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Abstract

In this paper, we propose a generative model for repre-
senting complex motion, such as wavy river, dancing fire
and dangling cloth. Our generative method consists of
four components: (1) A photometric model using primal
sketch[8] which transfers an image into an attribute graph
representation. Each vertex of the graph is a scaled and
oriented image patch selected from a dictionary. The graph
connects and aligns these patches. (2) A geometric model
which characterizes the deformation of the attribute graph.
(3) A dynamic model, which specifies the motion dynamics
of these vertices (patches) and their interactions in the form
of coupled Markov chains. (4) A topological model, which
interprets the graph topological changes over time. We
learn this generative model by a stochastic gradient algo-
rithm implemented by Markov Chain Monte Carlo (MCMC)
sampling. This method is shown to be effective in handling
the topological changes of graphs. The correctness of the
learned model is verified by the low-dimension reconstruc-
tion of the original image as well as by the realistic motion
sequences it synthesized.

1. Introduction

In the literature, people from both graphic and vision com-
munities always have keen interests in modeling complex
motion patterns like dancing fire, wavy water and dangling
cloth. A wide spectrum of models have been proposed to ac-
count for these motion phenomena. Fig.1 tries to map these

Figure 1: Three types of models used in the literature and
numbers of their parameters. Physics-based models use the
least number of parameters to specify a system. Image-
based models use the most number of parameters. We be-
lieve the number of parameters for human beings to specify
a system is in between the other two types of models.

models in a 1D axis according to the number of parameters
that a model memorizes from the observed image sequence.
At one extreme is thephysics-based models, e.g. [16, 4].
This type of models are very parsimonious, and they explain
the motion of the underlying systems by physics with few
parameters. At the other extreme isimage-based models,
e.g. [17, 21], which remember every pixels of the system
and reproduce new sequences by cut-and-paste techniques.

Despite their success for realistic image synthesis, both
models are not friendly or not suitable for image analysis
and are perhaps pretty far from the mechanisms used in hu-
man visual perception. It is believed that a generic motion
model, adopted by human vision, must lies somewhere be-
tween the two extremes. We vaguely call it the perception-
based model.

(a) Input (b) SketchG (c) IΛsk
(d) Reconstructed

Figure 2: Representing a cloth image by primal sketch. (a)
Input cloth image. (b) The primal sketch graphG. (c) The
sketchable partIΛsk

Primal sketches of the cloth image. (d)
Reconstructed image from (c) with heat diffusion.

To pursue a perception-based model, one shall first
ask: “what do we see when we look at clothes and fire
at a glance?” Some studies in psychology on this quest
have led to the early vision theory including Julesz’ texton
concept[10] and Marr’s primal sketch scheme[14]. They ar-
gued that we “see” fundamental image elements, called tex-
tons or image primitives, and tend to ignore details which
are less structured. Most recently the texton and primal
sketch concepts become more concrete due to the develop-
ment of generative models[22, 8].

For example, Fig.2 illustrates how the primal sketch
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Figure 3: River sequence. The first row contains three
consecutive input river frames, the second row contains
their corresponding primal sketch – graphs (The circled ar-
eas highlight the topological change.), and the third row
contains the reconstructed images by diffusion from the
sketches.

model represents a cloth image. Given an input image in (a).
The model first extracts the structured parts in (c) which cor-
respond to the places with high image contrasts and changes
(about20% of the pixels). This part is then represented by
a graph structure in (b), and (c) can reconstruct the original
image with very little loss. To show this, we fill-in the re-
maining pixels by running a heat-diffusion equation which
use the pixels in (c) as boundary conditions. Then we ob-
tain the image in (d). Although (d) is not identical to (a), it
captures the essential information.

Following the same model, Fig.3 displays the primal
sketches for three frames of a water sequence. This time we
show the graph representation explicitly. The primal sketch
model remembers image patches about5-pixel width along
the curves in the graphs, and then reconstruct the water se-
quence from the sketch. As further examples, Figs.7 and 8
illustrates more meaningful structures as subgraph for the
noticeable elements.

