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Abstract

Cloth modeling and recognition is an important and
challenging problem in both vision and graphics tasks, such
as dressed human recognition and tracking, human sketch
and portrait. In this paper, we present a context sensi-
tive grammar in an And-Or graph representation which will
produce a large set ofcomposite graphical templatesto ac-
count for the wide variabilities of cloth configurations, such
as T-shirts, jackets, etc. In a supervised learning phase, we
ask an artist to draw sketches on a set of dressed people,
and we decompose the sketches into categories of cloth and
body components: collars, shoulders, cuff, hands, pants,
shoes etc. Each component has a number of distinct sub-
templates (sub-graphs). These sub-templates serve as leaf-
nodes in a big And-Or graph where an And-node represents
a decomposition of the graph into sub-configurations with
Markov relations for context and constraints (soft or hard),
and an Or-node is a switch for choosing one out of a set
of alternative And-nodes (sub-configurations) – similar to
a node in stochastic context free grammar (SCFG). This
representation integrates the SCFG for structural variabil-
ity and the Markov (graphical) model for context. An algo-
rithm which integrates the bottom-up proposals and the top-
down information is proposed to infer the composite cloth
template from the image.

1.. Introduction
Modeling human clothes is an important and challeng-

ing problem in many vision tasks that involve recogni-
tion of dressed people in natural environments, such as
detecting[4, 11], tracking[5], surveillance, HCI, identifica-
tion, human sketch and portrait for graphics rendering[2]
etc. Despite intensive studies on the problems of “look
at people” in the past decade, there is, to our best knowl-
edge, no good model dedicated to realistic cloth modeling
and recognition. The closest work that we can find are sil-
houette, contour, blob and region representations[6, 4]. In
graphics, physical based models[8] are mostly used to cre-
ate realistic visual effects of drapery and animation. Such
models involve a large amount of polygons (mesh) and are

very expensive. They do not account for the wide variabil-
ity of cloth designs and are less relevant for the vision tasks
mentioned above.

There are three major challenges in cloth representa-
tions.

1. Geometric deformations: clothes do not have static
form and are very flexible.

2. Photometric variabilities: large variety of colors,
shading effects, and textures.

3. Topological configurations: a combinatorial num-
ber of cloth designs – T-shirts, jackets, pockets, zips, suits,
sweaters, coats where cloth components may be reconfig-
ured and combined to yield new styles.

In this paper, we present a parsimonious yet expressive
representation for clothes, motivated by the success of two
sketch based methods. (i) Artists can draw concise sketches
of clothes and human body that capture the most essen-
tial perceptual information[7]. (ii) The recent primal sketch
model[3] – an attributed graph representation with a dictio-
nary of image primitives aligned through landmarks – can
reconstruct generic images with almost no perceptual dis-
tortions. We adopt a sketch graph representation like the
primal sketch. Each stroke (long curves) of the sketch may
correspond to (a) folds of clothes, (b) sewing lines, (c) oc-
cluding boundaries, and (d) shape outlines.

The geometric deformations of clothes are accounted for
by the flexibility of the sketch graphs, and the photometric
variabilities are accounted for by the rich image primitives
whose parameters control the photometric variations. In the
rest of the paper, we focus mostly on the study of topologi-
cal configurations – a central theme in this paper, which has
not been studied in the vision literature.

In a supervised learning phase, we collect a set of hu-
man images and sketches drawn by an artist. An example is
shown in Fig 2.a-b. We remove one layer of the strokes that
corresponds to shading folds and textures (Fig. 2.c). The
remaining graph (Fig.2.d) is decomposed into a number of
subgraphs forcloth components(Fig. 2.e). All subgraphs
across the dataset, together with their neighborhood, are
grouped into categories for collars, shoulders, cuff, hands,
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pants, shoes and each has a number of possible structures
(See Fig. 4). These subgraphs have “bonds” that tell them
who to link with to compose bigger structures (see Fig. 6),
and they are combined using the context information to
form a wide variety of clothconfigurations. For example,
Fig. 5 shows three novel upper cloth configurations using
some sub-templates in Fig. 4.

