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This article proposes an active basis model and a shared
pursuit algorithm for learning deformable templates from e T
image patches of various object categories. In our genera- ’ wzpid
tive model, a deformable template is in the form of an active
basis, which consists of a small number of Gabor wavelet
elements at different locations and orientations. These el ﬁ oy 2 6":‘ ,_fa
ements are allowed to slightly perturb their locations and
orientations before they are linearly combined to generate
each individual training or testing example. The active ba- ﬁ B - —W
sis model can be learned from training image patches by T

the shared pursuit algorithm. The algorithm selects the el- Figure 1. Active basis formed by 60 Gabor wavelet elemertte. T
ements of the active basis sequentially from a dictionary first plot displays the 60 elements, where each element i®+ep
of Gabor wavelets. When an element is selected at eaclsented by a bar. For each of the other 7 pairs, the left pldtds t
step, the element is shared by all the training examples, inobserved image, and the right plot displays the 60 Gabor leave
the sense that a perturbed version of this element is addedtlements resulting from locally shifting the 60 elementthinfirst
to improve the encoding of each example. Our model andP!ot to fit the corresponding observed image.

algorithm are developed within a probabilistic framework
that naturally embraces wavelet sparse coding and random

field each individual training or testing example.

Figure (1) illustrates the basic idea. It displays 7 im-
age patches of cars at the same scale and in the same pose.
. These image patches are defined on a common image lat-
1. Introduction tice, which is the bounding box of the cars. These image
patches are represented by an active basis consisting of 60
Gabor wavelet elements at different locations and orienta-

The concept of deformable templates [10] is an impor- tion, as displayed in the first plot of figure (1). Each wavelet
tant elementin object recognition. In this article, we pregs ~ element is represented symbolically by a bar at the same lo-
a generative model and a model-based algorithm for learn-cation and with the same length and orientation. The length
ing deformable templates from image patches of variousof each element is about 1/10 of the length of the image
object categories. The machinery we adopt is the waveletpatch. These elements are automatically selected from a
sparse coding model [7] and the matching pursuit algorithm dictionary of Gabor wavelet elements at a dense collection
[5]. Our method is a very simple modification of this ma- of locations and orientations. The selected elements do not
chinery, with the aim of coding specific ensembles of image have much overlap and are well connected. They form a
patches of various object categories. template of the training image patches.

We call our model the active basis model, which repre-  The 60 elements of the active basis in the first plot are
sents a deformable template in the form of an active basis.allowed to locally perturb their locations and orientation
An active basis consists of a small number of Gabor waveletwhen they are linearly combined to encode each training
elements at different locations and orientations, andethes or testing example, as illustrated by the remaining 7 pairs
elements are allowed to slightly perturb their locationd an of plots of figure (1). For each pair, the left plot displays
orientations before they are linearly combined to generatethe observed car image, and the right plot displays the 60

1.1. Model, algorithm and theory



Gabor wavelet elements that are actually used for encodingt = (¢’ — z)cosa — (y' — y)sinq, § = (' — z)sina +
the corresponding observed image. These 60 elements aréy’ — y) cos . s is the scale parameter, ands the orien-
perturbed versions of the 60 elements of the active basis distation. The central frequency &, ,, s o ISw = 1/s.
played in the first plot, so these elements form a deformed We normalize the Gabor sine and cosine wavelets to have
template. The deformation of the template is encoded byzero mean and unit, norm. For an imagd, the projec-
the local perturbations of the elements of the active basis. tion coefficient ofI onto B, , s or the filter response is
The active basis can be learned from training image (I, By, y,s,a) = >, 12", ¥') Bo y 5,0 (2", y).
patches by a shared pursuit algorithm. The algorithm se-  Let {(L,,(x,y), (x,y) € D),m = 1,..., M} be a sample
lects the elements of the active basis sequentially from theof training image patches defined on a domainf rectan-
dictionary of Gabor wavelets. When an element is selectedgular lattice, andD is the bounding box of the objects of the
at each step, the element is shared by all the training ex-same category and in the same pose. Our method is scale
amples in the sense that a perturbed version of this elemenspecific. We fixs so that the length 0B, , ;. (€.9., 17
is added to improve the encoding of each example. It is pixels) is about 1/10 of the length &1.
worth noting that for the last two examples in figure (1), the ~ The dictionary of Gabor wavelet elements G5 =
strong edges in the background are not encoded, becauséB, , ; ., V(z,y, s, @)}, where(z, y, s, o) are densely dis-
these edges are not shared by other examples. Thereforeretized: (z,y) € D with a fine sub-sampling rate (e.g.,
they are ignored by the shared pursuit algorithm. every 2 pixels), and € {kr/K,k = 0,..., K — 1} (e.g.,
Our model and algorithm are developed within a theoret- K = 15).
ical framework that naturally embraces sparse coding and
random fields. Specifically, we rewrite the sparse coding 2.2. Active basis
model so that the probability distribution of the image in-

