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Abstract

In this paper we present a generative, high resolution
face representation which extends the well-known active ap-
pearance model (AAM)[5, 6, 7] with two additional layers.
(i) One layer refines the global AAM (PCA) model with a
dictionary of learned face components to account for the
shape and intensity variabilities of eyes, eyebrows, nose and
mouth. (ii) The other layer divides the face skin into 9 zones
with a learned dictionary of sketch primitives to represent
skin marks and wrinkles. This model is no longer of fixed
dimensions and is flexible for it can select the diverse rep-
resentations in the dictionaries of face components and skin
features depending on the complexity of the face. The selec-
tion is modulated by the grammatical rules through hidden
”switch” variables. Our comparison experiments demon-
strate that this model can achieve nearly lossless coding of
face at high resolution (256 × 256 pixels) with low bits.
We also show that the generative model can easily gener-
ate cartoon sketches by changing the rendering dictionary.
Our face model is aimed at a number of applications includ-
ing cartoon sketch in non-photorealistic rendering, super-
resolution in image processing, and low bit face communi-
cation in wireless platforms.

1. Introduction

Human faces have been extensively studied in vision
and graphics for a wide range of tasks from detection[18,
16], classification[19, 10], tracking[6], expression[13],
animation[11, 15], to non-photorealistic rendering (portrait
and sketch)[3, 4], with both discriminative[17, 10, 3] and
generative models[9, 6, 11] developed in the literature. The
selection of a representation and model depends on two fac-
tors: (i) the objectives of the task and its precision request,
and (ii) the resolution of the observable face images.

In this paper we present agenerative, grammatical,
high resolutionface representation which extends the well-
known active appearance model (AAM)[5, 6, 7] with two

additional layers (see Fig.1 and Fig.8).
(i) A face component layer, which refines the global

AAM (PCA) model with more detailed representations in
6-zones for the six facial components: two eyebrows, two
eyes, nose and mouth. Each component has a set of diverse
representations for the various types of eyes, mouths, noses
and their topological configurations, such as open and close
states. The representation for each component within its
zone is a local AAM model with a various number of land-
marks. The selection of the representation is modulated by
the grammatical rules[1] through hidden ”switch” variables.

(ii) A face skin layer, which further refines the 6 compo-
nent zones with sketch curves for the subtle differences in
eye-lid, eye-shade, nostril, lips etc. In this layer, it divides
the face skin into 9 zones (See Fig.6) with a learned dictio-
nary of sketch primitives to represent possible skin marks
and wrinkles. We adopt various prior models for sketches
in these 15 zones and the number of sketch curves changes
depending on the complexity of the faces.

As Fig.1 illustrates, our model achieves nearly lossless
representation of high resolution images (256 × 256 pix-
els), at the same time it generates a face sketch useful for
cartoon rendering. The computation is performed coarse-
to-fine: we first infer the global AAM model and register
the whole face. Then we refine the face components whose
landmarks define the 9 skin zones. Thus we extract the skin
sketches under such context with prior models.

Our model is aimed at a number of applications, such
as low bit face communication in wireless platforms, car-
toon sketch in non-photorealistic rendering, face editing and
make-up in an interactive system, and super-resolution in
image processing.

It is worth mentioning that one may not achieve such
high resolution reconstruction by merely increasing the
number of landmarks in the original AAM model, since
the gloabl AAM model represents all human faces with the
same number of landmarks and PCs, and is not sufficient
for the vast variabilities exhibited in different ages, races,
and expressions. Our comparison experiments (see Fig.9)
confirms that our three layered representation is more ef-
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Figure 1. Face high resolution image Iobs of 256×256 pixels is reconstructed by the model in coarse-to-
fine. The first row shows three reconstructed images Irec

L , Irec
M , Irec

H in low, medium and high resolution
respectively. Irec

L is reconstructed by the AAM model, and the eyes, nose and mouth are refined in
IM after adding the component AAM layer. The skins marks and wrinkles appear in Irec

H after adding
the sketch layer. The residue images are shown in the second row. The third row shows the sketch
representation of the face with increasing complexity.

fective (i.e. less reconstruction error) than the AAM model
over a test set of 150 face images (256×256 pixels in size),
provided that both models use the same size of codebooks.