A crucial technique problem is: how can these compo-
nents be composed into valid clothes? What are the rigorous
mathematical models to govern the computation?

To account for the topological configurations, we build
an And-Or graph, which is widely used in AI search [9],
as an overall representation of clothes. An example is il-
lustrated in Fig. 1. The And-Or graph is also used in the
previous work [16] to present an attributed grammar in a
generic rectangle parsing problem. The And-Or graph for
clothes are quite different and more complicated. Each ter-
minal (leaf) node (squares1 − 11) represents a component
or sub-templates. Different sub-templates in the same cat-
egory are represented by distinct leaves. The non-terminal
nodes are divided into And-nodes whose children must be
chosen jointly and Or-nodes of which only one child can be
selected to express the alternative components. Intuitively,
an And-node expands the configuration and an Or-node is a
switch between alternative sub-configurations. The And-Or
graph should be distinguished from a tree because the graph
has horizontal edges (dashed) to specify the spatial relations
and constraints among the components. A specific cloth
configuration, say a jacket, corresponds to a subset of the
And-Or graph (see the dark nodes and arrows). Thus one
And-Or graph is like a “mother template” which produces
a set of valid cloth configurations –“composite templates”.
A composite template is made of a set of leaf nodes (sub-
templates). For example, leaf nodes(1, 6, 8, 10) in Fig. 1
form a composite template. The spatial relations between
the chosen leaf nodes are inherited from the And-Or graph.
For example, the relation between nodes 1 and 6 is inher-
ited from nodes B and C in Fig. 1, and the relation between
nodes 6 and 8 is inherited from nodes N and O. These re-
lations help to link the subgraphs (components) together to
form a valid representation. In fact, the And-Or graph em-
bodies acontext-sensitive grammarwhich can generate a
rich set of composite templates to account for the variabili-
ties of clothes. It is a novel representational scheme that has
not been studied yet in the vision literature. We will define a
probability model on the context sensitive grammar in later
section.

In a computing and recognition phase, we first activate
some sub-templates in a bottom-up step. For example, we
can detect the face and skin color to locate the coarse po-
sition of some components, which help to predict the po-
sitions of other components by context. Then a top-down
step is activated to match some sub-templates in various
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Figure 1. An illustration of the And-Or graph representation. The
dark arrows and shaded nodes represent a composition of 4 leaf
nodes (1,6,8,10) each being asub-template. This generates acom-
posite graphical template(at the bottom) representing the specific
cloth configurationwith the spatial relations (context) inherited
from the And-Or graph.

categories to the edge maps. The matched graphs are de-
formed through diffusion to the exact boundaries in the im-
age. Overall computation follows the Bayesian inference.

The context sensitive grammar and composite graphical
template is a general modeling framework. We used cloth
modeling and recognition as an example. This framework
is applicable to many other classes of objects, especially
classes where object instances have wide variabilities in
their configurations, such as cars/van/truck, buildings, fur-
niture and scene settings.

The paper is organized as follows. We first present the
And-Or graph theory in Section 2 and a probabilistic con-
text sensitive grammar model in Section 3 to set the theoret-
ical foundation. Then we show the cloth model in Section 4
as an example, and briefly discuss the inference algorithm
in 5. Some results are presented in Section 6 which is fol-
lowed by a discussion on future work in Section 7.



(a). input image (b). artist sketch (c). folds/textures (d). structures (e). decomposition

Figure 2. An example of training the model. (a) Cloth image, (b) artist’s sketch, (c) a layer of sketches for shading folds and texture (e.g.
shoe lace, text on shirt etc), (d) remaining sketch graph for structures and sewing lines, (e) decomposed from (d) to sub-templates for
components.

2.. Composite graphical templates
Graphical templates are widely used in computer vi-

sion to model objects which have geometric deformation
and photometric variabilities. A lot of object classes, such
as clothes, have different topological configurations which
cannot be modelled by a single graphical template. We
propose to use a composite template to accommodate the
topological variabilities, and we use the And-or graph as
the overall representation of these composite graphical tem-
plates. The And-Or graph is a 5-tuple explained below.