tensities can be rigorously defined in terms of tilting a sta- The backbone of the active basis model is

tionary random field by a probability ratio term involving n

the sparse coding variables. L= cmiBmi+ em, 1)
1=1

1.2. Contributions and past work Bpi~ DB, i=1,..,n. (2)

The contributions of this paper are: (1) An active basis whereB; € Q, By € Q, and(cmi,i = 1,...,n) are
model for representing deformable templates. (2) A sharedqgefficients. To defihé?m_i ~ B, supypose
pursuit algorithm for learning deformable templates. (3) A ’
theoretical framework that integrates sparse coding amd ra Bi = Ba, .y, s.005 (3)
dom fields. B .—B. ‘ 4)
To credit past work, the active basis model is inspired et il Gm, 2
by the biologically motivated schemes of Riesenhuber andinenp,, ; ~ B; if and only if there existgd,, ;, 5,.;) such
Poggio [8] and Mutch and Lowe [6]. The differences are nat T
that we keep track of the deformation of the active basis
and maintain the linear additive representation. The share Tpi = T + do i S0 0y, (5)
pursuit algorithm is inspired by the adaboost method of Vi- L . ‘
ola and Jones [9]. The difference is that we work within the Y = Yi F dm,i €08 ©)
framework of generative model. The name “active basis” Qi = Qi+ O i, (7)
is clearly derived from “active contours” [4] and “active-ap dm,i € [=b1,b1], Om,i € [—b2,ba]. (8)
pearance model.” [1] The difference is that our method does . o ) ) )
not involve control points. Or more precisely, the elements Thatis, we allows; to shift its location along its normal di-
of the active basis play the double role of both control pint  f€ction, and we also allo; to shift its orientationb, and

and linear basis vectors. Lastly, our work is a revision efth b2 are the bounds for the allowed displacement in location
texton model [11]. and turn in orientation (e.gh; = 6 pixels, and, = 7/15).

In the above notation, the deformable template is the ac-
tive basisB = (B;,i = 1,...,n). The deformed template
or the activated basis B,, = (B, ;,i = 1,...,n) = B.
2.1. A dictionary of Gabor wavelets See figure (1) for illustration.

2. Active basis representation

A Gabor function is of the form: G(z,y) «
exp{—[(z/0.)? + (y/o,)?]/2}e'®. We can translate, ro-
tate, and dilate5(z, y) to obtain a general form of Ga- Given the exampledI,,,m = 1,...,M}, we can
bor wavelets: B, , <.« (¢, y') = G(&/s,5/s)/s*, where learn the templat@8 and its deformed versiongB,,, =~

2.3. Shared matching pursuit for least squares



B,m = 1,..,M}. We may use the least squares crite-
rion "M 1L — 327, ¢m.iBum.i||? to drive the following
shared matching pursuit algorithm.

(0) Form =1,..., M, lete,, < I,,. Leti « 1.

(1) For each putative candidatg € €2, do the following:
Form = 1,..., M, choose the optimab,,, ; that max-
imizes | (€, Bm.i)|> among all possible3,,, ; ~ B;.
Then choose that particular candid&gewith the max-
imum corresponding”, . |{€m, Bum,i)|*.

