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Abstract additional layers (see Fig.1 and Fig.8).
(i) A face component layemwhich refines the global
In this paper we present a generative, high resolution AAM (PCA) model with more detailed representations in
face representation which extends the well-known active ap-6-zones for the six facial components: two eyebrows, two
pearance model (AAM)[5, 6, 7] with two additional layers. eyes, nose and mouth. Each component has a set of diverse
(i) One layer refines the global AAM (PCA) model with a representations for the various types of eyes, mouths, noses
dictionary of learned face components to account for the and their topological configurations, such as open and close
shape and intensity variabilities of eyes, eyebrows, nose andstates. The representation for each component within its
mouth. (ii) The other layer divides the face skin into 9 zones zone is a local AAM model with a various number of land-
with a learned dictionary of sketch primitives to represent marks. The selection of the representation is modulated by
skin marks and wrinkles. This model is no longer of fixed the grammatical rules[1] through hidden "switch” variables.
dimensions and is flexible for it can select the diverse rep- (i) A face skin layerwhich further refines the 6 compo-
resentations in the dictionaries of face components and skinpnent zones with sketch curves for the subtle differences in
features depending on the complexity of the face. The selecgye-|id, eye-shade, nostril, lips etc. In this layer, it divides
tion is modulated by the grammatical rules through hidden the face skin into 9 zones (See Fig.6) with a learned dictio-
"switch” variables. Our comparison experiments demon- nary of sketch primitives to represent possible skin marks
strate that this model can achieve nearly lossless coding ofgnd wrinkles. We adopt various prior models for sketches
face at high resolution256 x 256 pixels) with low bits. iy these 15 zones and the number of sketch curves changes
We also show that the generative model can easily gener-depending on the complexity of the faces.
ate cartoon sketches by changing the rendering dictionary.  ag Fig 1 illustrates, our model achieves nearly lossless
Our face model is aimed at a number of applications includ- representation of high resolution image@sq x 256 pix-
ing cartoon sketch in non-photorealistic rendering, super- g|s) at the same time it generates a face sketch useful for
resolution in image processing, and low bit face communi- ¢art0n rendering. The computation is performed coarse-
cation in wireless platforms. to-fine: we first infer the global AAM model and register
the whole face. Then we refine the face components whose
landmarks define the 9 skin zones. Thus we extract the skin
1. Introduction sketches under such context with prior models.
Our model is aimed at a number of applications, such
Human faces have been extensively studied in visionas low bit face communication in wireless platforms, car-
and graphics for a wide range of tasks from detection[18, toon sketch in non-photorealistic rendering, face editing and
16], classification[19, 10], tracking[6], expression[13], make-up in an interactive system, and super-resolution in
animation[11, 15], to non-photorealistic rendering (portrait image processing.
and sketch)[3, 4], with both discriminative[17, 10, 3] and It is worth mentioning that one may not achieve such
generative models[9, 6, 11] developed in the literature. Thehigh resolution reconstruction by merely increasing the
selection of a representation and model depends on two fachumber of landmarks in the original AAM model, since
tors: (i) the objectives of the task and its precision request, the gloabl AAM model represents all human faces with the
and (ii) the resolution of the observable face images. same number of landmarks and PCs, and is not sufficient
In this paper we present generative, grammatical, for the vast variabilities exhibited in different ages, races,
high resolutionface representation which extends the well- and expressions. Our comparison experiments (see Fig.9)
known active appearance model (AAM)[5, 6, 7] with two confirms that our three layered representation is more ef-



Input image I obs Low resolution I rec Medium resolution I rec High resolution I rec
with high resolution reconstruction ' [, reconstruction M reconstruction ' H

--

res

L
Residue image of reconstruction
at different resolutions
Ires — Iobs Irec

Sketching results at
different resolutions

Figure 1. Face high resolutionimage  I°"® of 256 x 256 pixels is reconstructed by the model in coarse-to-
fine. The first row shows three reconstructed images Iee, Ifg¢, Iis© in low, medium and high resolution
respectively. Ii*¢ is reconstructed by the AAM model, and the eyes, nose and mouth are refined in

I after adding the component AAM layer. The skins marks and wrinkles appear in Iip¢ after adding
the sketch layer. The residue images are shown in the second row. The third row shows the sketch
representation of the face with increasing complexity.