In comparison to the literature, our face component layer
representation is different from the component-based[10] or
fragment-based face recognition [17], the latter use local
face features for face recognition in a discriminative man-
ner in contrast to our goal of generative reconstruction of the
face. Our face skin layer representation is different from the
recent face sketching work [3, 4] which are example-based
and construct the sketches through a discriminative map-
ping function using the image analogy technique in graph-
ics. Our sketch rendering is different from graphics interac-
tive system[2].

In the rest of the paper, we present the three-layer rep-
resentation of the model and coarse-to-fine computation in
Section 2, and then we report the experiments in Section 3.
Section 4 concludes the paper with some further work.

2. Representation and Computation

The representation and algorithm is illustrated in Fig. 1
and Fig.8. We represent an observed image in low, medium
and high three resolutions:Iobs

L (64 × 64 pixels), Iobs
M

(128×128 pixels), andIobs
H (256×256 pixels), and we com-

pute the three hidden layer representationWL,WM,WH se-
quentially through Bayesian inference. The dictionaries of
PCs and the sketch primitives are treated as parameters of
the generative model and learned through fitting the model
to a set of 200 training images.

2.1 Layer 1: the low resolution AAM model

In the first AAM layer, all faces share the same num-
ber of landmarks. The AAM representation includes a set
of principle components (denoted byPCAaam

geo ) for the ge-
ometric deformations, and a set of principle components
(denoted byPCAaam

pht for the intensity (photometric) vari-
abilities after aligning the landmarks. Therefore we have a
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Figure 2. The first 8 PCs (plus mean) for inten-
sity and geometric variations in the learned
dictionary ∆aam

I with 17 landmarks.

dictionary of PCs[14] learned for the first layer,

∆aam
I = {PCAaam

geo , PCAaam
pht }

Fig.2 shows the first 8 components inPCAaam
geo and

PCAaam
pht learned from 200 training images. We choose 17

landmarks forIobs
L as the structures will be represented in

other layers. Connecting the 17 landmarks properly, we ob-
tain the low-resolution sketch representation. We will dis-
cuss and compare the number of landmarks and principal
component in section of the model complexity experiment.

The hidden variableWL includes variables for the global
similarity transformT aam and the coefficientsαaam

geo and
βaam

pht for geometric and photometric PCs respectively.
WL = (T aam, αaam

geo , βaam
pht ).

Therefore, WL can reconstruct an imageJrec
L =

Jrec
L (WL; ∆aam

I ) with the geometric and photometric PCs
through the AAM model[6, 5]. The residue image is de-
noted byIres

L . Thus we have the first layer generative model,

Iobs
L = Jrec

L (WL;∆aam
I ) + Ires

L .

WL = arg max p(Iobs
L |WL; ∆aam

I )p(WL).

The likelihood is a Gaussian probability following a
noise assumption for the residue. The prior model is also
Gaussian following the PCA assumptions[5]. The dictio-
nary∆aam

I is treated as parameters of the generative model
and learned through fitting (i.e. PCA) to the data.

2.2 Layer 2: the medium resolution model

In the second layer, we work on a medium size lattice
ΛM (128 × 128 pixels) and focus on six zones for the face
components: two eyebrows, two eyes, one nose, and one
mouth respectively,
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Figure 3. Grammars used to generate local
facial components with different templates.

Λcp
1 ,Λcp

2 , ..., Λcp
6 ⊂ ΛM.

The solid curves show the six zones in Fig.6.(a). Within
each zone, we adopt local AAM models for each face com-
ponent. To count for different types of components and their
status (see examples in Fig.4), we adopt 3 sets of AAMs for
the eyebrows, and 5 sets for the eyes, 2 sets for the nose,
and 2 sets for the mouth. The way to define the types is
limited by the training data obtained. More detailed def-
inition and therefore more types may be introduced while
more complete dataset is available. The grammars to apply
12 different sets of local models are shown in Fig.3. For
example, the different AAM models for eyes may have dif-
ferent number of landmarks and use different PCs for its
geometric and photometric variations. Therefore we have a
total of 12 pairs of PCs in the dictionary of the second layer
representation,

∆cp
I = {PCAcp,j

geo , PCAcp,j
pht , j = 1, 2, ..., 12}.

