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Abstract

Cloth is a complex visual pattern with flexible 3D shape
and illumination variations. Computing the 3D shape of
cloth from a single image is of great interest to both com-
puter graphics and vision researches. However, the acqui-
sition of 3D cloth shape by Shape from Shading (SFS) is
still a challenge. In this paper, we present a two-layer gen-
erative model for representing both the 2D cloth image and
the 3D cloth surface. The first layer represents all the folds
on cloth, which are called “shading primitives” in [4], and
thus captures the overall “skeleton structures” of cloth. We
learn a number of typical3D fold primitives using some
training images obtained through photometric stereo. The
3D fold primitives yield a dictionary of2D shading primi-
tivesfor cloth images. The second layer represents non-fold
parts with very smooth (often flat) surface or shading, which
interpolates the primitives in the first layer with a smooth-
ness prior like conventional SFS. Then we present an algo-
rithm called “cloth sketching” to find all the shading prim-
itives on cloth image and simultaneously recover their 3D
shape by fitting to the 3D fold primitives. Our sketch repre-
sentation can be viewed as a 2-layer Markov random field
(MRF), and it introduces some prior knowledge on the folds
and has lower dimension and is more robust than the tradi-
tional shape-from-shading representation which assumes a
MRF model on pixels. We show a number of experiments
with satisfactory results in comparison to previous work.

1. Introduction

Cloth is a complex visual pattern with flexible 3D shape
and shading variations. A compact representation for 2D
cloth images and 3D cloth surfaces is important for many
applications in both computer graphics, e.g. cloth ani-
mation, and computer vision, e.g human understanding,
tracking, and non-photorealistic human portrait and cartoon
sketch.
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Figure 1. (a). One cloth hung on wall under
some lighting. (b).Sketches of folds on the
cloth. (c). The computed 3D surface of the
cloth.

In the graphics literature, cloth is always represented by a
mesh surface with a large number of polygons for geometric
based, physical based and particle based cloth modeling and
simulation techniques [7, 2].

In computer vision, our objective is to compute the shape
of cloth from a single image using mostly the shading in-
formation. In the literature, people proposed some shad-
ing representations for the folds of cloth [8] and developed
methods for detecting the folds from 2D images [4, 5].

However, computing the cloth surfaces using shape-



from-shading (SFS) techniques [13, 11] is still a chal-
lenge. The representation underlying the SFS techniques is
a Markov random field on the lattice of pixels with smooth-
ness prior to regularize the ill-posed problem (i.e. under-
constrained). Such smoothness prior (MRF) only charac-
terizes the changes among nearby pixels and is too weak
to model the global information. We show some results on
cloths using some highly ranked shape-from-shading algo-
rithms [13] in Fig.10.

In this paper, we present a two-layer generative model
for representing both the 2D cloth image and the 3D cloth
surface. The first layer represents all the folds on cloth,
which are called “shading primitives” in [4], and thus cap-
tures the overall “skeleton structures” of cloth. An exam-
ple is shown in Fig.1. We collect a number of 3D cloths
surfaces using photometric stereo (see Fig.6) and manually
sketch the various types of folds on the 3D surfaces. Thus
we learn a number of typical 3D fold primitives using these
training images (see Fig.7). The 3D fold primitives yield
a dictionary of 2D shading primitives for cloth images as
shown in Fig.8. We represent the 3D folds using an illu-
mination cone model [1]. The second layer represents non-
fold parts with very smooth (often flat) surface or shading,
which interpolates the primitives in the first layer with a
smoothness prior like conventional SFS [13]. Our sketch
representation can be viewed as a 2-layer Markov random
field (MRF), and it introduces some prior knowledge on the
folds and has lower dimension and is more robust than the
traditional shape-from-shading representation.

Then we present an algorithm called “cloth sketching”
to find all the shading primitives on cloth image and simul-
taneously recover their 3D shape by fitting to the 3D fold
primitives. With the 3D shape of the folds being bound-
ary conditions, we compute the surface of the non-fold part
using the shape-from-shading method on the second layer
lattice of pixels. We show a number of experiments with
satisfactory results in comparison to previous work

The organization of the paper is as follows: Section (2)
presents a two-layer representation for both 2D image and
3D surface. Section (3) and Section (4) discuss the learning
and inference issues for the new model to do cloth sketching
and reconstruction. Then we show the experimental results
and comparison in Section (5). The paper is concluded in
Section (6) with a summary and future work.

