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Abstract. In this paper we present a generative model for image se-
quences, which can be applied to motion segmentation and tracking,
and to image sequence compression. The model consists of regions of rel-
atively constant color that have a motion model explaining their motion
in time. At each frame, the model can allow accretion and deletion of
pixels. We also present an algorithm for maximizing the posterior prob-
ability of the image sequence model, based on the recently introduced
Swendsen-Wang Cuts algorithm. We show how one can use multiple cues
and model switching in a reversible manner to make better bottom-up
proposals. The algorithm works on the 3d spatiotemporal pixel volume
to reassign entire trajectories of constant color in very few steps, while
maintaining detailed balance.



1 Introduction

Motion segmentation and tracking can be performed together in a unified way
as it was clearly showed in [3]. However, there is still a lot to be done in this
direction. Better motion and shape priors should be studied, the 3d reconstruc-
tion of the moving objects and their motion should be used wherever possible as
better motion models. Flexible motion models (2d or 3d) should also be studied.

Another important and very interesting open question is the relationship be-
tween the image segmentation and motion segmentation. When we see a moving
scene, we perceive it as some ”segmentation”. But this is neither image segmen-
tation based on image intensity, neither motion segmentation based on motion.
Somehow, our brain is capable of combining all the existing information to give a
better segmentation than either the intensity based or the motion based segmen-
tation. How does the brain combine the two different segmentations cues into
a single segmentation? In this paper, we try to give an answer to this question
using generative models in a probabilistic Bayesian framework.
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Fig. 1. A rectangle of uniform texture moving in a similar background is properly
modeled and segmented by our method.

Fig. 2. Two slanted rectangles of constant intensity moving horizontally create false

motion cues at their intersection points. Also, there is no motion information inside
the rectangles. But they are properly modeled and segmented by our method.

There are some classical examples that should be explained by a system
combining image and motion segmentation. For example, if one has an image



of uniform texture with an object of the exactly same texture moving in the
center of the image, the system should be able to correctly segment the object
out based on motion. Here the motion segmentation provides the clues for the
desired ”segmentation”. On the other hand, in an image sequence with objects of
constant intensity, the motion cues are very sparse, namely only at the boundary
of the objects and in direction perpendicular to the boundary. Some corners could
even have motion not compatible with any of the moving objects of the scene (see
Fig. 2). The desired ”segmentation” has to integrate these sparse and sometimes
misleading motion cues and combine them with intensity information to obtain
a good segmentation, based on the prior information that motion boundaries
often occur at intensity boundaries. Here the image segmentation provides most
of the cues for the desired ”segmentation”.

Our generative model can easily handle these examples, as one can see in
Figures 1 and 2. Moreover, it can also handle extreme cases with large motion
as shown in Figure 3. In a square of size 100x100 filled with random pixels, a
10x10 square of random pixels is moving, on three frames, with the speed of
30 pixels per frame. By having the right motion hypotheses, our framework can
segment and track the little square.
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Fig. 3. A 10x10 square of random pixels moving in a similar background at a speed of
30 pixels per frame is properly modeled and segmented by our method.

It is our belief that image segmentation and motion segmentation should
be performed together, in a hierarchical fashion. A reason for this is the fact
that intensity regions can already have their motion inferred, so the motion
segmentation of an object with many intensity regions can be thought as just
combining the intensity regions based on their common motions.

In other words, the first level is a special kind of image segmentation into
regions of relatively constant intensity moving by some motion model, then these
regions are combined together, on a second level of representation and computa-
tion, based solely on their motion models to give the motion segmentation. See
Figures 11 and 12 for motion segmentation results based on simple clustering of
the motion models of the intensity regions.

However, there is more to the second level (of motion segmentation) than just
clustering the motions of the intensity regions. The higher level model can be a



3d model (rigid 3d motion for example) while the motions of the different image
regions would be usually much simpler (planar motion models). Together, the
intensity regions can provide the necessary information to allow the computation
of a global 3d model, even though each of them individually doesn’t have that
information. Also, the higher level will have priors for motion segmentation on
top of the image segmentation priors of the lower level.