Therefore we propose a generative model in the context
of hidden Markov model (HMM) for the complex motion.
Our representation consists of four components: (1) A pho-
tometric model using primal sketch[8] which transfers an
image into an attribute graph representation. Each vertex of
the graph is a scaled and oriented image patch selected from
a dictionary. The graph connects and align these patches.
(2) A geometric model which characterizes the deformation
of the attribute graph. (3) A dynamic model, which spec-
ifies the motion dynamics of these vertices (patches) and
their interactions in the form of coupled Markov chains. (4)
A topological model, which interprets the graph topologi-
cal changes over time. For example, Fig.3 shows the graph

Figure 4: Graph model framework. Observed image se-
quenceIobs

[0,τ ] is generated by hidden graph systemG[0,τ ].
The dynamics of the graph system is caused by internal in-
teractions, which is controlled by parameterθint. Graph
topological changes are caused by external topological op-
erating forcesF[0,τ ], which is controlled by parameterθext.

structure change over time (see the circles).
Related work. In the vision literature, there have been

two streams studying the complex motion patterns which
are closely related to our work.

One stream is focused on modeling motion as a tex-
ture phenomenon. For example,temporal textureby Szum-
mer and Picard [19] who used a Spatial-Temporal Auto-
Regression (STAR) model on pixels. Bar-Josephet. al. [1]
extended the 2D texture synthesis work to a tree structured
multi-resolution representation, in a similar way to3D vol-
ume texture method [21]. Thedynamic texturework by
Soattoet. al. [18] studied the motion dynamics explicitly
using models and tools from control theory. Fitzgibbon [6]
further studied the rigid camera motion in combination with
the stochastic motion patterns, so that the motion is regis-
tered properly. Wang and Zhu [20] represented image by
additive image bases, such as Gabor and Fourier bases. se-
lected from an over-complete image dictionary. But their
methods failed on modeling some phenomena, e.g. fire or
clothes, for two reasons: (1). fire or cloth images cannot be
effectively represented by either Gabor-like bases or Fourier
bases. (2). the fire and cloth motion exhibit clear topolog-
ical changes which are noticeable to human vision. Our
work in this paper can be viewed as extensions (generaliza-
tions) from these work.

Another stream of work is the HMM models for model-
ing realistic human motion[3], such as motion texture[12]
and style machines [2]. The underlying human articulation
is represented by deformable graphs as in our model. But
these work obtain the graphs by direct motion capture and
also the graphs have fixed number of vertices (markers).
While in our representation, the graph is generic, inferred
from images, and changes structures over time.
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The paper is arranged as follows. In the next section,
we introduce four components of this generative representa-
tion: photometric model, geometric model, dynamic model
and topological model. Then we describe model learning,
inference, graph matching with editing, and synthesis. The
paper is concluded with a discussion of the model limita-
tions and future work.

2. Generative Graph Representation
Fig.4 illustrates the generative representation in three lay-
ers. We assume the underlying system has a varying num-
ber of perceptual elements – which are the image patches
in the primal sketch. These elements are coupled spatially
in a graph structureG(t), t ∈ [0, τ ]. The coupling between
adjacent elements will be represented by potential energies.
The image sequenceIobs(t), t ∈ [0, τ ] is the observables
and is generated byG(t) with the primal sketch model (see
Figs.2 and 3). The systemG(t) is driven by external forces
F (t). We consider two types of forces: (1) drifting forces
acting on each patch which are Brownian motion; (2) topo-
logical operators acting on subgraphs and thus change the
graph structure (topology). The system is then specified by
three sets of parametersΘ = (θimg, θint, θext) for the three
layers as Fig.4 shows.

Therefore we have a joint probability for an image se-
quenceIobs[0, τ ], the hidden graph representationG[0, τ ]
and the external force fieldF [0, τ ],

p(Iobs[0, τ ], G[0, τ ], F [0, τ ]; Θ)

=
τ∏

t=0

p(Iobs(t)|G(t); θimg) ·
τ∏

t=0

p(F (t); θext),

· p(G(0)) ·
τ∏

t=1

p(G(t)|G(t− 1), F (t); θint) (1)

p(I(t)|G(t); θimg) is the image model (primal sketch)
with θimg being the dictionary of image patches.
p(G(t)|G(t − 1), F (t); θint) is the probability model for
graph dynamics, and also include the coupling of elements
in terms of Gibbs potentials which are expressed by the
Gestalt properties in the graph.θint includes the parame-
ters for the kinetic and potential energies.p(F (t); θext) is
the probability model for independent drifting force and the
probability for the events of graph editing operators to occur
over time.

