proposal probabilities in the

two pathes.
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Without loss of generality, let X = (V1, V2, V3, ..., Vn) and X′ = (V1+2, V3, V4, ..., Vn) with

V1+2 = V 1 ∪ V2.

• Path 1: Choose R = V1 in X and merge it to V2 (i.e. choosing XR = 2) to reach

X′, and reversely, Choose R = V1 ⊂ V1+2 in X′ and split it to a new color V1 (i.e.

choosing XR = 1) and the rest V1+2\V1 is named V2.

• Path 2: Choose R = V2 in X and merge it to V1 (i.e. choosing XR = 1) to reach X′,

and reversely, Choose R = V2 ⊂ V1+2 in X′ and split it to a new color V2 and the rest

V1+2\V2 is named V1.

q(X → X′)
q(X′ → X)

=
q(R = V1|X)q(XR = 2|R = V1,X) + q(R = V2|X)q(XR = 1|R = V2,X)

q(R = V1|X′)q(XR = 1|R = V1,X′) + q(R = V2|X′)q(XR = 2|R = V2,X′)
.

(90)

Then we have two observations in the following.

Firstly, from Proposition 3, we know,

q(R = V1|X)

q(R = V1|X′)
=

1
∏

<i,j>∈C(V1,V2)(1 − qij)
=

q(R = V2|X)

q(R = V2|X′)
(91)

Secondly, once R is selected from X (or X′), its new label follows a label proposal

probability which depends on the partition of all other vertices V \R which are the same

for both X and X′. Note that all permutations of the labelings are considered equivalent.

Therefore we have

q(XR = 2|R = V1,X)

q(XR = 1|R = V1,X′)
=

q(XR = 1|R = V2,X)

q(XR = 2|R = V2,X′)
. (92)

Therefore, we can write the ratio in both paths as q(XR=�′|R,X)
q(XR=�|R,X′) . Plug eqns. (91) and (92)

in eq. (90), we have the result.

The split case is the reverse of the merge case and thus both cases are proven in the

above discussion. End of proof
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Appendix C Proof of Proposition 7

[Proof]Let the label of R in state X be XR = � and after relabeling X′
R = �′. By the

Metropolis acceptance eqn. (36) and by (38) and Prop. 3, we obtain

α(X → X′) = min{1, γ�′

γ�

· q(XR = �|R,X′)
q(XR = �′|R,X)

· π(X′)
π(X)

}. (93)

We observe that the number and values of γk do not depend on the particular value of XR,

so in both states X,X′, all γk are the same. Since X∂R = X′
∂R, we have

N(X)∑

k=1

γk · π(XR = k|X∂R) =
N(X′)∑

k=1

γk · π(X′
R = k|X′

∂R) (94)

so
q(XR = �|R,X′)
q(XR = �′|R,X)

=
γ� · π(X)

γ�′ · π(X′)
(95)

So we get

α(X → X′) = min{1, γ�′

γ�

· γ� · π(X)

γ�′ · π(X′)
· π(X′)

π(X)
} = 1, (96)

which means the move is always accepted. End of proof

Appendix D Proof of Proposition 8

[Proof] We will proceed in a similar fashion with the proof of Prop. 3, from Apendix A.

We maintain the notations for Uon,Uoff , CP(U|X) from Appendix A.

In state X, let U be one of the many sets of auxiliary variables that can be used to obtain

the connected components D(X,X′). Then any cp ∈ D(X,X′) is connected through edges

of Uon.The probability to obtain state X′ through flipping the components from CP(U|X)

independently is

q(X′|U,X) =
∏

cp∈CP(U|X)

q(X′|cp) (97)

The probability to go from state X to X′ is

q(X′|X) =
∑

U

∏

cp∈CP(U|X)

q(X′|cp)
∏

<i,j>∈Uon

qij

∏

<i,j>∈Uoff

(1 − qij) (98)

Let

−Uoff = Uoff\C(X → X′) (99)
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Then

q(X′|X) =
∏

<i,j>∈C(X→X′)
(1−qij)

∏

cp∈D(X,X′)
q(X′|cp)

∑

U

∏

cp∈CP(U|X)\D(X,X′)
q(X′|cp)

∏

<i,j>∈Uon

qij

∏

<i,j>∈−Uoff

(1−qij)

(100)

Similarly, the probability of going from state X′ to X is

q(X|X′) =
∏

<i,j>∈C(X′→X)

(1−qij)
∏

cp∈D(X,X′)
q(X|cp)

∑

U′

∏

cp∈CP(U′|X′)\D(X,X′)
q(X|cp)

∏

<i,j>∈U′
on

qij

∏

<i,j>∈−U′
off

(1−qij)

(101)

Smilarly to Apendix A, there is a one-to-one correspondence between auxiliary variables

U in state X and U′ in state X′ such that such that

CP(U|X) = CP(U′|X′) (102)

and

Uon = U′
on,

− Uoff =− U′
off . (103)

Then the sums in eqs. 100 and 101 are equal, so we obtain, by cancellation

q(X|X′)
q(X′|X)

=

∏

<i,j>∈C(X→X′)
(1 − qij)

∏

<i,j>∈C(X′→X)

(1 − qij)

∏

cp∈D(X,X′)
q(X′|cp)

∏

cp∈D(X,X′)
q(X|cp)

(104)

which, by applying the Metropolis acceptance eq. 36, gives the desired result. End of proof
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