The purpose of this paper is to present the model and a computational frame-
work for the first level, that of segmenting and tracking of regions of relatively
constant intensity and motion. In a subsequent paper we will show how to inte-
grate this level with the second level of motion segmentation tracked in time.

Our framework is based on a probabilistic Bayesian generative model that
explains all the pixels in the motion sequence. Usually (see [2,3,7,9]), proba-
bilistic models for motion are put on the spatiotemporal gradient of the image,
without explaining the original image sequence. This is based on the assumption
that the scene is lambertian without any abrupt changes in intensity or motion.
This highly restricts the applicability of the gradient based methods.

In our framework we use the gradient based motion models as one kind of
bottom-up proposals. Since they do not always give the correct motion model,
our algorithm will take them, and accept or reject them based on the Metropolis-
Hastings algorithm and our posterior probability.

An important aspect of our framework is that we don’t try to track pixels,
we try to track small regions of relatively constant color. This allows the usage
of motion models beyond the classical translational models.

This work was sponsored by the NSF SGER, grant 11S-0240148.

2 The image sequence model

Let I = (I, ..., I;) be the observed image sequence. We want to find a partition
R of I into an unknown number n of subsets R; of relatively constant color or
texture, which we call region trajectories, or just regions. Each R; represents the
trajectory of a patch of constant color or uniform texture tracked in time by a
rigid motion model (translation, affine, projective or homography). We denote
by R! the region R; at frame t.

The model of R; consists of an image model and a motion model. The image
model models all pixels that are accreted (their projection through the motion
model in the previous frame falls outside the region R;). In our framework, we
chose the image model to be a Gaussian model N (p;,0;). The motion model
T} is a transformation that describes how the region changes from frame ¢ to
frame ¢ + 1. At each frame it is a translation, affine, projective or homography
transformation. Later on we could consider even flexible models. Since the re-
construction from the previous frame through the motion model is not perfect,
we have a noise model 7; modeled by a Gaussian N (v;, 7;). Thus

L1 (THz)) — Ii(x) ~ N(v,73), Vo € RE s.t. T} (x) € RE? (1)

Let T; = {T!} be all the transformations for region R; and T' = {T1,...,T,,} be
the transformations of all the regions. Similarly let § = {6, ...,0,,} be the image



models and 7 = {1, ..., } be the noise models for all the regions. For now, we
assume the regions are independent. In a subsequent paper, we will group them
into moving objects, based on their motion similarity.

Fig. 4. A region trajectory R; has an image model that explains the accreted pixels
(shown in dark), whose projection in the previous frame is not inside R;, and a motion
model for the rest of the pixels (shown in light color).

Thus the hidden variables are:
W = {n, (R;,0;,Ti,mi),i € {1,..,n}} (2)
We work in a Bayesian framework with prior and likelihood:
PW|I) x P(IW)P(W) = P(I|R,0,T,n)p(R,0,T,n)
We assume a Markov dependence of each frame on the previous one:

P(I‘R,evTvn) = HP(It+1‘It7R797T777)
t

The pixels I**1(R;) of region R; at frame t+1 are reconstructed from Iy, R, 0, T, n
as follows: All pixels z € REH whose back-projection by T} falls inside R! are
modeled by the noise model 7;. Let Mf“ be these pixels, namely:

M ={w e B o =T}(y),y € R} (3)
The pixels of Rﬁ“ — Mf“ are modeled by the image model ;. Thus:
P(ItJrl‘Itv R,0,T,n) = Hz Hw:T}(y)eMit+1 Py, (I(I) - I(y)) Hl HzeRE+1_Mit+1 Py, (I('T))
« ILL eiﬁ EI:TZW>€M;+1 (I(x)=I(y)—vs)? 1. eié > (4)