Gand−or =< N = U ∪ V, T, Σ, R, A > . (1)

1. Non-terminal nodesN includes a set of And-nodes
U = {u1, ..., um(U))} and a set of Or-nodesV =
{v1, ..., vm(V )}. An And-nodeu ∈ U represents a graph
template which is composed of a set of sub-templates with
certain relationsr1, ..., rk ∈ R shown by the dashed hori-
zontal lines in Fig. 1.

An Or-nodev ∈ V is a switch pointing to a number
(≥ 1) of alternative sub-configurations. We define a switch
variableω(v) for v ∈ V , that takes an integer value as an
index to the chosen node.ω(v) = ∅ if v is not used in the
final chosen configuration.

2. Terminal nodesT = {t1, ..., tm(T )} is a set of sub-
templatesgi representing object components for clothes,
such as collars, pockets, hands, etc, as shown in Fig.3.

Each gi is a sketch graph where the sketch contours
(strokes) are divided into many short segments and are con-
nected by junctions. Both short segments and junctions
are represented as vertices ingi. Endpoints are 1-degree

vertices, segments in the middle of contours are 2-degree
vertices, and junctions have 3-4 degrees. Each vertex cor-
responds to an image primitive[3], such as step edge, bar,
ridge, etc. We denote byx a vertex ingi, f an edge ingi,
andΛi the image domain covered bygi,

gi = ({xi1, ...,xik(i)}, {fmn =< xim,xin >}, Λi). (2)

3. ConfigurationsΣ is a finite set of valid composite
templates,

Σ = {Gj = (gj,1, ..., gj,m(j)) : j = 1, 2, ..., M}. (3)

Each graphG ∈ Σ is a specific configuration for the ob-
ject, such as a suit, a jacket or a T-shirt. For example
G = (1, 6, 8, 10) is a configuration in Fig.1 (bottom). The
spatial relations/constraints between these leaves are inher-
ited from their parents in the graphs. For example, the rela-
tion between node 6 and node 8 are inherited from nodes N
and O. The And-Or graph in Fig.1 contains a combinatorial
number of valid configurations, e.g.

Σ = {(1, 6, 8, 10), (1, 5, 11), (2, 4, 6, 7, 9), ...} (4)

The number of nodes may vary as well as the graphical
structures. Fig. 5 shows three novel upper cloth configu-
rations generated by the And-Or graph of clothes.

4. R is a set of relations between Or-nodes or sub-
graphs.

R = {rij =< vi, vj >: vi, vj ∈ V }. (5)
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Figure 3. The And-Or graph for arms.

These relations become the pair-cliques in the composite
graphical template. When a nodevi is split later, the rela-
tion rij will be split as well. For example, in Fig. 1 node C is
split into two leaf nodes 6 and 8, then the relation< B, C >
is split into two subsets between 1-6 and 1-8,

< B,C >=< 1, 6 > ∪ < 1, 8 > . (6)

5. AttributesA is a set of photometric and geometric
transforms applied to the sub-templatesgi on the leaf nodes
ti ∈ T, i = 1, ..., m(T ).

A = {(Apho
i ,Ageo

i ) : i = 1, 2, ..., m(T )}. (7)

The photometric attributesApho
i is a vector – the type of in-

tensity/color profiles and their contrasts – for the primitives
of the verticesxi1, ...,xik(i) in sub-graphgi. The geomet-
ric transforms include affine transformAi = (Tx, Ty, s, θ)
for the whole subgraphgi and warping (deformation or dis-
placement)(ξij , ηij) for each vertex.

Ageo
i = (Ai, (ξi1, ηi1), ..., (ξin(i), ηik(i))). (8)

The photometric and geometrical transforms, together with
the topological variations construct a very rich set of com-
posite (attributed) templates, and the graph matching algo-
rithm in later section will be defined on the photometric,
geometric, and topological distances.

