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Abstract To be more specific, we argue that the two classes of
models — the generative sparse coding models and the de-
Image patches are fundamental elements for object mod-scriptive Markov random fieldsLf] are two different ways
eling and recognition. However, there has not been a of representing and mapping natural image patches with dif-
panoramic study of the structures of the whole ensembleferent metrics for different purposes.

of natural image patches in the literature. In this article, Sparse coding models for geometric primitiviesy:

we study the structures of this ensemble by mapping nat-These models represent image patches by an image gener-
ural image patches into two types of subspaces which wegting function parameterized by a small numbehifden

call “explicit manifolds” and “implicit manifolds” respee  yjgriablesindexing the photometric and geometric proper-
tively. On explicit manifolds, one finds those simple and jjeg of the image patches. By varying the values of these
regular image primitives, such as edges, bars, corners andygriaples, the model generates a set of image patches that
junctions. On implicit manifolds, one finds those complex span a low-dimensional manifold in the space of image
and stochastic image patches, such as textures and clutterspatches_ We call this manifold thexplicit manifold, be-

On different types of manifolds, different perceptual io8tr  cayse the image patches on this manifold can be accurately
are used. We propose a method for learning a probabilistic mapped and reconstructed explicitly by the corresponding
distribution on the space of patches by pursuing both typesygjyes of the variables in the model. On explicit manifolds,
of manifolds using a common information theoretical crite- e usually find simple and regular image patches such as
rion. The connection between the two types of manifolds isedges, bars, corners, junctions, and other geometric primi
realized by image scaling, which changes the entropy of thetjes. The left picture of Fig illustrates the explicit mani-
image patches. The explicit manifolds live in low entropy fo|gs, where each image patch is a point. An explicit mani-
regimes while the implicit manifolds live in high entropy fo|d can be a zero-dimensional point, one-dimensional line
regimes. We study the transition between the two types ofy  two-dimensional surface etc. Two image patches are

manifolds over scale and show that the complexity of the considered similar if their values of hidden variables are
manifolds peaks in a middle entropy regime. close to each other.

Markov random fields for stochastic textufés]: These
ducti models represent image patches by a small numbggaof
1. Introduction ture statisticsindexing the texture properties of the image

Image patches at multiple resolutions are fundamentalPatches. Two image patches have similar texture properties
elements for object recognition. Recently, a number of @S long as the values of their feature statistics are close to
patch-based methods have been proposed in the literatur&ach other, even though they may differ greatly in image in-
[5, 6,8, 1. Meanwhile, different theories have been devel- tensities. The_sgt of imagg paf[c_hes th_at share the same value
oped for modeling natural image patches, including sparsepf feature statistics form ampllplf[ manifold, because these
coding models 7] and Markov random fieldslf]. How- image pgtc_hes cannot be gxpllcnly reconstructe_d by the fea
ever, there has not been a panoramic study of the struciure statistics, which only impose some constraints. On im-
tures of the whole ensemble of natural image patches, exPlicit manifolds, we usually find complex and stochastic im-
cept some recent attempts to calculate the statistigs«f age patches such as textures and clutters.
patches in natural images,[3]. Such a panoramic point of In the space of image patches, implicit manifolds have
view is useful because it enables us to view different modelshigher dimensions and often submerge explicit manifolds.
simply as different manifolds in the space of image patches,By analogy to cosmology, the distribution of natural image
so that these models and concepts can be pursued in a conpatches is similar to the distribution of mass in the unigers
mon framework. as shown in Figl. The image patch space has many low



Figure 1. The distribution of natural image patches is sintib the
distribution of mass in universe, where there are high dgiasid
low volume stars as well as low density and high volume nebula

dimensional explicit manifolds with high densities, theg a
like the bright stars in Figl. For example, a step edge is
a low dimensional manifold in the image spacg [There
are also many high dimensional implicit manifolds, they are
like the nebulae in Figl. For example, the texture patches
of sky, wall, floor, foliage etc. live on high dimensional
implicit manifolds.

values froml to L. Q is the space of image patches.
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(a) explicit manifolds (b) implicit manifold

Figure 2. lllustration of explicit manifolds and implicitamifolds

in the space of image patches, where each image patch ista poin
In the left figure, an explicit manifold can be a low-dimenmsb
surface. In the right figure, the image patches are mappeshto f
ture statistics such as marginal histograms that consimgiicit
manifolds.