2 Cloth representation

2.1 Two-layer model

Let Λ be the lattice,I the image, andS the surface height
map defined onΛ. The lattice is divided into two disjoint
parts: the pixels on the folds and the rest pixels without

Figure 2. A subgraph of G consisting of fold
primitives.

folds,
Λ = Λfd ∪ Λnfd.

Whether a pixel is onΛfd or Λnfd will be inferred in com-
putation. Thus both the image and the surface are divided
into two parts,

I = (Ifd, Infd), S = (Sfd,Snfd).

The imageIfd and surfaceSfd are represented by a num-
ber of low dimensional fold primitives. We denote these
primitive by a set

V = {πi = (`i, θ
geo
i , θpht

i , γtpl
i ), i = 1, 2, ...,K}.

Each 3D fold primitiveπi is selected from a learned dictio-
nary∆ (to be introduced shortly), and is specified by four
sets of attributes:

1. A label`i indexing the type of the 3D fold primitive in
the dictionary. Fig. 4 shows three type of folds.

2. The geometric transformationθgeo
i for location, orien-

tation, scale (size) and deformation (shape) of the fold
primitive.

3. The photometric attributes for illuminationθpht
i : light-

ing direction and surface albedo.

4. Each primitive is connected to other primitives to form
a graph. This is represented by the topological at-
tributesγtpl

i , which is a set of addressing pointers to
the primitives connected with current primitive.

These fold primitives connect with each other like a
chain without over-lapping to generate each fold inSfd,
while the fold latticeΛfd is covered by a number of win-
dows corresponding to these fold primitives as Fig.2 illus-
trates.

Using each fold primitive as a vertex and denoting neigh-
boring structure among these fold primitives by an edge set

E = {e = (p, g) : πp, πq ∈ V },



(a) input (b)folds graphG (c)Ifd (d) Filling result

Figure 3. Filling in Infd by using Ifd as bound-
ary condition.

we can further represent the fold layer as an attribute graph
G = (V, E). Figure 2 shows an example subgraph.

For each 3D primitiveπi, it can generate an image patch
RΛ(πi) on windowΛ(πi) based on its attributes:

RΛ(πi)(x, y) = B(`i, θ
geo
i , θpht

i ),

whereB() is the Lambertian reflectance model process.
Then we can generate the whole pixels inΛfd as,

Ifd(x, y) = RΛ(πi)(x, y), ∀(x, y) ∈ Λfd(πi).

As to the pixels inΛnfd, they can be filled in by using the
pixels inΛfd as boundary condition with some smoothness
prior.

Infd(x, y) = arg max p(Infd(x, y))|Ifd(x, y), β),

whereβ is the parameter to control smoothness prior. Fig-
ure 3 shows such an example.

Similarly, each 3D primitiveπi can also generate a depth
patchDΛ(πi)(x, y) in 3D. So theSfd can be generated as,

Sfd(x, y) = DΛ(πi)(x, y), ∀(x, y) ∈ Λfd(πi).

As to the 3D shape of non-fold areasSnfd(x, y), they
can be computed by traditional SFS by usingSfd(x, y) as
boundary condition. With this recovered surface plus light-
ing, we can have the other way to generateInfd. Usually,
the result is almost the same as the above method.

2.2 Two-layer representation based SFS model for
cloth reconstruction

Assuming a Lambertian reflectance model andSfd and
Snfd share the same illumination and constant surface
albedo, with this two-layer representation, we can formu-
late computing cloth surfaceS by Shape from Shading in
Bayesian framework as:

Figure 4. Three types of folds defined on
cloths are shown at the top. The folds in the
cloth image are marked with different format
of lines to show the type.

Figure 5. Some typical surface cross-section
profiles for the three type of folds showed in
Fig. 4

S ∼ p(S|I)
∼ p(Sfd)p(Ifd|Sfd)p(Infd|Snfd,Sfd).