3.. Context sensitive grammar models
Stochastic context free grammars (SCFG) were intro-

duced to vision in (Fu, 1981)[1], and are equivalent to the
Markov tree model. Such grammar models suffer a ma-
jor problem that they cannot pass global and context in-
formation among nodes. For example, they cannot put a
constraint that a face consists of 2 (not 3 or 4) nearly sym-
metric eyes. The context information is best described by

graphic templates (Yuille 1991)[13] and Markov random
fields (MRF) on graphs. But a fixed template cannot ac-
count for the structural variabilities. The And-Or graphs
integrate both representations.

The And-Or graph presented in the previous section
is a combination of a Markov tree and Markov random
fields. Each And-node is a graphic (MRF) template model,
and each Or-node is a switch node in the Markov tree
(SCFG). As a matter of fact, each And-Or graphG =<
U ∪ V, T, Σ,R,A > is a context sensitive grammar[10]
whereT is the vocabulary,U andV are two types of pro-
duction rules (U for graph expansion with relationR and
V for graph switches),Σ is a language (sentences) gener-
ated by these rules, andA is the photometric and geometric
attributes associated with the vocabulary. It can generate a
large set of configurations (sentences) like the SCFG, and at
the same time each configurationG ∈ Σ carries the context
and Markov constraints (soft or hard) in a graphic model.

The context sensitive grammar will be useful for many
vision tasks. Cloth modeling in the this paper is just one
example. In the following, we define a probabilistic modelp
on top of the composite graphical templatesΣ for modeling
and inference.

Let G ∈ Σ(G) be a composite template. It has the fol-
lowing constituents.

1. V (G) = {v1, ..., vm} is a set of Or-nodes
(switches) that are used in configuringG. For instance,
V (G) = {B,C, D,N, O} in Fig.1 for the configuration
G =(1,6,8,10).

2. T (G) = {t1, ..., tn} is the leaf nodes in configura-
tion G, such as (1,6,8,10) in Fig.1 . Each is a subgraph
gi(ti), i = 1, 2, ..., n.

3. R(G) = {ri,j =< gi, gj >} is the set of relations
defined on terminal sub-templates inherited from the And-
Or graphG. Each is a pair-clique andgi andgj are both
terminal node in the And-Or graph.

4. S(G) is the photometric and geometric transforms
applied to the subgraphsgi, i = 1, 2, .., n.

The probability forG is

p(G;G) =
1

Z(G)
exp{−E(G)} (9)

E(G) =
∑

v∈V

Ev(ω(v))+
∑

ti∈T (G)

E(gi)+
∑

ri,j∈R(G)

E(g(vi), g(vj)).

(10)
The first term in the energyE is the same as the SCFG.

It assigns different weights to the switch variablesω(v) at
the or-nodesv, and each accounts for how frequently an
And-node appears. Removing the 2nd and 3rd terms, this
reduces to a SCFG.

The second and third terms are typical singleton and
pair-clique energy defined on the graphG after the switch
variables are decided. The second term is the prior model



of the geometric and photometric transformations applied
to the sub-template. The third term models the compatibil-
ity constraint, such as the spatial constraint between sub-
templates. We will give the detailed energy of cloth mod-
elling in following section.

In the above model, the partition function is related to the
and-Or graphG and is common to all graph configurations
in Σ(G).

Z(G) =
∑

G∈Σ(G)

exp{−E(G)}. (11)

Because of a commonZ, we no longer need to worry about
computing the partition function or ratio when we switch
between different configurationsG ↔ G′ in the inference
phase.

4.. Composite models of clothes
We take 50 training images of college students sitting in

a high chair with good light conditions and uniform back-
ground to exclude occlusions and bad illuminations. Ges-
ture, illuminations and background clutter are other difficult
problems that are beyond the scope of this paper. This paper
is focused on modeling the variability of cloth configura-
tions. An artist is paid (in hourly rate) to draw the sketches
in Adobe illustrator. She is asked to make the sketches as
consistent as possible across the training images.