In the following subsections, we will introduce the mod-
els in detail.

2.1 Photometric model by primal sketch

The generative model for primal sketch is proposed in [8]
for representing natural images. It divides the image lattice

Λ into two parts: the “sketchable” part for noticeable in-
tensity changes and the “non-sketchable” part for relatively
structureless areas.

Λ = Λsk ∪ Λnsk.

For clothes, fire and water images, the sketchable part
usually corresponds to pixels around the ridges and val-
leys (creases)[9, 13]. These pixels are covered by a num-
ber of image patches which are vertices in the graphG.
These patches comes from a learned dictionary. They are
aligned by the graphG and are non-overlapping. The pix-
els not covered by these patches are considered the non-
sketchable area and will be filled in by sampling a texture
model[24] which matches local filter histograms in the ob-
served images or simple method[5]. But for fire, water
and clothes, we can simply fill the non-sketchable pixels
by heat-diffusion. In summary, the model is

p(I|G; θimg) = p(IΛnsk
|IΛsk

)p(IΛsk
|G; θimg).

We refer to [8] for the detailed formulation and the infer-
ence of this graphG from imageI.

From Fig.2 and Fig.3, we can see that the sketch repre-
sentation is not only sparse , but also quite realistic. It is
worth mentioning that this image model is not a linear addi-
tive model as in [20]. The linear additive model is found to
be difficult to capture sharp features as it has to count on the
alignment of several image bases to generate sharp bound-
aries. In contrast, each image patch in the primal sketch
model can be very sharp and they are aligned by the graph.

2.2 The graph representation

At each framet, G =< V, E > is an attribute graph repre-
sentation withN vertices.

V = {πi = (`i, αi, βi, γi), i = 1, 2, ..., N}
Each vertex is an image patchπi specified by four set of

attributes

1. A label `i indexing the type of the image patch in the
dictionary, e.g. ridge, valley, bar, step edge, etc.

2. Image attributesαi for the contrast of the patch.

3. Geometric transformsβi for location, orientation and
scale (size) of the patch.

4. Each patch has a degree ofγ connections :γ = 0
means it is an isolated patch,γ = 1 means a termina-
tor, andγ = 2 means an edge segment.

Fig.5 show a subgraph with a number of patches.
The neighboring structure is specified by the edge set

E = {e = (p, q) : πp, πq ∈ V }
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Figure 5: A subgraph ofG with a number of image patches.

Then an inhomogeneous Gibbs model is defined on this
attribute graph to enforce some Gestalt properties, such
smoothness and continuity:

p(G) ∝ exp{−λoN −
∑

(p,q)∈E

ψ(πp, πq)},

whereλo is the parameter that controls the number of prim-
itives N and thus the density, andψlj (πp,j , πq,j) is the po-
tential function of the relationship between two vertices.

Figure 7 shows examples of such as subgraphs for the
the fire strokes.

2.3 Graph motion and structure editing

While travelling in spatial-temporal domain, the graphs of
fire, water, or cloth evolve with both continuous movement
and abrupt structure changes. Our model deals with both.

Dynamic model for continuous graph motion.
This part characterizes continuous motion of the image
patches caused by three sources

1. The Brownian motion with Gaussian noise.

2. Drifting by inertia. We model this kinetic term
K(G(t), Ġ(t), t) by an auto-regression (AR) model.

3. Coupling by internal interactions among the adjacent
image patches. This is derived from the potentials in
the Gibbs energy

Uint(G) =
∑

(p,q)∈E

ψ(πp, πq).

Topological model for graph editing. Graph topo-
logical changes are assumed to be caused by external graph
operators

ST = {T∅, Td, Tb, Ts, Tm, Tc, Tdc}
They stands respectively for null operation (no change),
death of a vertex, birth of a vertex, split of a vertex, merg-
ing of two vertices, connecting two vertices with an edge,
disconnecting two vertices.

a) b) c)

Figure 6: Graph operators. a) Death/Birth operatorsTd/Tb.
b) Split/Merge operatorsTs/Tm. c) Connect/Dis-connect
operatorsTc/Tdc.