Definition: An explicit manifold is defined as

Q% = {1:1=d(w),Vw € W}, (1)

The mixing of these manifolds make the clustering and where®(w) is an explicit image generating function, and
learning tasks difficult. Recently, there has been some worky — & (w) means both sides are equal up to discretization

on clustering data by generalized PC#, [which assumes
linear subspaces, which are explicit manifolds. In the-lite

accuracy. w is a low-dimensional hidden variable taking
values in a setV. w usually includes both photometric and

ature of vision and machine learning, there has been no pregeometric properties of the image patches. See Ei@)

vious work that learns the explicit and implicit manifolds s

multaneously. Although some models like Mumford-Shah

[11] incorporate both Markov random fields and edge prim-

itives, there is neither theoretical justification for subd-

els nor information theoretical principles for learning .
From the panoramic point of view, differentimage mod-

for an illustration of the explicit manifolds.

An example ofd(w) is edge and bar model]. An edge
patch is modeled by a function whose profile is a step func-
tion blurred by a Gaussian kernel. The photometric compo-
nents ofw include the intensities on the two sides of the step
function, as well as the standard deviation of the Gaussian

els correspond to different manifolds in the same spacekernel. The geometric componentswfinclude location,

of image patches. Thus, we can pursue different modelsorientation, and length of the function. A bar patch is mod-
in a common framework of selecting manifolds to model eled by a function whose profile has three constant frag-
the ensemble of natural image patches by minimizing the ments. The edge and bar model can be further composed
Kullback-Leibler divergence. This gives a theoreticalijus  into corners, junctions and crosses eft |
fication why we need hidden variables and feature statistics  There can be a large number of primitives, which cor-
to characterize natural image patches. respond to a large number of explicit manifolds, m =

We also study the connection between the two types of 1 ... A7.
manifolds in terms of scale or resolution. We show that  Definition: An implicit manifold is defined as
image patches corresponding to different scales or resolu-
tions should be fitted by different types of manifolds, and (2
the complexity of the manifolds peaks at medium resolu-

tion, which is considered the most informative resolution Where h(I) = 2] > wep Fx(I) is the feature statistics
for object recognition. pooled over the patch for some feature extradkor Usu-

ally h(I) is the marginal histograms of filter responses or
local orientations, see Fig2.(b) for an illustration.

An implicit manifold is indexed byh. Asymptotically,
the uniform distribution ovef2'™ defined by 2) is equiva-
lent to the following Markov random field modelf)

Q™ = {T: h(I) = h},

2. Two types of manifolds and image modeling
2.1. Explicit and implicit manifolds

Consider image patchdsdefined on a domai® (e.g.,
20 x 20 lattice) with| D| pixels. LetQ2 = [1, L]” be the set
of all image patches, where the grey leveld ¢dke integer

p(I;h) = 70

exp{(A\, H(T))}, 3)



where Z()\) is the normalizing constant, anH(I) = wherelg, (I) is the indicator function, which equals 1 if
> Fo(I). Xis calculated so thdf[h(I)] = h. Therea- I € Qy, and 0 otherwiseZ () is the normalizing constant.

son for this asymptotical equivalence is tha B$ — oo, This model can be considered a panoramic approximation
H(I)/|D| convergesto a constant due to ergodicity, and p( to f(I) based o{}. Itis a special case ofi].
h) is constant for all thoskwith the sameH (I). Model (6) seeks to match the frequencies of the mani-

There can be a large number of Markov random fields folds in the ensemble of natural image patcliesSpecifi-
or feature statistics, which correspond to a large number ofcally, let
implicit manifoldsQ™ m =1, ..., M.
fe = Ef[lo, (I)] = Pr(I € Q). ()

[ can be estimated from the training examples by the corre-
Let f(I) be the frequency distribution of the whole en- sponding frequencies. 4 minimizesD(f||p) over all pos-

semble ofimage patches over The goal of visual learning  sible values ofy, then it can be shown that; |1, (I)] =

is to learn a statistical modelI) to approximatef (I), by fr. Model (6) is the maximum entropy model in that among

minimizing the Kullback-Leibler divergence all the probability distributiong such thatE,[1q, (I)] =

f&, p(I; %) has the maximum entropy. This means that af-

2.2. Image modeling and KL divergence

D(f||p) = Ef[log @] = —E;[logp(I)] + const  (4) ter matching the frequencie&, we leave the probability
p(I) distribution to be as smooth as possible witbip or their
within a classM of candidate distributions or models for INtéractions. .
p. In Eqn. @), Ef[logp(I)] is the population-wise log- Recall that each; corresponds to a sparse coding
likelihood of p. In practice, if we observe a training sample Model or a Markov random field, so modé) €an be con-
L ~ f,j=1,..,n, we can approximate sidered a meta-model, or a model of models, because it is