In this model, the fold part of imageI is explained by an
unknown number of low dimensional 3D fold primitives.
The non-fold part of imageI is explained bySnfd, using
Sfd as boundary condition.p(Sfd) represents the spatial
regularity for the folds, which is defined on the attribute
graphG.

3 Learning

3.1 Learning 3D fold primitives

To learn the 3D fold primitives to represent the 3D shape
of folds, we divide all the folds into three types as shown in
Figure 4. The first type is the regular folds seen from front
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Figure 6. (a), (b), (c) are three images out of the sequence used to reconstruct the 3D cloth shape in
(d).

(a)

(b)

Figure 7. (a). The 2D appearance of 6 extracted fold patches. (b). The 3D shape of 6 extracted fold
patches rendered in OpenGL.

view, while the other two are those half-folds seen from side
view. Figure 5 shows some typical cross-section profiles of
these three types of 3D folds based on the 3D surface of the
cloth in Figure 1 obtained by photometric stereo [10]. To
get some 3D cloth surfaces as training data, we use the pho-
tometric stereo algorithm in [10]. For each of the sample
cloths, we take a sequence of images(∼ 20) under different
lighting conditions. Two sample cloths are shown in Figure
6, in which(a), (b), (c) are three images from the sequence
used to get the cloth surface in(d). Based on the 3D data
of sample cloths, we build up an interface program to help
manually extract fold patches as training data to learn the
3D fold primitives. Some of typical extracted fold patches
are shown in Figure 7. It can be clearly seen from Fig-
ure 5 that the 3D shapes are consistent for each type of 3D
folds. Therefore, we use PCA to represent the shapes of
these three types of fold primitives.

Thus, we have a dictionary with three types of 3D prim-
itives to represent folds,

∆ = {B1, B2, B3}.

Each primitiveBi is represented by the coefficient of the
eigenfunctions of the PCA model. The mean shape and
eigenfunctions for 3D primitivesBi are learned from the
training patches extracted from the 3D surfaces of sample
cloths. Figure 8 shows the learned mean fold shape un-
der different viewing directions and lighting conditions. It
shows that these 3D fold primitives generate some 2D shad-
ing primitives on images.

In the attributed graphG of folds, each vertex is a 3D
fold primitives Bi from the dictionary∆, but goes under
some translation, rotation, scaling and deformation (chang-
ing the coefficients of eigenvectors) of the unit fold primi-
tive with mean shape as height map.

3.2 Learning spatial regularity prior model for
folds p(G)

The folds on cloths are not randomly spreading in space.
Instead, they follow some spatial regularities, not only for
each individual fold, but also for the relative spatial rela-



Figure 8. The rendering results for the learned mean fold shape under different viewing directions
and lighting conditions.

tions among folds.
For each individual fold, the overall shape should be

smooth in 3D space without sudden change. To enforce
this regularity, we use a Markov chain model to force the
smoothness of 3D folds.

Let fi, i = 1, 2, ..., Nf be all the folds inG andvij , j =
1, 2, ...|fi| be all the vertices on foldfi. The smoothness
prior model for foldfi can be represented as,

p(fi) = p(vi1, vi2)p(vi3|vi1, vi2)
ni∏

j=4

p(vij |vi,j−1, vi,j−2, vi,j−3)

The probability p(vi1, vi2) is assumed to be uniform,
p(vi3|vi1, vi2) is a two gram represented by a 2-way joint
histogram andp(vij |vi,j−1, vi,j−2, vi,j−3) is a trigram rep-
resentation by three way joint histogram. The first his-
togram is learned from some 2D curves of folds, while the
second histogram is learned from some manually obtained
3D curves of folds by computing three variables:

1. the angle between(vi,j−1, vi,j−2) and(vi,j−2, vi,j−3),

2. the angle between(vi,j−1, vi,j−2) and(vi,j−1, vi,j),

3. the distance fromvi,j to the plane fitting through
vi,j−1, vi,j−2 andvi,j−3.

So the spatial regularity prior model for folds is,

p(G) =
Nf∏

i=1

p(fi).