The prior is simplified as P(R,0,T,n) = P(R|T)P(T)P(6)P(n). For now we

take P(T) = [[, [, 0(T} — T}~ "). We also assume P(6#) and P(n) to be uniform.
The factor P(R|T') represents that the regions should be big, should have a

smooth boundary, and be consistent with the transformations 7. We take:

)2
ER§+17M;+1(I(I) Hi)

>

P(R|T) x I_Iexp[faVol(Ri)O'9 — BArea(dR;) — y(ni™ + ng")) (5)



where ni" represents the number of pixels of R; whose back-projection to the
previous frame is not in R;, and n¢“! represents the number of pixels of R; whose

projection to the next frame is not in R;.

3 Space-time segmentation by Swendsen-Wang Cuts

3.1 The multi-cue Swendsen-Wang Cuts

Sometimes there are many cues which provide bottom-up information for the
graph partitioning. How can we combine these cues while maintaining detailed
balance?

Great help for answering this question comes from the following

Theorem 1 Let q1,...,q, be Markov moves with transition kernels K1, ..., K,
such that all q; observe detailed balance with respect to the same probability p.
Let aq,...,a, > 0 be such that oy + ... + a,, = 1. Then the Markov move q that
at each step randomly selects an i € {1,...,n} with probability ov; and executes q;
has transition kernel:

i=1
and also satisfies the detailed balance equation for p.

From this theorem, the answer to our question comes easily:

Corollary 2 Let SWy, ..., SW,, be a number of Swendsen-Wang Cuts algorithms
working on the same nodes V' and same posterior probability P, with adjacency
graphs G1, ...,Gy,. Let aq, ..., > 0 be fixzed numbers such that oy + ...+ o, = 1.
Then the move consisting of randomly choosing an i with probability «; and
executing SW; is reversible and ergodic.

We can think of each SW; as a hypothesis that is being tested in a reversible
manner.

The only restriction in using the above results is that the «; be fixed. We can
still use, if possible, bottom-up information to select good values for «;, resulting
in an efficient visiting schedule of the different SW; as long as the schedule is
fixed a priori. This way we can have some hypotheses more likely than other, so
they are tested more often. For each hypothesis, the algorithm will be efficient at
the places where that hypothesis is valid. By combining a good set of hypotheses,
the algorithm will be efficient everywhere.

3.2 Multi-cue SW Cuts for motion

The SW Cut algorithm is most efficient when the sampled connected components
closely resemble the segments in the desired segmentation. Thus, in order to have
good bottom-up information, the proposals should be long region trajectories.
For that, the edges of the SW graph must be very informative. It is not enough



just to have them on a 3d lattice with weights based on pixel similarity, we have
to bring in the motion and intensity hypotheses.

A motion hypothesis is a k-tuple m = (T, ..., T*) for the hypothesized affine
transformation at each frame. Usually, we use only constant velocity hypotheses
(v,v,...,v). In the future, we will use more complex hypotheses which are based
on more complex motion (rotation, zoom, etc).

An intensity hypothesis is an intensity model G (we use gaussian, but we can
also use histograms of filter responses for texture, or a histogram of intensity
values for the clutter model).

Together they compose a hypothesis h = (G, m) = (G, T",...,T%).
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Fig. 5. The 2d space of z-motion (z-axis) and intensity (y-axis) of feature points from
Figures 1,2,9,10 and 12 respectively. Darker means more instances of features.

To obtain motion hypotheses, we extract some feature points (corners) and
we perform clustering in the joint space of intensity-motion hypotheses of the
corners. We obtain a few (less than 20) clusters. For each such cluster we will
have a SW graph. For illustration, we present in Figure 5 the x-motion (z-axis)
and intensity (y-axis) obtained from the feature points of Figures 1,2,9,10 and
12 respectively.