built on {Q2x}. The pursuit of different types d?;, reveal
the origins of different types of models.
Ej[logp(I) Zk’gp () In the context of modeld), we may pursudl, k =
1,..., K by sequentially minimizing the corresponding
So minimizing Kullback-Leibler divergence is asymp- DP(fllp(I;7)), i.e., at each step, we choo§g that leads
totically equivalent to maximizing log-likelinood. The to the maximum reduction ab(f||p(L;~)). Specifically,
Kullback-Leibler divergence also measures the redundancy®t »(L; 7) be the currently fitted model, and we want to in-

of coding f based om. troduce a new manlfoIdZKH to augment the model to a
The learning can be a sequential process, which pursue§ew fitted modep(I; 44 ), with v = (7, 7x+1). Then we
the model in a sequence of model spadds c M; C can define the |nformat|on gain Ofx 1, as
.. C Mk C ... ofincreasing complexities. At each step, N N T
we augment the model by introducing new structures or fea- D(fllp+) = Dfllps.) = D [lp5)- (8)
tures to minimize the Kullback-Leibler diVergence. I QK+1 is an expncit manifo'd,$) measures the informa-
_ _ tion gain by adding a hidden variable or a new structure. If
3. Manifold pursuit Q.41 is an implicit manifold, 8) measures the information
. gain by adding a feature statistics or a new set of feature
There can be a large number of candidate sparse COdStatIStICS

ing models or Markov random fields, which correspond to

different explicit and implicit manifolds. In order to purs If {2, are non-overlapping, modeg)reduces to

these manifolds in a common framework, we need to build a K
modelp(I) based on these manifolds, so that in the context p(I) = Z FeUQ], 9
of this model, we can sequentially single out the manifolds k=0

by minimizing the Kullback-Leibler divergend@(f||p) in
order to efficiently cod¢. The selected manifolds then give
rise to different models for image patches.

Specially, letQ, &k = 1,..., K be the K manifolds to
be chosen from a large collection of candidate explicit or
implicit manifolds. LetQ, = Q\ [/, 2, we use the fol- D(f|lp) = Z T 1og + Ellog f(I)], (10)
lowing model to chooséQ;, }:

where U[Q);] is the uniform distribution ovef);. This
model is often a reasonable approximation to mofel (
For model @), the Kullback-Leibler divergence is

so we can measure the information gairfafby

1 K
P50 =709 exp{,;f’“l”k M} © I = fullog fi — log(|2%/120)], (12)



and pursuing?; according td.

Pursuit of implicit manifolds|If Q, = {I : Hy(I)/|D| =
h;.}. Under the uniform distribution ové, Hy,(I)/|D|*/?
converges to a multivariate Gaussian distribubiihg, o)
according to the central limit theorem, so approximately

log ||/ D| ~ log L — (hy, — hy)'Sg " (hy, — hy)/2, (12)

where L is the number of grey levels.1®) is computable
and can be used witi.() and (L1) to add new feature statis-
tics sequentially.

Pursuit of explicit manifoldsIf Q;, = {I: I = &y (wy)},
with W = (wk,l, ceny wk,d), then

d
log 92| =Y log Li, (13)
=1

whereL; is the number of discretization levels®f, ;. (13)
can be used withl(0) and (L1) to add new variables sequen-
tially.

The explicit and implicit manifolds work along opposite

directions in the following sense. By augmenting new hid-
den variables, the explicit manifold increases its volume.

By augmenting new feature statistics, the implicit mamifol
decreases its volume.

4. Experiment on manifold pursuit

4.1. Purpose and results

In this section, we describe an experiment for pursuing

the explicit and implicit manifolds by learning from a sam-

ple of training image patches. The purpose of this experi-

ment is to illustrate that the two types of manifolds, which

correspond to two different classes of models, can be pur-
sued together in the same framework, which gives us a sin-

gle mixedsequence of two types of manifolds.

(a) image

(b) sketch

Figure 3. Two of the 75 training images and their sketches use
for experiment. Image patches of structures and textuestaien
from these images as training examples.