As Fig. 2 shows, we first manually separate a layer of
sketches corresponding to shading folds and textures (e.g.
shoe lace, text printed on T-shirt). Then we decompose
the remaining structures (Fig. 2.d) into a number of sub-
templates: hair, face, collar, shoulder, upper and lower
arms, cuff, hands, pants, shoes, and pocket. Fig. 4 shows
some examples for each category.

With these categories, we construct an And-Or graph to
account for the variability of configurations. For an exam-
ple, we shown the And-Or graph of arms in Fig. 3. Intu-
itively, the And-Or graph is like a “mother template” which
can produce a large set of configurations, three of which are
shown in Fig. 5.

For each terminal node, we assume uniform probabil-
ity for choosing the primitives and intensity profile and put
a Thin Plate Spline (TPS) model to regularize the warp-
ing (deformation controlled by the warping on the vertices)
(ξ, η) of subgraphsgi on domainΛi. Therefore, the single-
tonE(gi) in Eqn.10 is defined by,

E(gi) =
∫ ∫

Λi

ξ2
xx + ξ2

xy + ξ2
yy + η2

xx + η2
xy + η2

yydxdy.

(12)
We define a set of “bonds” for each sub-template. They

are used to link the corresponding “bonds” in neighbor
parts, such as the torso and upper arm or the upper arm
and the forearm. Let’s denote the set of all connection of
“bonds” between sub-templategi andgj asBi,j . Then, the
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Figure 4. The categories for cloth components and each category
consists of a set of sub-templates used as leaf nodes in the And-Or
graph.

pair-clique term is defined as

E(gi, gj) = d(Ai, Aj) +
∑

<βik,βjl>∈Bi,j

d(x(βik),x(βjl)).

, where the first term is used to enforce consistence of the
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The bonds are shown by the red dots.g1 has three bonds
β11, β12, β13. The relation betweeng1 and g2 are specified in
(β11, β21).

affine transforms of the two sub-templates.

d(Ai, Aj) = λs(log(si/sj)−αs)2+λθ sin((θi−θj−αθ)/2)2.

,wheres, θ are the affine transformation parameters for each
part, andλs, αs, λθ, αθ are learned parameters.

The second term is used to enforce the corresponding
“bonds” between neighboring parts, which are connected
with each other.

The likelihoods are models from sub-templategi with
domainΛi to the image patchIΛi . The likelihood model is

p(IΛ|G;∆) =
∏

gi∈T (G)

p(IΛi |gi;∆i), (13)

where ∆ = {∆1, ..., ∆N} is the set of all image
primitives[3] associated with the templates. Within each
domainΛi, some pixels are covered by the image primi-
tives (for vertices) and the remaining part are filled in by
MRF models as in the primal sketch[3]. People who are
not familiar with the primal sketch should think of it like
inpainting. The background, which is not covered by our

templates, is modeled as uniform Gaussian noise. For each
template, we will record the following attributes: (a) the
type of boundary, (b) ownership (which side owns an oc-
cluding boundary), (c) the intensity profiles and types of
image primitives, (d) region model (illustrated by a-b-c in
Fig. 6). Since the likelihood model for graphical templates
are straightforward, we choose not to unfold its details due
to space limits.

The parameters in the above models are learned indepen-
dently from the set of training examples.

5.. Bottom-up and top-down inference
Given the prior model with all the descriptionsG and the

generative likelihood model, the objective of the inference
algorithm is to compute the best graph configurationG ∈
Σ(G) for a test imageI,

G∗ = arg max
G∈Σ(G)

p(IΛ|G;∆)p(G). (14)

The inference is done in a spirit similar to the DDMCMC
image parsing[12] which combine the bottom-up and top-
down computation.

Bottom-up data driven proposals (discriminative tests)
are designed for all nodes in the And-Or graph. Some nodes
are more informative and thus can be detected more reliably,
such as the face. Other nodes are less informative. For in-
stance, the elbow is hard to infer when the arm is straight.
It is also desirable to infer the nodes from coarse-to-fine.
For example, the leaf nodes have many sub-templates which
should be activated after their positions are located (pre-
dicted) from the parent nodes in the higher level of the
And-Or graph. We carefully design the order of the bottom-
up and top-down computation so that the more informative
nodes are proposed and inferred earlier, and they in turn
generate useful top-down/context information for comput-
ing the other less informative nodes.