(2) Form = 1,...,M, letcy,; «— (ém,Bm,), and let

€m < €m — Cm,iBm,i-

(3) Stop ifi = n. Otherwise let < i + 1, and go to (1).

where ry,; = (Ln,Bmi), @ = 1,.,n.  q(y)
is the density of white noise model, i.d,,(z,y) ~
N(0, %) independentlyq(ry,.1, .., Tm.n) is the density of
(P 1y ooy Tmon ) UNDerg(In,). p(rm1, ..., "m,n) IS the den-

sity of (7,1, ..y "m,n) UNderp(I,, | By,)

The proof is given in the appendix. The basic idea of the
proof is very simple. By adding; ¢,,,i B ; to the white
noise background,,, we only change the dimensions of
em Within the subspace spanned b®,, ;,i = 1,...,n),
without disturbing the rest of the dimensions. This can
be accomplished by multiplying(I,,) by the probabil-
ity ratio p(rm. 1, s "m.n)/q(Tm.15 - 'm n ), Which changes
the distribution of{r,, 1, ..., "m.n) frOMq(ram. 1, .oy Pinn ) O
P(Tm,1, -, Tm,n), Without changing the distribution of the

In this article, we choose to adopt the more general prob-remaining dimensions.

abilistic formulation, where the least squares criter® i
special case of the log-likelihood.

3. Probabilistic formulation

With the active basis representation (1) and (2) as thevarlables Themm B I,

backbone, we can put probability distributions on the vari-
ables in the representation in order to construct a generati

model. With such a model, learning can be based on likeli-

hood.

3.1. Rewriting sparse coding model

Given templatdB = (B;,i = 1,...,n), we assume that
(d/m,iaém,i) ~ uniform(A = [—bl,bl] X [—bg,bg]) in or-
der to generate the deformed templitg, =
1,...,n) according to (3)-(8).

Given deformed templatB,, = (B, = 1,...,

(Bm,iai =

n),

we need to specify the distribution of the foreground coeffi-

cientse,, = (¢m.i,¢ = 1,...,n), and the distribution of the
background residuail,,, in order to generatk,, according
to (1). The commonly assumed model is

(Cm,lv---acm,n) Ng(cm,la---acm,n)a (9)
em(r,y) ~ N(0,0%) independently,  (10)
(€m,15 s Cm,n) IS iIndependent of,,,. (12)

There are two problems with the above specification. (1) A

We may use the compact matrix notation. Lgtbe the
|D| x 1 vector, whereD| is the number of pixels in domain
D. LetB,, = (Bmn1,..., Bm.n) be the|D| x n matrix,
where each column is a vectorized versioniy, ;. Let

(Pm.1, -, Tm,n) bethen x 1 vector of sparse coding

The foregrounqb(rm) can be estimated directly by pool-
ing the sampler,,, = B! I,,,m = 1,..., M}, which are
responses of Gabor wavelets at fixed locations (subject to
local perturbation$3,, ~ B), so we do not need to esti-
mate g, which involves unnecessary deconvolution of the
additive noise,,.

Under the white noise model1,,) whereL,,(z,y) ~
N(0, 0?) independently, we have,, ~ N(0,B! B,,0?%),
so0q(ry,) is in closed form.

Log-likelihood and KL-divergencélMe can estimate the
templateB and its deformed versionsB,,, =~ B,m
1, ..., M} by maximizing the log-likelihood

Zlog[P m | Bm)/q(Ln Zlog (13)
As M — oo, the log-likelihood per observation
o Z — KL(p(ra)la(rm)).  (14)

white noise model does not capture the texture properties of

the background. (2) The foreground distributipcannot be

which is the Kullback-Leibler divergence from(r,,) to

estimated in closed form because we must deconvolve they(r,,).

additive noisex,,,. The following observation helps solve
these two problems.