fective (i.e. less reconstruction error) than the AAM model 2. Representation and Computation
over a test set of 150 face imag@s¢ x 256 pixels in size),
provided that both models use the same size of codebooks. 1o representation and algorithm is illustrated in Fig. 1

and Fig.8. We represent an observed image in low, medium
In comparison to the literature, our face component layer and high three resolutionsI¢™ (64 x 64 pixels), IgPs
representation is different from the component-based[10] or (128 x 128 pixels), andigPs (256 x 256 pixels), and we com-
fragment-based face recognition [17], the latter use local pute the three hidden layer representation, Wy, Wy se-
face features for face recognition in a discriminative man- quentially through Bayesian inference. The dictionaries of
ner in contrast to our goal of generative reconstruction of the PCs and the sketch primitives are treated as parameters of
face. Our face skin layer representation is different from the the generative model and learned through fitting the model
recent face sketching work [3, 4] which are example-basedto a set of 200 training images.
and construct the sketches through a discriminative map-
ping function using the image analogy technique in graph- 2.1 Layer 1: the low resolution AAM model
ics. Our sketch rendering is different from graphics interac-
tive system[2]. In the first AAM layer, all faces share the same num-
ber of landmarks. The AAM representation includes a set
In the rest of the paper, we present the three-layer rep-of principle components (denoted BYCAZST™) for the ge-
resentation of the model and coarse-to-fine computation inometric deformations, and a set of principle components
Section 2, and then we report the experiments in Section 3(denoted byPCAZ" for the intensity (photometric) vari-
Section 4 concludes the paper with some further work. abilities after aligning the landmarks. Therefore we have a
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Figure 2. The first 8 PCs (plus mean) for inten-

sity and geometric variations in the learned
dictionary A$*™ with 17 landmarks.

ASPLASP LA C A
dictionary of PCs[14] learned for the first layer, ) . o .
The solid curves show the six zones in Fig.6.(a). Within

each zone, we adopt local AAM models for each face com-

ponent. To count for different types of components and their
Fig.2 shows the first 8 components IRCAZY" and status (see examples in Fig.4), we adopt 3 sets of AAMs for
PCAZY learned from 200 training images. We choose 17 the eyebrows, and 5 sets for the eyes, 2 sets for the nose,
landmarks forI2" as the structures will be represented in and 2 sets for the mouth. The way to define the types is
other layers. Connecting the 17 landmarks properly, we ob-limited by the training data obtained. More detailed def-
tain the low-resolution sketch representation. We will dis- inition and therefore more types may be introduced while
cuss and compare the number of landmarks and principalmore complete dataset is available. The grammars to apply
component in section of the model complexity experiment. 12 different sets of local models are shown in Fig.3. For

The hidden variabl&/;, includes variables for the global ~ €xample, the different AAM models for eyes may have dif-
similarity transform72*™ and the coefficiente:**™ and ferent number of landmarks and use different PCs for its

geo

AF™ = (PCAZM PCAZ

geo

Baam for geometric and photometric PCs respectively. geometric and photometric variations. Therefore we have a
P Wy, = (T, geem gaam) total of 12 pairs of PCs in the dictionary of the second layer
»“geo 2 pht representation,
Therefore, Wi, can reconstruct an imagdi®® = AP = {PCAg;;j, PCA;%{, j=1,2,..,12}.

Jiee(Wy,; AP*™) with the geometric and photometric PCs
through the AAM model[6, 5]. The residue image is de-
noted byI;**. Thus we have the first layer generative model,

Iibs _ JieC(WL;A%am) + Iies'

The 12 component models are learned in a supervised
manner from 200 training face images. The selection
of the model for each component is controlled by six
switch variabled;,i = 1,2,...,6 in a stochastic grammar
representation[1]. In fact our grammar is not context free,
because the symmetry for the two eyes and eyebrows has

The likelihood is a Gaussian probability following a to be taken into account. The hidden variablg, in the
noise assumption for the residue. The prior model is alsomedium layer includes the switches and the coefficients for
Gaussian following the PCA assumptions[5]. The dictio- the six components,
nary Aj*™ is treated as parameters of the generative model Wy = (€, a;ew géht)?: L

and learned through fitting (i.e. PCA) to the data. The positions, orientations, and sizes of the components
are inherited from the landmarks in layeilf;,. We denote
the six zones by a sub-lattice

Acp = Ui:1A§p~

Wi, = arg max p(IP>*|Wr; AF™™)p(W).