Fig.6 illustrates the graph topological changes caused by
these operators. The occurrences of these graph operat-
ing events depend on the neighborhood relationship of sub-
graphs.

To summarize, the motion model of graphs fromt to t+1
is denoted as:

gi|G∂i
T−→ g′i|G∂i, T ∈ ST . (2)

In the above formula,gi is a subgraph inG, andG∂i are
the neighbors or environment ofgi. g′i is the new subgraph
after editing.

If the operatorT∅ works alone on theG(t), no topolog-
ical change will occur. Therefore, the dynamics of each
element in the system is reduced to

πi(t)|G∂i(t) = Aπi(t− 1) + B + dωi(t)
dωi(t) ∼ N (0, |dt|). (3)

whereA,B are the AR coefficients, andωi(t) is the Brow-
nian motion of the elements in graph.

If other operators edit the graph, there will be topolog-
ical changes. The graph motion in Eq.2 is reduced to the
following cases corresponding to each graph operator.

Td/Tb : πi  φ

Ts/Tm : {πi}  {(πi1, πi2), ej(i1,i2)}
Tc/Tdc : {πi, πj}  {(πi, πj), ek(i,j)}

In summary, the probability model for the graph motion
at each time stept is fully specified by the Brownian motion
and the occurrence of the graph operators. The latter are
often rare events.

p(G(t + 1)|G(t), F (t))

=
N(t)∏

i=1

{p(ωi(t)) ·
M(t)∏

j=1

p(Tj(t)|G∂i(t))}, (4)

whereM(t) is the number of operating events occurred in
the time interval[t, t + 1]. Assuming a time-invariant sys-
tem,p(Tj |G∂i) is the operating events occurred under cer-
tain given graph configuration, which can be learned over
time by accumulation.
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Figure 7: A trajectory of an evolving fire stroke. The
square boxes on the fire strokes are image patches along the
sketches. To the right of each fire stroke image is the sym-
bolic graph. The vertices in the symbolic graphs are control
points. The dotted line in the first symbolic graph denotes a
link between two subgraphs.

3. Learning and Inference
In this section, we briefly study the algorithm that infers
the hidden variablesG[0, τ ] and learns the parametersΘ =
(θint, θext, θimg) in the model. With the learned parameters
Θ, one can synthesize sequences following the generative
method.

3.1 Problem formulation and stochastic gra-
dient

The problem is posed as statistical learning by maximum
likelihood estimation (MLE). The objective is to compute
the optimal parameters that maximize the log-likelihood for
an observed sequenceIobs[0, τ ],

Θ∗ = arg max log p(Iobs[0, τ ]; Θ) (5)

= arg max log
∫

p(Iobs[0, τ ], G[0, τ ]; Θ)dG[0, τ ]

To solve the MLE in the above equation, we set∂L(Θ)
∂Θ =

0. Thus,

1
p(Iobs[0, τ ]; Θ)

∂
∫

p(Iobs[0, τ ], G[0, τ ]; Θ)dG[0, τ ]
∂Θ

= 0,

E
p(G[0,τ ] | I obs

[0,τ ];Θ)
[
∂ log p(Iobs[0, τ ], G[0, τ ]; Θ)

∂Θ
] = 0.

We adopt the stochastic gradient algorithm used in [7] to
solve this MLE problem. The learning process iterates in
three steps.

1. SamplingGsyn
[0,τ ] ∼ p(G|Iobs; Θ) under the current es-

timatedΘ.

The sampling procedure is realized by Markov Chain
Monte Carlo (MCMC) techniques. It is based on
the results computed from bottom-up process in-
troduced in Section 3.2. The MCMC steps are

a)

b)

Figure 8: Two learned river vertices trajectories.

mainly designed to adjust the matching of adjacent
graphs, so as to achieve a high posterior probability
p(G[0, τ ]|Iobs[0, τ ]). We define seven types of MCMC
moves as follows.

(a) Switch the matching correspondence of one ver-
tex in a graph to another vertex in neighbor
graph.