4 Inference

The two-layer representation based SFS model for cloth
reconstruction may need MCMC method for global infer-
ence. Here we propose a two step greedy method: First, we
run a process called “cloth sketching” to find all the folds
and recover their 3D shape at the same time using the 3D
fold primitives in learned dictionary∆. Second, after ob-
taining the 3D shapes of fold areas, we infer the 3D shape
of non-fold areas by using these 3D folds as boundary con-
dition.

4.1 “Cloth sketching" process

In this process, we try to find all the folds in the given
imageI and recover their 3D shape simultaneously. The
process is explained as below.

1. run a ridge detection algorithm [6] on the imageI.

2. Initialize the attribute graphG of Sfd to ∅ andSnfd to
be a constant plane.

3. Find the highest ridge strength position(x0, y0), which
is not covered byG and is not marked as visited. At
this position, mark it as visited and fit the three types of
fold primitives with different scale, rotation, and defor-
mation to get the one with largest log-posterior ratio.If
this largest log-posterior ratio is larger than a thresh-
old, then represent this scaled, rotated and deformed
fold primitive by a vertex and insert it toG and go to
step 4; otherwise stop.



Figure 9. To grow the newly inserted vertex in
fold graph G, we test the areas as illustrated
in the figure.

4. Try to grow the newly inserted vertex from both ends,
which is shown in Figure 9. Do the log-posterior ra-
tio test as in step 3. If the largest log-posterior ratio
is larger than a threshold, insert a new vertex and con-
tinue to grow until the grow operation is rejected for
both ends.

5. Repeat step 3 and 4 until all the positions are either
visited or covered byG.

After this process, we have the attribute graphG for Sfd.
From this, we can synthesize the image in fold part and get
the 3D shape of folds, which are shown in Figure 11 (c) and
(d) respectively.

4.2 Infer the shape of non-fold parts

After finding all the folds and obtaining their 3D shape,
we infer the shape of rest parts by SFS using these folds
shape as boundary condition. Since we don’t know the rel-
ative positions among all the folds yet, we try to recover
the normal of non-folds areas first. Then we recover the
depth from the obtained normals. Since the recovered 3D
folds can not only give us a good initialization for the 3D
shape of non-fold areas, but also act as extra constraints to
dramatically constraint the solution space, this part can be
done by a lot of existing SFS algorithms. Considering both
speed and accuracy, we choose a latest one based on energy
minimization in [3] with some modifications.

Denoting the normals forSnfd in (p, q) format, the en-
ergy to be minimized in [3] is modified as:

E = ζ2
∑

(x,y)∈Λnfd

δ(I(x, y) > τ)(I(x, y)−R(x, y))2

+λint

∑
(x,y)∈Λnfd

(py(x, y)− qx(x, y))2

+λsmo

∑
(x,y)∈Λnfd

(w1(x, y)px(x, y)2 + w2(x, y)py(x, y)2

+w2(x, y)qx(x, y)2 + w1(x, y)qy(x, y)2),

wherepx(x, y) = p(x + 1, y) − p(x, y), py(x, y) =
p(x, y + 1) − p(x, y), qx(x, y) = q(x + 1, y) − q(x, y),
qy(x, y) = q(x, y + 1)− q(x, y), ζ is the distance between
two neighboring pixels,λint andλsmo are two positive con-
stants named “integrability factor” and “smoothing factor”
respectively, whileδ() andw will be introduced next.

The non-fold areas are more noisy than the fold areas
since the former always has occlusions and sharp valleys,
where the assumed Lambertian reflectance model doesn’t
hold anymore. Therefore, these noisy areas should not be
counted in the data term and their shape be recovered by the
prior model. Since these noisy areas are always very dark,
we filter them out by a thresholdτ with a delta function (e.g.
δ(I(x, y) > τ) = 1).

In addition, we weight the smoothness prior by looking
at the data as in [12] with{wj(x, y), j = 1, 2, 3} being local
smoothness weights:

w1(x, y) = (1− |Ix(x, y)|)2

w2(x, y) = (1−
√

2

2
|Ix(x, y) + Iy(x, y)|)2

w3(x, y) = (1− |Iy(x, y)|)2

which are chosen to be inversely proportional to the inten-
sity gradient along thex, diagonal,y directions respectively.
This choice is intuitive and confirms well with the fact that
smoother images should be produced by smoother surfaces
in usual cases.