Theorem 1 For the representation (1), give,,
(Bm,i»i = 1,...,n), under the assumptions (9), (10) and
(112), the distribution o, is

Tmon)

p(T‘m 1yeeey
I ) >
( m)Q(Tm,l,---,

p(Im [ Bm) = ¢ : (12)

Tm,n

Equivalence to least squares. Under white noise
q(L,), rm = B,I, ~ N(0,B/ B,0?). If we as-
sumep(ry,) is such thatr,, ~ N(0,B! B,,03) with
o3 > o2, thenlog[p(rm)/q(rm)] is positively linear in
! (B, Bn) trm = I, B, (B, B,,) B! I,,, which is
the squared norm of the projectionkjf onto the subspace
spanned byB,,,, which equals td|1,,||> — min,,, ||L, —
B..cml||?, wheree,, = (¢m1y -y Cmon)'- SO maximizing



the log-likelihood (13) with such(r,,,) is equivalent to the
least squares criterion.

Orthogonality.The normt’, B,,,(B/,B,,) 'B! I, nat-
urally favors the selection of orthogonBl,,,. In this ar-
ticle, we enforce thaB] B,, ~ 1, m = 1,..., M, for
simplicity, where ‘1" denotes the identity matrix. That

p(r)

q(r)

is, we enforce that the elements in the deformed templaterigyre 2,(r, 1, .., rm.) is pooled over training images (shaded

B,, = (Bm.,i = 1,...,n) are approximately orthogonal to

rectangles) at specific locationgrm,1, ..., 7m,») is derived from

each other, or do not have much overlap. The precise defini-stationary backgroungi(L,,,).

tion of B, B,,, = 1is: (B, i, B ;) < ¢ fori # j, where
¢ is a small threshold (e.g;,= .1).
Random field tiltingEquation (12) is actually more gen-

trated by the horizontal arrow, becaugé,,) is stationary.

eral than is defined in Theorem 1: (1) The background VW& use the ambiguous notatiptr) andq(r) in figure (2)

q(I,,) can be any random field.
ing variables(r, ;,i = 1,...,n) can be any determinis-
tic transformations ofl,,,. In this more general context,
(12) is a random field tilting scheme, which consists of
(1) Replacing backgroung{r,, 1, ..., 7m ») by foreground
P(Tm.1s - Tm.n). (2) Retaining the conditional distribu-
tion of the remaining|D| — n dimensions ofI,, given
(Pm.1s s Tm,n ). The remainingD| —n dimensions are im-
plicit. This is a generalized version of projection pur$8jt
The following are some perspectives to view this scheme:

(1) Hypothesis testing;(I,,,) can be considered the null
hypothesis. p(r.,.1,...,7m,n) €an be considered the test
statistics to rejecy(1,,). The above scheme modifies the
null hypothesis to an alternative hypothesis.

(2) Classification4(I,,) can be considered the ensemble
of negative examplesp(1,,) is the ensemble of positive
examples. The sparse coding varialles ;,i = 1,...,n)
are the features that distinguish the two ensembles.

(3) Coding. Instead of codingr,, ;,7 = 1,...,n) by ¢,
we code them by. The gain in coding length is the KL-
divergence (14).

3.2. Model specification

Sparse coding variables.Given B,,, = {By,.,i
1,..,n}, with B, B,, ~ 1, we choose to use,,; =
B ([T, Bmi)?), @ = 1,...,n, as sparse coding vari-
ables. [(I,,, B i)|? is the local energy, which is the sum

of squares of the responses from the pair of Gabor cosine
and sine wavelets. We ignore the local phase information,

which is unimportant for shapeg.,,, () is a monotone nor-
malization transformation that is independent of objett ca
egories.

To specify the model, we need to (1) specify the back-

groundq(I,,) and deriveh,,() andq(rm. 1, .., "m.n). (2)
specify the foregroung(r,, 1, ...,7m.»). Figure (2) illus-

(2) The sparse cod-

to mean either the joint distribution of, 1, ..., 7., », O the
marginal distributions of individual components. The tem-
plate B and its deformed versiondB,,, ~ B} should be
chosen to maximize the KL-divergence frgnto ¢, as dic-
tated by equation (14).

Background modeg(L,,) and ¢(rm. 1, ..., "mn). The
most natura/(I,,) from the classification perspective is the
generic ensemble of natural image patches. In the follow-
ing, we derivéh,, () andq (7., 1, ---, 7m.n) by gradually gen-
eralizing from the white noise model.