(b) Connect two vertices in the same graph by adding
an edge.

(c) Cut an edge between two vertices in the same
graph.

(d) Split one vertex into two.

(e) Merge two vertices into one.

(f) Add a new vertex.

(g) Delete an existing vertex, together with its edges.

The graphic illustration of some operations are shown
in Fig.6 and Fig.9. Some details of Markov Chain
move design will be made available in a technical re-
port.

2. Updating the motion parametersθint,ext.

θint,ext ← (1− ρ)θint,ext + ρ
∂ log p(G(t); θint,ext)

∂θint,ext

a) b)

Figure 9: River sequence graph matching. a) Graph match-
ing between frames 1 & 2. b) Graph matching between
frames 2 & 3. ¤ highlights a merge operation,© high-
lights a split operation,∇ highlights a death operation, and
4 highlights a birth operation.
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a)

b)

Figure 10: Cloth sequence. a) Input sequence. b) Synthe-
sized sequence.

Some learned results are shown in Fig.7 - Fig.14. For
more details of the automatic learning process, please refer
to our technical report.

3.2 Bottom-up graph matching process

Among all the inference steps in the previous subsection,
the correct matching of graph fromG(t) to G(t + 1) de-
serves most attention. In the paper, we assume the motion
is not very large, and thusG(t) to G(t + 1) will not have
many large structure changes. In this section, we briefly re-
port how we compute the match in a bottom-up approach.
This will be used as initial match to feed into the MCMC
process above.

In computer vision, edges, ridges and valleys provide
rich information for human beings to perceive geometric
features of a scene. Firstly, we extract creases from a given
image sequenceIobs[0, τ ] using the method in [9]. Then,
based on the recent work of Guoet. al. [8], we obtain the
primal sketch map. On top of that, we build up graphs fol-
lowing the way described in Section 2.

For computational ease, certain number of connected im-
age patches on creases can be grouped into subgraphs, e.g.
fire strokes sketches, river ridge curves, river ridge intersec-
tions, cloth folds, etc. A subgraph has the following prop-
erties.

1. Number of control pointsc. (The center of each image
patch is a control point.)

2. Shapes. A set of these control points connectively
define the shape of subgraph.

3. Appearancea. (Pixel intensity of the image patches.)

4. Degreed. (Number of curves in the subgraph.)

In the following, we also usec, s,a,d as functions on
subgraph indexi, i.e., each returns the corresponding fea-
ture. For example,c(i) tells the number of image patches in
theith subgraph.

a) b)

Figure 11: Cloth sequence graph matching. a) Graph
matching between frames 10 & 11. b) Graph matching be-
tween frames 11 & 12.

We adopt the graph matching algorithm in [23] and [11].
A matching is obtained by mapping subgraphs in a frame to
their similar counterparts in the adjacent frames. Zhu and
Yuille defined the similarity between subgraphgi andgj as
the probability:

Pmatch[gi, gj ]

=
1
Z

exp{− (c(i)− c(j))2

2σ2
c

− (s(i)− s(j))2

2σ2
s

− (a(i)− a(j))2

2σ2
a

− (d(i)− d(j))2

2σ2
d

}

whereσ’s are the variances of these features. This similarity
measurement is also used in the inference part to compute
the system energy.

It is worth mentioning that each vertex in the graph is
a subgraph. They also possess the above properties. The
matching procedure also apply to them.

When matching two given graphsG(t) = (gi(t), i =
1, . . . , n), andG(t + 1) = (gi(t + 1), i = 1, . . . , n), where
n is the larger number of subgraphs in either of the two
graphs, it is reasonable to allow some subgraph inG(t) map
to null, or multiple subgraphs inG(t) map to the same sub-
graph inG(t + 1), and vice versa. Thus, the similarity be-
tween graphG(t) andG(t+1) is defined as the probability:

P [G(t), G(t + 1)] =
n∏

i=1

Pmatch[gi(t), gi(t + 1)]

After the graph matching, trajectories of graph elements
can be extracted automatically. The graph matching re-
sults after MCMC sampling are shown in Fig.9, Fig.11, and
Fig.14. A fire stroke trajectory and two river wave vertices
are shown in Fig.7 and Fig.8, respectively.
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a)

b)

c)