Fig. 6. For each hypothesis (G,T",...,T%), the SW graph is a lattice at each frame
(solid thin lines), and between frames ¢ — 1 and ¢ there are edges only in the direction
x — T"(x) (thick lines). Shown is the SW graph for hypothesis (G, v, ...,v),v = (—1,0).

For a hypothesis (G, T?, ..., T*), the SW graph is a lattice at each frame, and
from frame ¢ — 1 to ¢ consists only of edges @ — T;(x). This way the edges for
each graph are in a reasonable number, while being able to cover the most likely

motions.
For hypothesis h = (G, T?, ..., T*) with G = (u, ¢?), and x at frame ¢, define

gntw) = LI @) = 1)~ Lo (P @) 0 () = o)~ e (1) @)
)



dn(z) ifx € Iy
d"(z) ifx el (8)

qn(z) = {
(d(z) 4+ d"(x))/2 else

Then the edge weights for hypothesis h = (G, T, ..., T*) are:
q(z,y) = e~ 0-1(gn (@) +gn (y)+an(z)+an(v)) 9)

To get connected components, we use the Wolff variant, which grows a con-
nected component from a seed. First we sample a hypothesis h = (G, m) pro-
portional to the sum of the saliencies Sy (z) of all pixels x. Then the seed s is
sampled from a ”cry map” C, of how well each pixel fits its assigned image model
and motion model. Small value Cj(x) means z fits well its assigned model or is
not salient to this h. We take Cp(x) = aSk(z)(gm + gm(x)), With gm, gm from
(7),(8), m being the current model of & and « is chosen so that ) Cj(z) = 1.
Then, by sampling the seed s from the pmf C},, we usually obtain a pixel that
is unhappy with its current model and salient to the current h. Then we use the
SW graph G}, corresponding to h to grow the seed s to a component C', and flip
its label. It is easy to check that

Theorem 3 (SW Cuts with “cry map”). Consider a candidate component C
selected by SWC using a ”cry map” C’,‘;‘ (for state A), as described above. Let
q.(C|A) = >, cc CiX(x). If the proposed move to reassign C' from Gy to Gy is
accepted with probability

I a-9

qe(C]B) ecc@Vi—0) a(lIC, B, G) p(BII)
a(A — B) = min(1,
A= B =l G [ (=g aIC.A.Gu) plAIT)

e€C(C,V;—C)

) (10)

then the Markov chain is reversible and ergodic.

Thus basically we have an SW move for each hypothesis h, which is reversible.
Then the overall move is also reversible by Corollary 2.

Fig. 7. For an image sequence like Fig. 1 but with more texture, we present samples
from the graph in the direction of motion hypotheses (0,0) and (4, 0) respectively. We
see that for the right hypothesis, the SW reassigns long fibers.

The two extreme cases presented in the introduction, can explain very well
what happens. In the case of the rectangle of same texture as the background, the
chosen component Cs..4 are relatively small, but the motion information is very
peaked, so the correct motion is sampled most of the time. Thus the components
that are flipped are long ”fibers”, relatively thin, as shown in Figure 7.



In the case of the two slanted rectangles of uniform color, the lattice edges at
each time frame have big weight, so the chosen component Cj..q4 is big, and even
though the motion information might not be precise, the sampled component
C will be big in both space and time, as shown in Figure 8. In this case, the
problem is more of a "blob” tracking problem.

Fig. 8. For the image in Fig. 2, we present samples from the graph in the direction
of hypothesis of motion (0, 0). For clarity, the component of the background has been
removed. Even though the motion hypothesis is not correct for the moving rectangles,
the samples are big and meaningful in both space and time.

For real world problems, the components sampled will be between the ex-
treme cases, making use of the available intensity or motion information.