We shall first describe the results before getting into de-
tails. The training image patches are taken from 75 images
like the two displayed in Fig3. The 20 manifolds that are
pursued by our method are shown in Fign the order of
their selections. We can see that the first three manifokls ar
implicit manifolds of textures, then the explicit manifaifl
edges is selected. After that the two types of manifolds are
selected in mixed order. Fig shows the frequencief;
and information gaing;, of the sequentially selected man-
ifolds. The information gains measure the significance of
these manifolds, therefore providing a statistical jusiii
tion for the corresponding two types of models.
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Figure 4. The prototypes of the manifolds sequentially ctel
and the instances of image patches on these manifolds. The tw
types of manifolds are selected in mixed order.

4.2. Details

The training image patches are taken from 75 images,
consisting of indoor scenes such as meeting room, bedroom,
bathroom, etc., and outdoor scenes such as buildings, moun-
tains, farms, etc. These images are manually sketched and



02 a Froquensy these parameters to code them. For example, an L-junction
Information Gain is almost always made up of either two edges or two bars,
o1 but almost never an edge and a bar. In addition, the two
012 edges or two bars that make up the L-junction almost al-
= N ways have the same parameter values (except the angles of
L rotation). Therefore, we can reduce the coding length for
oos 4 H-HHH most of these L-junctions by nearly one-half. From there,

1— 111 I we can formulate two L-junction manifolds, edge/edge and
bar/bar. The same clustering procedure is also applied to
Y-junctions and crosses. Fig.shows some examples on
the explicit manifolds, including the prototypes and the in
stances on the manifolds.

The textured areas of the images are represented by his-
tograms of filter responses. Our filter bank consists of 17
labeled by artists. Two examples are shown in BigThe filters (3 Laplician of Gaussian, 2 Gradient and 12 Gabor),
sketch of an image divides the image domain into struc- none of the filters are bigger thanx 7. We segment the
ture areas that are around the sketched object boundarieggxtured areas of each image into several irregularly shape
and the texture areas that do not overlap with the sketchedegions, usually between 4 to 8 large regions are needed for
boundaries. For each image, the image patches are taken ifach image, plus a number of relatively small regions.
such a way that the patches pave the whole image without The intensities of each region is normalized to have mean
overlap. 0 and variance 1, and they are represented by a group of

The structured areas of the images are representednistograms. We collect the histograms for all regions in all
by primitive functions. The two most basic primi- images, and cluster the regions by the following method.
tives are edges and bars. We use six parameters: 1. Selectthe histogrammthat has the largest variance. If
(u1,uz, wy, w2, we,0) to represent the edges, which re- the variance is greater than a pre-defined valileen go to
spectively denote the left intensity, the right intensity, step 2. Otherwise, go to step 4.
the width of the left intensity, the blurring scale over 2. Clusterh using the k-means method,is selected
the step transition, the width of the right intensity, and by choosing the smallest value such that the variande of
the angle of rotation. Similarly, for bars, we use nine within every cluster is smaller than
parameters: (ui,ugz, us, wy, wiz, Wz, wa3, ws, ), where 3. For each cluster created, repeat step 1 within the clus-
(u1,u2,us) and (wy, w2, ws) denote the intensities and ter.
widths of the three segments of the profile respectively, 4. Terminate.

(w12, ws3) denote the two blurring scales, afiddenotes Each cluster is an implicit manifold. Fig.shows some
the angle of rotation. examples of the implicit manifolds.

_For each of the labeled sketches, we collect all pixels  Here we assume that the manifolds are non-overlapping,
within 3 pixels of the sketch, creating a collection of 7 pixe  \yhijch is approximately true. Then we can select the mani-

wide line segments. These segments are then cutinto a sanfy|ds sequentially according to the information gain define
ple of7x11 patches. The intensities of all the image patches py (11), (12), (13).

are normalized to have mean 0 and variance 1, and the im-
age patches can be rotated into a prototype form such tha .
they would lie horizontally and that the average intensity % Scale and manifolds

value of the top half of the patch is less than that of the bot- Image patches appear at different scales and resolutions.

tom half. From there, all the patches would be clustered |, yig section, we study the effects of scale on the competi-

into either edge man_|fo_l(_j or bar mamfol_d. tion between manifolds, as well as on the complexity of the
More complex primitives can be built on top of these fitted manifolds.

two simple primitives. Ordering by the degree of connec-

tivity, they are termihgtors, L-junction_s_, Y-junctionsdan 5.1. Competition between manifolds
crosses. These primitives are compositions of one or more
edges/bars, and we may represent them by the combined In the previous section, the structured patches and the
parameters of the constituent edges/bars. A terminator istextured patches are manually separated out for learning.
simply a bar that is connected to only one other edge orFor an image patch it can belong to both an explicit man-
bar, thus no simplification can be made for it. But for the ifold Q¢* or an implicit manifoldQi?'. The competition
other three primitive types, we do not necessarily needall o between these two manifolds can be automatically carried

0.02 4 1 4 1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5. Frequencies and information gains of the 20 seialign
selected manifolds.



out by comparindog [2$*| andlog [2i%|, which measure
the coding lengths by the two manifolds respectively.