After obtaining the normals for non-folds areas, we can
compute the whole 3D cloth shape as in [3] by minimizing
an energy function. (Refer to [3] for details.)

5 Experiments

We test our whole algorithm on four cloth images as
shown in Figure 11. The first three are big cloths hanged on
wall, while the last one is a patch extracted from a clothing
on a person. In the experimental results, the first row are in-
put images, second row are the sketches of folds in the input
images, third row are the synthesises based on the genera-
tive sketch model for the fold areas, third row are the 3D
reconstruction results for the fold areas, while fourth and
fifth rows are the final reconstruction results of the whole
cloth shown in two different views.

For comparison with other SFS algorithms, we run two
minimization approaches in [13] on the same testing images
used for our algorithm since minimization approaches are
more robust and accurate even though much slower than
other approaches. The first approach is from [14], while the
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Figure 10. (a). input cloth images. (b). cloth reconstruction results by approach in [14]. (c). cloth
reconstruction results by approach in [9].

second one is from [9]. The results for these two approaches
are shown in first row and second respectively in Figure 10.

6 Summary and Future Work

In this paper, we present a two-layer generative model
for representing both the 2D cloth image and the 3D cloth
surface. The first layer represents all the folds on cloth with
some low dimension 3D fold primitives, while the second
layer represents the non-fold part. Based on this model, the
3D shape of folds are recovered by a process called “cloth
sketching” first and then the shape of non-fold areas are re-
covered by using these fold shapes as boundary condition.
In the future work, we will learn more 3D shape primitives
and extend the “cloth sketching” process to recover more
structured parts. In this way, we can use it for other objects
than cloth.

Acknowledgements

This work was supported in part by National Science
Foundation grants IIS-0222967 and IIS-0244763.

References

[1] P. Belhumeur and D. Kriegman. What is the set of images of
an object under all possible illumination conditions?IJCV,
1998.

[2] K. Bhat, C. D. Twigg, J. K. Hodgins, P. K. Khosla,
Z. Popvic, and S. M. Seitz. Estimating cloth simulation pa-
rameters from video.Proc. Symposium on Computer Ani-
mation, 2003.

[3] A. Crouzil, X. Descombes, and J.-D. Durou. A multiresolu-
tion approach for shape from shading coupling deterministic
and stochastic optimization.TPAMI, 2003.

[4] J. Haddon and D. Forsyth. Shading primitives: Finding folds
and shallow grooves.ICCV, 1998.

[5] J. Haddon and D. Forsyth. Shape representations from shad-
ing primitives.ECCV, 1998.

[6] R. Haralick. Ridges and valleys on digital images.CVGIP,
1983.

[7] D. H. House and D. E. Breen.Cloth Modeling and Anima-
tion. A.K. Peters, Ltd., 2000.

[8] P. S. Huggins, H. F. Chen, P. N. Belhumeur, and S. W.
Zucker. Finding folds: On the appearance and identification
of occlusion.CVPR, 2001.

[9] K. Lee and C. Kuo. Shape from shading with a linear trian-
gular element surface model.TPAMI, 1993.

[10] A. Shashua. Geometry and photometry in 3d visual recog-
nition. Ph.D Thesis, MIT, 1992.

[11] P.-S. Tsai and M. Shah. Shape from shading using linear
approximation.Image and Vision Computing, 1994.

[12] G.-Q. Wei and G. Hirzinger. Parametric shape-from-shading
by radial basis functions.TPAMI, 1997.

[13] R. Zhang, P.-S. Tsai, J. Cryer, and M. Shah. Shape from
shading: A survey.TPAMI, 1999.

[14] Q. Zheng and R. Chellappa. Estimation if illumination di-
rection, albedo, and shape from shading.TPAMI, 1991.



(a)

(b)

c)

(d)

(e)

(f)

Figure 11. (a). input cloth image. (b). 2d fold sketches. (c). synthesis for 2D fold sketches. (d). 3D
reconstruction results for fold areas. (e). final reconstruction results for the whole cloth. (f). final
reconstruction results for the whole cloth shown in a novel view.