3.3 Model switching in Swendsen-Wang Cuts

It is clear that in our approach, the motion models are very important. If, at each
step, the proposed image models are inappropriate, the move will be rejected and
the algorithm will slow down drastically. This is why we have to combine the
model switching with the Swendsen-Wang Cuts reassignment in a single step:

Theorem 4 (SW Cuts with model switching). In the notations of [1], consider a
candidate component Vi selected by SWC. Let g, (1;|V;) be a proposal probability
from which the model u; of a subgraph V; of the partition is chosen by sampling.
If the proposed move to reassign Vo from Gy to Gy, and then change the model of
G, from ,uf‘ to uP and the model of Gy from ,uf,‘ to pf? is accepted with probability

H(l —qe)
o @ (Vi U Vo) gm (i [Vie = Vo) eectvo,vi Vo) q(1|Vo, B, Go)p(BII)
a(A — B) = min(1,
A= By =il BV —Vo)an B Ve UVe) [t — o) 41Vor A Golp(AlL

eeC(Vo,Vi—Vo)

)

(1)
then the Markov chain is reversible and ergodic.

For the model proposal probabilities, we will have three kind of propos-
als q1(T;|1), q2(T3| 1), q3(T;|I) used with frequency 0.98,0.01,0.01 respectively.
Each proposal is one type of reversible SW move and since we are using them
with constant frequency, the overall move is still reversible. First proposal, is
q1(T;|I) = 6(T;) enforces no change in model. Second proposal is ¢2(T;|I) = ¢ is
uniform in a discrete window of possible motions. This ensures that even if all
other proposals fail, one could still obtain the right model after enough time. The
third proposal is the constant velocity affine model from [3]. The usefulness of
the Cremers model (working on the spatiotemporal gradient VI = (I, I, I;))
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for our purpose is that it can be computed incrementally, so we always have it
available for all regions, without much overhead. It is,

T T
pi M(z,y)” Vsl
sl = 11 eopane e -

(z,y)ER;
where
a; b; ¢; xy10000
ﬂt: dz €; fl 7pi:(aiabi7ci7di76iafi71)T’M('xay): Ooo‘rylo
001 0000001
and VsI = (I, I,;, I;) is the spatiotemporal gradient of the image sequence I.
x
This corresponds to a velocity field at frame t: v;(z,t) =T} |y | = M(z,y)p;.
1

Since we discretized our model parameter space, we can easily compute the
proposal probability at each bin and then sample from the discretized proposal
probability ¢(p;), without having to compute the eigenvalues and eigenvectors.

4 Experiments

n = &E s \_.

Fig. 9. A moving person in front of a moving background.

We have already presented some experiments on synthetic sequences in Fig-
ures 1,2,3. Our experiments are performed on 3-5 frames of grayscale image
sequences.

Other results are presented in Figures 9,10, 11 and 12. We see that the
framework is capable of producing new image regions when new objects are
visible in the image, like the small car in Figure 10. In figures 11 and 12, we
also show some motion segmentation results obtained by simple clustering on
the motion velocities of the regions. The motion segmentations can be improved
by having priors on the motion regions, and not assuming the regions to be
independent. Animated demos for all examples can be found on the web at
http://www.cs.ucla.edu/~abarbu/Research/SWMotion3d/



11

Fig. 10. A car appears from behind another car in a static background.

Fig. 11. Waterfall with a moving background. Input sequence (first row),image segmen-
tation (second row) and motion segmentation obtained by clustering of the velocities
of the regions (third row).

5 Limitations and future work

Currently, the computation time is quite high, between 2 and 10 minutes per
frame for a 100x100 image on a PC. One reason is that the graph edges are still
not informative enough. For example, if one has two neighboring regions of very
similar intensity and no texture, moving differently, the edges will be strong and
the algorithm will not be able to separate the regions quickly. We will examine
how to use belief propagation and top-down information to change the edges of
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the graph to be more informative. Also, better shape priors which can be quickly
computed are needed to be studied.

Fig. 12. A walking cheetah on a moving background. Input sequence (first row),image
segmentation (second row) and motion segmentation obtained by clustering of the
velocities of the regions (third row).
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