Figure 12: Fire sequence. a) Input sequence. b) Synthesized
sketch sequence. c) Diffused synthesized sequence

3.3 An example of graph operations

The graph inference is achieved by carefully designed
MCMC sampling algorithm. The essence of the Markov
chain design is to form an ergodic process in the space of
all possible configurations of a graph. Also, the Markov
chain should observe some basic conditions, such as de-
tailed balance, to ensure that it follows the posterior prob-
ability as it converges. Each move in our Markov chain
design is a reversible jump between two statesA and B
realized by a Metropolis-Hastings method [15]. We de-
sign a pair of proposal probabilities for moving fromA
to B, with q(A → dB) = q(B|A)dB, and back with
q(B → dA) = q(A|B)dA. The proposed move is accepted
with probability

α(A → B) = min(1,
q(A|B)dA · p(B|Iobs[1, τ ])dB

q(B|A)dB · p(A|Iobs[1, τ ])dA
).

Due to the page limit, we only introduce one pair of
Markov chain moves – split/merge. (For details of the other
operations, please refer to our technical report.) The moves
are illustrated in Fig.13 and they are jump processes be-
tween two statesA andB,

A = (N, G =< (V−, vj), (E−, ei,j) >)
 (N − 1, G′ =< V−, E− >) = B,

whereN is the number of vertices in graphG. V− andE−
denote the unchanged vertices set and edge set, respectively.
ei,j is the edge between verticesvi andvj , andvj is the
vertex disappeared after merging. We define the proposal
probabilities as follows.

q(A → B) = qs/m · qm · q(i) · q(j)
q(B → A) = qs/m · qs · q′(i) · q(pattern).

Figure 13: Split/merge graph operation diagram. A vertex
can be split into two vertices with one of six edge configu-
rations.

qs/m is the probability for selecting this split/merge
move among all possible graph operations.qm and qs is
the probability to choose either split or merge, respectively,
whereqm + qs = 1. q(i) is the probability of selectingvi as
the anchor vertex for the other vertex to merge into, which
is usually set to1/N . q(j) is the probability to choosevj

from vi’s neighbors, which is set to be inversely propor-
tional to the distance betweenvi andvj . Oncevj is merged
into vi, vi becomes a symbolic vertex containing two real
vertices. When proposing a split move,q′(i) is the prob-
ability to choosevi, which should contain more than one
real vertices. It is assumed to be uniform among those qual-
ified vertices. When a vertex withn edges is split, there are
1/(2n − 2) ways for two vertices to share thesen edges.
Therefore,q(pattern) is set to be1/(2n − 2).

3.4 Graph synthesis

The well acknowledged verification of the learned model
being correct is through synthesis. When synthesizing a
new sequence, the following steps are taken.

1. Initiate the first two frames. This is to ensure the AR
model in Eq.3 is computable.

2. For the subsequent frames, we iterate the following
steps.

(a) Sample the subgraphgi(t + 1) from p(ωi(t)) in
Eq.4, according to the learned dynamics.

(b) Sample a set of topological operatorTj(t) from
p(Tj(t)|G(t)) in Eq.4, based on the learned ex-
ternal force field.

(c) When the synthesized sequence reaches its last
frame, stop.

Some more experiment results of the cloth sequence and
fire sequence are shown in Fig.10 - Fig.14.

4. Summary and Future Work
The current model and implementation still have some lim-
itations. For example, if there is texture on the surface of
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(a) (b)

(c) (d)

Figure 14: Fire sequence graph matching. (a) Birth map
of fire strokes (projected from probabilityp(Tb)). b) Death
map of fire strokes (p(Td)). c) Graph matching between
frames 1 & 2. d) Graph matching between frames 2 & 3.

cloth, the graph structure will be more complicated. Con-
sequently, the computational expense is going to be higher
accordingly. Furthermore, although we allow six types of
graph editing operators, we assume no combination of these
operators. Thus, larger motions with complex topological
changes at the same site cannot be computed. We will ex-
tend our model to graph morphing in the future. We plan to
learn a set of graph operators with probability for perceptu-
ally appealing morphing and thus we can define meaningful
geodesic distance and metrics between two images based on
the “natural” motion.
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