The 12 component models are learned in a supervised
manner from 200 training face images. The selection
of the model for each component is controlled by six
switch variables̀ i, i = 1, 2, ..., 6 in a stochastic grammar
representation[1]. In fact our grammar is not context free,
because the symmetry for the two eyes and eyebrows has
to be taken into account. The hidden variableWM in the
medium layer includes the switches and the coefficients for
the six components,

WM = (`i, αi
geo, β

i
pht)

6
i=1.

The positions, orientations, and sizes of the components
are inherited from the landmarks in layer 1WL. We denote
the six zones by a sub-lattice

Λcp = ∪6
i=1Λ

cp
i .

The second layer model generates the ”refined” image
Jrec

cp = Jrec
cp (WM;∆cp

I ).
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Figure 4. Different types and status of the lo-
cal facial components, each is modeled by
one of the 12 local models defined.

The reconstruction of the medium resolution image on
latticeΛM is the following,

Jrec
M (x, y) =

{
Jrec

cp (x, y) if (x, y) ∈ Λcp

Jrec
L (x/2, y/2) if (x, y) ∈ ΛM\Λcp

That is, pixels in the six component zones are generated
by the refined models, while other pixels are generated by
the low resolution global AAM model upsampled.

In summary, we have the second layer generative model,

Iobs
M = Jrec

M (WL,WM; ∆aam
I , ∆cp

I ) + Ires
M .

WM = arg max p(Iobs
M |WL,WM; ∆aam

I , ∆cp
I )p(WM).

Fig. 1 (3rd column) shows that the reconstructed face
has much more sharpened eyes, nose, and mouth, and the
residue image is less structured.

The likelihood is a Gaussian probability following a
noise assumption for the residue. The prior model for each
component is also Gaussian following the PCA assumptions
for the components[5]. The dictionary∆cp

I is treated as pa-
rameters of the generative model and learned in a supervise
way through fitting (i.e. PCA) to the data.

The inference of the ”switch” variables̀i, i = 1, 2, ..., 6
is done through model comparison within each zones. For
example, we select the best fitted eye representation among
the 5 eye models, with a prior which is favor of the same
model for the two eyes or the two eyebrows.

2.3 Layer 3: the high resolution sketch model

In the third layer, we further refine the 6 component with
sketch curves for the subtle differences in eye balls, eye
twinkles, eye-lid, eye-shade, nostril, wings of nose, lips etc.
We also divide the face skin into 9 zones shown in Fig.6.
The boundaries of these zones are decided by the landmark
points computed inWL andWH.

Our sketch representation has much more details than
previous example-based face sketch method[4] or the face
features used for expression classification[13]. In fact, these
details are sometimes so subtle that one may not see them
(even with human vision) unless they are viewed in the
global context of the face. Fig.7 shows such example of
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Figure 5. (a) Refinement on the nose by
sketch primitive. (b). the sketch curve for a
"smiling fold". Each rectangle in (a-b) repre-
sents a sketch primitive. (c) Examples in the
dictionary of sketch primitives ∆sk

I (above)
and their corresponding strokes (below) in a
cartoon sketch dictionary ∆sk

S .

the skin wrinkles which are nearly imperceptible but be-
come quite prominent when they are put in the face image.
This argues for the coarse-to-fine computation and model –
a method that this paper is taking.

Following the same notation in the medium resolution
layer, we divide the high resolution latticeΛH (e.g. 256 ×
256 pixels) into two parts: the sketch partΛsk where the im-
age will be refined by a number of small image primitives,
and the rest of the imageΛnsk where there is no sketch is
represented by the medium resolution through up-sampling.