2.2 Layer 2: the medium resolution model

In the second layer, we work on a medium size lattice
A (128 x 128 pixels) and focus on six zones for the face
components: two eyebrows, two eyes, one nose, and one The second layer model generates the "refined” image
mouth respectively, Jon = I (W A).
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Figure 4. Different types and status of the lo-
cal facial components, each is modeled by ....l.......
one of the 12 local models defined. N R
The reconstruction of the medium resolution image on ..!!.-.-!--
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Figure 5. (a) Refinement on the nose by

sketch primitive. (b). the sketch curve for a
Fig. 1 (3rd column) shows that the reconstructed face  "smiling fold". Each rectangle in (a-b) repre-

has much more sharpened eyes, nose, and mouth, and the sents a sketch primitive. (c) Examples in the

residue image is less structured. dictionary of sketch primitives A< (above)
The likelihood is a Gaussian probability following a and their corresponding strokes (below) in a

noise assumption for the residue. The prior model for each  cartoon sketch dictionary  Ag*.

component is also Gaussian following the PCA assumptions

for the components[5]. The dictionaty;” is treated as pa-

rameters of the generative model and learned in a supervisé1® Skin wrinkles which are nearly imperceptible but be-
way through fitting (i.e. PCA) to the data. come quite prominent when they are put in the face image.
The inference of the "switch” variables, i = 1,2, ..., 6 This argues for the coarse-to-fine computation and model —

is done through model comparison within each zones. For® method' that this paper is ta‘_"'”g- ) )
example, we select the best fitted eye representation among Following the same notation in the medium resolution
the 5 eye models, with a prior which is favor of the same 18Yer, we divide the high resolution lattidey (€.9. 256 x

W = arg max p(ISPS| Wy, Wap; Ajam, AP )p(Whr).

model for the two eyes or the two eyebrows. 256 pixels) into two parts: the sketch pakt, where the im-
age will be refined by a number of small image primitives,
2.3 Layer 3: the high resolution sketch model and the rest of the imagk, . where there is no sketch is

represented by the medium resolution through up-sampling.
In the third layer, we further refine the 6 componentwith ~ The sketch part consists of many image primitives
sketch curves for the subtle differences in eye balls, eye A§k,k = 1,2,..., K. They are small rectangular win-
twinkles, eye-lid, eye-shade, nostril, wings of nose, lips etc. dows (e.g.7 x 7 pixels), and the number of primitives is
We also divide the face skin into 9 zones shown in Fig.6. a variable depending on the medium resolution representa-
The boundaries of these zones are decided by the landmarkion Wy, and the imagdgps.
points computed i/, andWy. Each primitive is an image patch with a small number
Our sketch representation has much more details than(2 ~ 3) of control points, and thus with both geometric de-
previous example-based face sketch method[4] or the facformation and photometric variations. We collect a large
features used for expression classification[13]. In fact, theseset of image primitives by manually drawing the sketches
details are sometimes so subtle that one may not see theron the 200 training images, and some examples are shown
(even with human vision) unless they are viewed in the in Fig. 5. Then a data clustering was done to yield a dic-
global context of the face. Fig.7 shows such example of tionary of primitives in layer 3. In order to capture more
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(a) (b) (c) (d)
Figure 6. (a). 15 zones for detailed skin features. The 6 zone for the eyebrows, eyes, nose and mouth,
and 9-zones for shaded skins areas where the wrinkles occur. The boundaries of these zones are
decided by the landmarks computed in the low and medium resolution, and thus are inherited from
Wi, and Wy. (b-c-d) typical wrinkles (curves) at the 9 skin zones. Strong prior models and global
context are needed in order to detect the wrinkles.

Wi = arg max p(IgPS [War, Wir; AR, AF)p(Wr).

Fig. 1 (4th column) shows that the reconstructed face has
much more skin details and the residue is greatly reduced,
such that the reconstructidris© is almost lossless.

The likelihood is a Gaussian probability following a
g noise assumption for the residue. The prior model for each
(@) (b) compqnent is also Gaussian following the clustering as-
sumptions.

An ASM model [5] is trained for each of the "structual”
sketches like eye-lid, eye-shape or nostril, etc., which is ini-
tialized and constrained by, from previous layer in the
inference process. Experiments shows fast convergence and
accurate searching result.
details on skin, especially for detecting and reconstructing 14 infer the sketches in the 9 zones, which have much
the skin marks (dark) or small secularity spots (highlight), ore flexibility and sometimes locally almost impercepti-
we al_so_ labelled and trained a set of blob type of bases forme, we need to define the prior more carefully. As shown
the dictionary. in Fig.6, a group of typical sketches are formed in each of

Af={B;:i=12,..,N} the zone by learning of the labelled sketches, aitl ) is

EachB,; is an image patch. Then the hidden variables in accordingly defined, which favors the following properties.
the 3rd layeil’y include the index;, for the primitive type,

an affine transforna;, for positions, orientations and scales
of these patches, and the photometric contigst
WH = (K? {(éka tka Ofk) : kl = 17 27 AR K})

Figure 7. (a). A 15 x 15 (before zoom in) patch
sampled from 256 x 256 face image; (b). The
same local patch viewed in its global context
— on a wrinkle.

e Length L of the sketch is approximated by a poisson
distributionp(L = 1) = (\!/I)e™*, where\ is speci-
fied by the typical sketches in the zone.