(1) White noisd,,,(z, y) ~ N(0,02,), wheres?, can be
estimated by the marginal variance Bf. |(L,,, B i)|?
is the sum of squares of two independent normal ran-
dom variables of variancer2,, so [(L,, By.i)|?
02x3 ~ 202 exp(1), i.e., the exponential distribution,
and|(L,,, Bm.i)|?/202, ~ exp(1). If B, B,, = 1, then
|(In, B;)|? /202, are independent far= 1, ..., n.

(2) Stationary isotropic Gaussiag(I,,). Let s be the
common scale oB,, = (By,,i;,¢ = 1,...,n). By, can
sensd,,, only within a limited frequency band arounds.
Letor, . = E[|(Inm, Bz.y,s,0)|%], and assume that the spec-
trum of the Gaussian process is locally flat within the above-
mentioned frequency band, then as farlag can sense,
q(1,,,) is no different than white nois€ (0, o2, ,/2). There-
fore, |(L,, Bi)|?/o2, , ~ exp(1), and this is a whiten-
ing transformation. (L., B;)|?/c2, , are independent for
i=1,..,nif B),B,, = 1. 02, can be estimated by

N ﬁ > D T Bayaa)

r,yeD «

~

~2

m,s

(15)

where K is the total number of orientations. The tail of
the distribution isPr(|(L,,,, B;)|*/c2, , > r) = exp(—r),
which is short. '

(3) Generic ensemble of natural image patchéswe
pool the marginal distribution oL, B,y,,;)|?/02, , over

trates the idea. The shaded rectangles are training imageshe ensemble of natural image patches, andrlgt) =

We can pool these images to estimai@,, 1,...,7m,n),

Pr(|(Tn, Bm,i)|?/02,, > r) be the tail of this marginal

as illustrated by the vertical arrows at specific locations. distribution, thenF(r) > exp(—r) for larger, because
p(rm1,---, Tm,n) IS to be contrasted against the background there are strong edges in this ensemble. The transformation
q(rm1, -, "m.n), Which is not location specific, as illus- thatequates the tailB(r) = exp(—rg) isro = — log F (1),



s0 —log F(|(Ln, Bm.i)|* /07, ;) ~ exp(l). —logFis a
non-linear whitening transformation. Therefore, we have

T'm,i = hm(|<ImaBm,i>|2) = _IOgF(KImvBm,i>|2/072n,s)~

and the elements B,,, = (B, =
imately non-overlapping.

1,...,n) are approx-

3.3. Shared pursuit for maximum likelihood

We assume that the generic ensemble inherits from Gaus- We use the notatiofi3,,, ; to denote all the3 € 2, such

sian process the property that,, ;,« = 1,...,n) are in-
dependent undeB!, B,, = 1. S0 q¢(rm.1,-sTmn) =
exp{— Y i Tm,i}, I.€.,7m,; ~ exp(1l) independently for
t=1,..,n.

One can learnF(r) by the tail proportions in the

marginal histogram of natural images. In our currentimple-
mentation, we use a crude but simple approximation. Be- 1

cause—log F'(r) < r for larger, we assume a saturation
threshold$ > 0, and approximate- log F'(r) ~ min(r, &)
(e.g.,£ = 16).

Foreground modeb(ry, 1, ..., "'m.n). We assume the
simplest model fop(ry, 1, ..., Tmon): Tmi ~ exp(A;) in-
dependently for = 1,...,n, with \; < 1. The density of
Tm.i ISp(r) = A\ exp(—A;7). Thisis the maximum entropy
model under the constraifit, (r,,, ;) = 1/A;.

Log-likelihoodis

oglp(L | Bu/a(L,)] = 3 log 20
i=1 o

=D (1= X)rm,i +log Adl. (16)
=1

GivenB, the prior distribution ofB,,, is uniform: p(B,,, |
B) = 1/|A|™, whereA = [—by,b1] x [—be, bo] is the al-
lowed range of shifting in location and orientation for each
B;, and|A| is the size ofA. So the posterior distribution
p(Bm | Im, B) < p(L, | Bin)/q(I). Thus,B,, ; can be
estimated by maximizing,, ; or |(L,, B,,.;)|*> among all
possibleB,, ; ~ B;, subject to thatB,,, ;,i = 1,...,n) are
approximately non-overlapping.