The sketch part consists of many image primitives
Λk

sk, k = 1, 2, ..., K. They are small rectangular win-
dows (e.g.7× 7 pixels), and the number of primitivesK is
a variable depending on the medium resolution representa-
tion WM and the imageIobs

H .
Each primitive is an image patch with a small number

(2 ∼ 3) of control points, and thus with both geometric de-
formation and photometric variations. We collect a large
set of image primitives by manually drawing the sketches
on the 200 training images, and some examples are shown
in Fig. 5. Then a data clustering was done to yield a dic-
tionary of primitives in layer 3. In order to capture more

4
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Figure 6. (a). 15 zones for detailed skin features. The 6 zone for the eyebrows, eyes, nose and mouth,
and 9-zones for shaded skins areas where the wrinkles occur. The boundaries of these zones are
decided by the landmarks computed in the low and medium resolution, and thus are inherited from
WL and WH. (b-c-d) typical wrinkles (curves) at the 9 skin zones. Strong prior models and global
context are needed in order to detect the wrinkles.
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Figure 7. (a). A 15× 15 (before zoom in) patch
sampled from 256 × 256 face image; (b). The
same local patch viewed in its global context
— on a wrinkle.

details on skin, especially for detecting and reconstructing
the skin marks (dark) or small secularity spots (highlight),
we also labelled and trained a set of blob type of bases for
the dictionary.

∆sk
I = {Bi : i = 1, 2, ...., N}.

EachBi is an image patch. Then the hidden variables in
the 3rd layerWH include the index̀k for the primitive type,
an affine transformtk for positions, orientations and scales
of these patches, and the photometric contrastαk,

WH = (K, {(`k, tk, αk) : k = 1, 2, ..., K}).

Thus we generate the high resolution image in the
sketchable partΛsk,

Jrec
sk = Jrec

sk (WH; ∆sk
I ).

The final generative model at high resolution is,

Jrec
H (x, y) =

{
Jrec

sk (x, y) if (x, y) ∈ Λsk

Jrec
M (x/2, y/2) if (x, y) ∈ ΛH\Λsk

That is, pixels in the sketch part are generated by the refined
models, while other pixels are generated by the medium res-
olution model upsampled. Therefore,

Iobs
H = Jrec

H (WM,WH; ∆cp
I , ∆sk

I ) + Ires
H .

WH = arg max p(Iobs
H |WM,WH;∆cp

I ,∆sk
I )p(WH).

Fig. 1 (4th column) shows that the reconstructed face has
much more skin details and the residue is greatly reduced,
such that the reconstructionJrec

H is almost lossless.
The likelihood is a Gaussian probability following a

noise assumption for the residue. The prior model for each
component is also Gaussian following the clustering as-
sumptions.

An ASM model [5] is trained for each of the ”structual”
sketches like eye-lid, eye-shape or nostril, etc., which is ini-
tialized and constrained byWM from previous layer in the
inference process. Experiments shows fast convergence and
accurate searching result.

To infer the sketches in the 9 zones, which have much
more flexibility and sometimes locally almost impercepti-
ble, we need to define the prior more carefully. As shown
in Fig.6, a group of typical sketches are formed in each of
the zone by learning of the labelled sketches, andp(WH) is
accordingly defined, which favors the following properties.

• LengthL of the sketch is approximated by a poisson
distributionp(L = l) = (λl/l!)e−λ, whereλ is speci-
fied by the typical sketches in the zone.

• Smoothness in scale, orientation and intensity pattern
of two consecutive primitives{Bi, Bj}.

• Orientation and chance to appear for primitiveBi are
biased by the neighboring typical sketches. That is,
the orientation ofBi shall be more consistent with the
closer typical sketch, and the closerBi is to the typical
sketches, the bigger chance is for it to appear.

• Spatial relationship between two sketches, e.g. two
parallel sketches which are too close will be merged,
or two consecutive short sketches which are too close
will be connected.

5
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Figure 8. The diagram of our model and algorithm. The arrows represent the order of inference.
Left panel is the three layers. Right panel is the synthesis steps for both high-resolution image
reconstruction and face cartoon sketch using the generative model.

In each step of the sketch pursuit, a group of primitive
candidates are proposed by the bottom-up methods, such as
edge detection, and the existing sketches in the same zone.
We decide whether to grow new primitive, make change to
existing sketches or stop the process according to the poste-
rior defined.