Such a competition depends crucially on the scale or res-
olution, which is an important physical dimension in the en-
semble of natural image patches. Image patches at different
resolutions can have different entropies, and they shoaild b
coded by different manifolds.

= Explicit
e Implicit /
/

e

Average Coding Bits Per Pixel
L= N )

Figure 7. Coding length versus scale.

scale 1 o a 5.2. Complexity of fitted manifolds

scale 5 scale 6 scale 7 scale

\
. AR\
Figure 6. A sequence of images of occluding squares. Théureso £ / \
tion of each image is 1/2 of the previous image. . / .
\
We conduct an experiment to compare the coding effi- Scale

ciencies of the two types of manifolds at different scales.
The data we use are nirngl2 x 512 images composed
of many occluding squares, shown in F&. In the first
scale, the length of the squaress [64, 256], and the the ) ) )
frequency distribution of the sizes is proportionalita->. Although the complexity of the image data increases
Each subsequent scale is a zoom-out version where the re2Ver scale, the complexity of the best fitting manifolds peak
olution is lowered by 1/2 from the previous image. The in- &t medium resolution, which is the most informative reso-
tensity of each pixelz, y) is the average of the four pixels lution. This can be illustrated by the following experiment

2z — 1,2y — 1), 2z — 1,2y), (2z,2y — 1), (2, 2y) from

Figure 8. Number of clusters versus scale.

the previous scale. All nine images are then normalized to O L el o R i
have the same margma! mear.1 r?md variance. . ) | E L e - EH L
We compare the coding efficiency of the two manifolds. L
: : : 1 i I R

For each scale, we code the image by a linear sparse coding  E AL EFREEPL
modell = Ele w; B;, where the image basds are se- 3 . i
lected from a bank of bases that consists of Haar and Gabor ks B LAl e A IE ﬁ[
bases by the matching pursuit algorithiri. The coding e dc Bt Al H e =4t Tk 25

length is computed according t43). We also code the I =~ F+ L F= =40 1

same image by the implicit manifold based on their feature O R e e N -

statistics. The coding length is computed according &).( P FEEoEar IF b= L
The coding length for the two manifolds are plotted in s | u el ES NP TR

Fig. 8. We can see that the coding lengths of both coding b I o )

methods increase as the scale increases, because the images . | pg g ' B L B M &€

become more complex with higher entropy. But it is clearly : -

4

more efficient to use explicit manifold to code the high reso- 7| R B RE
lution images, and use the implicit manifold to code the low s | @ P

resolution ones. The two curves intersect between scales

4 and 5, indicating that the coding efficiencies of the two o |

manifolds are roughly equal for images at the medium res-
olution or medium entropy. Figure 9. Centers of clusters over scale.



In this experiment, we estimate the number of clusters References

that can be reliably detected at each scale. From the pre—[l]
vious experiment, we see that it is more efficient to code
images in scales 1-4 by explicit methods, and more efficient
to code images in scales 5-9 by implicit methods. There-
fore, we try to identify the number of explicit clusters ireth
first 4 scales, and the number of implicit clusters in thelatt

5 scales.

For explicit clustering, we sketch all the visible borders 3]
of the squares of the first scale. For each of the subsequent
3 scales, we generate their sketches by scaling down the
labeled sketches from the first scale. If two line segments
in the sketch become too close (within 2 pixels), we would [4
allow the two lines to merge into one. Then for each of
the four sketches, we randomly select 4@0x 12 image
patches from each scale and cluster them based on the fol{5]
lowing 9 parameters: number of L-junctions, number of T-
junctions, number of crosses, number of non-intersecting

e : 6]
sketches, number of disjoint regions, and number of out-
going lines at each of the four sides of the patches. The
clusters with frequency greater theu3% are included.

For implicit clustering, we also randomly collected 400 [7]
12 x 12 image patches from each scale, but instead of using
the original images, the clustering is done on the histogram
of filter responses using the same method described above{8

A plot of the number of clusters identified in each scale
is shown in Fig8. The centers of the clusters over scale are
shown in Fig9. We can see that there are only a few clus-
ters at the two ends of the scale range, and the curve peaks at!
scale 4. This means we only need very simple manifolds to
code very high or very low resolution images, but we need
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