Fig. 7 shows an example of our bottom-up and top-down
inference. We do face detection as shown in Fig. 7.(c). To
locate the torso, we use an ASM (Active Shape Model)[17]
type of model. We define a common shape template for the
key points of the torso as the red points in Fig. 7.(c). We
apply PCA to the shape and model the prior of shape as a
Gaussian distribution in the reduced dimension. With the
position of the face, and the relative position model of torso
and face, we randomly sample some shapes to use as the ini-
tialization of the ASM searching algorithm. Using the same
method, we build shape models for upper arms and fore-
arms. Note in Fig.3, there are two distinct configurations of
the forearms. We use a mixture model for the two distinct
configurations of forearms: separated or crossed. After lo-
cating these body parts with bottom-up methods, we obtain
an overall proposal for body parts as shown in Fig. 7(c). The
face rectangle is used as the initialization of the skin region,
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Figure 7. Running example. (a) input image, (b) Canny edge map, (c) bottom-up detection of face and body parts, (d) skin color detection
by mean-shift clustering in color space, (e) results of top-down matching.

and combined with the results of mean shift clustering, we
get the skin region as in Fig. 7.(d).

With the coarse positions of the human parts, we start
the top-down graph matching process. Each non-terminal
node at the bottom of the And-Or graph has a number of
leaf nodes (see Fig.3) which correspond to a set of sub-
templates (subgraphs). Each sub-template is a subgraph
with photometric and geometric transformation parameters.
Deformable Template matching is well studied, especially
with good initialization. For each candidate sub-template,
we match it to the image with the thin-plate spline prior
(defined in the prior terms in eqn.(12)) with iterated clos-
est point algorithm (TPS-ICP)[14]. The best matched sub-
template is selected by comparing the posterior probability.
Although the TPS-ICP algorithm is a locally optimal algo-
rithm, the likelihood models with region information in the
sub-templates are quite robust. An example of the fitting
result is shown in Fig. 7.(e).

6.. Experiments

We applied our algorithms to two sets of images. One set
is in Fig.8, and another set is in Fig.9. For each testing im-
age, as in Fig. 7, we first infer the body gesture at the parts
layer, then infer the composite graphical template. As we
can see, the whole hand is represented by one or two sub-
templates. We are not computing the fingers individually
which seems an impractical task. In case a hand in the test
image has a different configuration from the sub-templates
in our training set, we choose the closest match. It is inter-
esting to observe that human vision is apparently not very
sensitive to subtle differences.

As shown in Fig. 8 and Fig.9, these graphical sketches
are quite nice for they are generated from the artist’s tem-
plates. One can use such results in many applications, such
as cartoon animation, human portraits, and video communi-
cation in narrow band devices.

Figure 8. Some recognition results of upper body with clothes.
The input images are shown in the first row. The third row shows
the composite graphical templates inferred from the images. For
comparison, the results of a canny edge detector are shown in the
middle row.



Figure 9. More recognition results of upper body with clothes. The results are the composite graphical templates inferred from the images.

7.. Discussion
The main contribution of this paper is the And-Or graph

representation as a rigorous matching model for generat-
ing a set of composite graphical templates in a principled
way, in contrast of the graphical (MRF) models/template of
fixed structure widely used in the literature. This represen-
tation embodies the context sensitive grammar model which
was never used in the vision literature before, despite the
fact that people have long desired such a model. We used
cloth modeling and recognition as an example, however the
framework is generally applicable to many other classes of
objects, especially classes where object instances have wide
variabilities in their configurations.

Due to space limit, we cannot unfold many details on
graph matching and the likelihood models, which are, in
our opinion, straightforward and not new in this paper. We
refer to the literature for existing work on graph matching
and primal sketch[3] for likelihood models.
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