Thus we generate the high resolution image in the
sketchable parhgy,

1 = T Wiy AF)

e Smoothness in scale, orientation and intensity pattern
of two consecutive primitivelsB;, B; }.

e Orientation and chance to appear for primitii& are

The final generative model at high resolution is, biased by the neighboring typical sketches. That is,
e ) the orientation ofB; shall be more consistent with the
Jree(z,y) = { J;gc(x’ y) if (2,y) € As closer typical sketch, and the closBy is to the typical
I (2/2,9/2) i (2,y) € An\Awk sketches, the bigger chance is for it to appear.

That is, pixels in the sketch part are generated by the refined
models, while other pixels are generated by the medium res- parallel sketches which are too close will be merged,

olution model upsampled. Therefore, ) .
obs prec P b Aok - or two consecutive short sketches which are too close
Ig® = I (W, Was AP, AY) + Iy will be connected.

e Spatial relationship between two sketches, e.g. two
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Figure 8. The diagram of our model and algorithm. The arrows represent the order of inference.
Left panel is the three layers. Right panel is the synthesis steps for both high-resolution image
reconstruction and face cartoon sketch using the generative model.

In each step of the sketch pursuit, a group of primitive different genders, ages and races — 200 for training and
candidates are proposed by the bottom-up methods, such at50 for testing. All the images are resized to four different
edge detection, and the existing sketches in the same zoneesolutions32 x 32, 64 x 64, 128 x 128 and256 x 256 pixels
We decide whether to grow new primitive, make change to respectively. The landmarks and sketches on the training are
existing sketches or stop the process according to the postemanually labelled.

rior defined. In the first experiment, we report on the face reconstruc-
_ tion, learning of dictionaries, and sketching. Results are
2.4 Generating the cartoon sketcts shown in Fig.1 and Fig.10.

_ _ _ In the second experiment, we compare the efficiency of
Fig. 8 summarizes the generating process for the nearlythe three models: (i) the 1-layer global AAM model with

lossless coding of the image with the code being more landmarks and PCA components, (i) the 2-layer com-
W = (Wr, Wn, Wh) ponent models, and (iii) the 3-layer model. To be fair, we
through three layers of occluding representations. The Measure the total description length (coding length) of the
model uses three dictionaries of increasing details 200 images plus the size of the codebook.
Ar = (AP, AP, AF) DL = L(Qy: A) + L(A)

For each elements in these dictionaries, we always have  \whereQ; = {Iy,..., I/} is the sample set. The first
a corresponding graph representation, shown in Fig.2, Fig.4term is the expected coding length(@f given dictionaryA
and Fig. 5. We call them the sketch dictionaries and the second term is the coding lengthof

As = (AF™, AL, AF) Empirically, we can estimat® L by:

Thus by replacing the "photo-realistic” intensity dictio- 57 _ ST (—logp(Tifw; A)—log p(w))+ 2 1og a1
nariesAy with the sketch dictionarieAg, we can generate Lo wmp(mlTiA) 2
a sketch over scales using the same generating steps. Some ,whereM denotes the number of data arl the dictio-
examples of the sketches are shown in Fig.1 and Fig.10.  nary size. For example, in the 1-layer global AAM model, it

Our sketch has more details than the state-of-the-art facqs the pixel number of mean-texture and eigen-texture used
sketch work[4], though there is still more work to do before plus twice the point number of mean-shape and eigen-shape
rendering stylistic cartoons. We argue that it is much more ;sed. In Fig. 9, we plot how the coding length of the mod-
convenient to define and change the style in this generativeg|s changes with different dictionary sizes. At low resolu-

representation. tion like 32 x 32 and 64 x 64, the DL of 1-layer global
) AAM model is shorter than 2-layer component model or 3-
3. Experiments layer sketch model. At high resolution IiK&8 x 128 and

256 x 256, the component model and sketch model outper-
To verify the framework we proposed, experiments were form respectively in the sense of coding efficiency. By ap-
conducted based on 350 frontal face images chosen fronplying the criterion of MDLinimum description leng}h
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Input image Sketching result Reconstructed image Residue image

Figure 10. More results of reconstructed image, generated sketch and residue image of our model.