2.4 Generating the cartoon sketchS

Fig. 8 summarizes the generating process for the nearly
lossless coding of the image with the code being

W = (WL,WM,WH)

through three layers of occluding representations. The
model uses three dictionaries of increasing details

∆I = (∆aam
I ,∆cp

I , ∆sk
I )

For each elements in these dictionaries, we always have
a corresponding graph representation, shown in Fig.2, Fig.4
and Fig. 5. We call them the sketch dictionaries

∆S = (∆aam
S , ∆cp

S , ∆sk
S )

Thus by replacing the ”photo-realistic” intensity dictio-
naries∆I with the sketch dictionaries∆S, we can generate
a sketch over scales using the same generating steps. Some
examples of the sketches are shown in Fig.1 and Fig.10.

Our sketch has more details than the state-of-the-art face
sketch work[4], though there is still more work to do before
rendering stylistic cartoons. We argue that it is much more
convenient to define and change the style in this generative
representation.

3. Experiments

To verify the framework we proposed, experiments were
conducted based on 350 frontal face images chosen from

different genders, ages and races — 200 for training and
150 for testing. All the images are resized to four different
resolutions:32×32, 64×64, 128×128 and256×256 pixels
respectively. The landmarks and sketches on the training are
manually labelled.

In the first experiment, we report on the face reconstruc-
tion, learning of dictionaries, and sketching. Results are
shown in Fig.1 and Fig.10.

In the second experiment, we compare the efficiency of
the three models: (i) the 1-layer global AAM model with
more landmarks and PCA components, (ii) the 2-layer com-
ponent models, and (iii) the 3-layer model. To be fair, we
measure the total description length (coding length) of the
200 images plus the size of the codebook.

DL = L(ΩI ;∆) + L(∆)

,whereΩI = {I1, ..., IM} is the sample set. The first
term is the expected coding length ofΩI given dictionary∆
and the second term is the coding length of∆.

Empirically, we can estimateDL by:

D̂L=
∑

Ii∈ΩI

∑
w∼p(w|Ii;∆)

(− log p(Ii|w;∆)−log p(w))+
|∆|
2

log M

,whereM denotes the number of data and|∆| the dictio-
nary size. For example, in the 1-layer global AAM model, it
is the pixel number of mean-texture and eigen-texture used
plus twice the point number of mean-shape and eigen-shape
used. In Fig. 9, we plot how the coding length of the mod-
els changes with different dictionary sizes. At low resolu-
tion like 32 × 32 and64 × 64, the DL of 1-layer global
AAM model is shorter than 2-layer component model or 3-
layer sketch model. At high resolution like128 × 128 and
256× 256, the component model and sketch model outper-
form respectively in the sense of coding efficiency. By ap-
plying the criterion of MDL(minimum description length),

6
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Figure 9. Plot of coding length D̂L for the en-
semble of testing images v.s. dictionary size
|∆| at four scales. (a) 32 × 32; (b) 64 × 64; (c)
128× 128; (d) 256× 256

we are able to select the most ”sufficient and compact” gen-
erative model for coding a given set of face data at certain
resolution. It’s worth mentioning that there may be more
appropriate criterion than MDL for certain objects like hu-
man faces. Other than minimizing the overall residue of
the reconstructed face image, people may be more inter-
ested in keeping certain features on the face. For example,
the wrinkles, see Fig.7 is very important for human to tell
the age, gender or expression of a certain individual, while
modeling them increases the coding length as much as the
other strong facial features but reduce less residue. We may
think these kind of features are of high ”sensitivity”. In the
future, psychological experiments can be conducted to sys-
temically study this phenomenon.

4. Summary and Future Work

In this paper we present a three layer generative model
for high resolution face representation. The model incorpo-
rates diverse representations and allows varying dimensions
for details and variabilities. In ongoing research, we are
adding richer features including mustache, lighting variabil-
ities. We’d also like to extend the model for stylish cartoon
sketch in non-photorealistic rendering[4], super-resolution
in image processing, and low bit face communication in
wireless platforms through tracking the sketches over time.
We argue that this high resolution representation should also
improve other applications, such as to acquire precision 3D
face model by stereo, expression analysis[13].
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Figure 10. More results of reconstructed image, generated sketch and residue image of our model.
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