Given {B,,,m = 1,..., M}, \; can be estimated by
pooling {r,, = B/ I,,m = 1,..,M}. The max-
imum likelihood estimate isf\l- = 1/r;, wherer; =
fo:l rm.i/M is the average response. Replachgby
i, the log-likelihood or coding gain per image

| M
i Z log[p(Ln, B | B)/q(Ln)]

= Z(E —1—1log7;) —nlog|A|,
i=1
wherep(L,. By | B) = p(L, | Bu)p(B, | B). log|A|
is the cost for coding the shifting from; to B,, ;. We
can sequentially introduce the elementsBf= (B;,i =
1,...,n) by maximizingr; subject to

7 — 1 —logT; > log |Al, a7)

that (B, B,,,;) > (, i.e., those elements that overlap with
B i

(0) Form = 1,...,M, and for eachB € (), compute
L., B] = —log F(|(L, B)|* /o2, ,) with o2, _ esti-
mated by (15). Set« 1.

) For each putative candidatg, € (2, do the follow-
ing: Form = 1, ..., M, choose the optimaB,, ; that
maximizegl,,, B,, ;| among all possiblé,, ; ~ B;.
Then choose that particular candidais with the
maximum corresponding (I, B, i]. Set\; =
M/, L, B i)

Form =1, ..., M, foreachB € 0B, ;, set[L,,, B] <
0, to enforce approximate non-overlapping constraint.

(2)

(3) Stop ifi = n. Otherwise let — i + 1, and go to (1).

The stopping criterion can also be based on (17).

Find and sketch We can used the learned model, in
particular, B = (B;,i = 1,..,n), andA = (\;,i =
1,...,n), to find the object in a new testing imadg,,

m ¢ {1,..,M}. Supposd,, is defined on domaiD,,,,
which can be much larger than the bounding ox We
slide D over D,,. LetD,, C D, be the bounding
box centered atz,y) € D,. Within eachD,,, for

i =1,...,n, choose the optima,,, ; ~ B; that maximizes
Tm.i = [Im,Bm.]. Then compute the log-likelihood score
In(z,y) = Doi 1 [(1 = Ni)rm,i + log A;]. Choose(z, y)
with maximum log-likelihood scoré,, (z,y). The corre-
spondingB,, = (Bpn,i = 1,...,n) is the sketch of the
object. If the size of the object in the testihg is different
than the size of objects in the training images, we can scale
I, to obtain a sequence of zoomed versiond,gf Then
we can choose the optimal scale based on the maximum
log-likelihood scores obtained over multiple scales.

4. Active mean vector and active correlation

The deformable templaB = (B;,i = 1,...,n) in the
above section is parametrized by= (\;,i = 1,...,n). The
log-likelihood score i$ """, [(1 — A;)7m,; + log A;], which
is non-linear in\. This motivates us to introduce a simpler
linear score without explicit probabilistic assumptions.

4.1. Linear scoring

We parametrizes the deformable tempBte- (B;,i =
1,..,n) by 6 = (0;,i = 1,...,n), whered is a unit vec-
tor with ||0]|> = 1. We replace the log-likelihood score
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Figure 3. The first plot i88 = {B;,i = 1, ...,n}, n = 48, where eactB; is represented by a bar. For the rdst= 37 examples, the left
isI,,, and the right i8B,, = (Bm,:,i = 1,...,n). The M examples are listed in the descending order of log-likeltho

by (6, rh/?) S 6,2, wherer,/? (2
1,..,n). GivenB, B,, = (Bm_,i ~ Bj,i = 1,...,}1) can
be chosen by maximizin(ﬁ,r},{2>, subject to the approx-
imate non-overlapping constraint. We call this maximum
the active correlation, which filters out local deformatam
well as local phase informatio andé can be estimated
by maximizing>~_ (6, 71/%). 6 is the mean vector in the
active basis. I/ = 2, the maximum ofS"""_ | (71 ;72,;)'/?

is the pairwise active correlation betwebnandl,.

4.2. Shared pursuit for maximum correlation
(0) The same as maximum likelihood.

(1) For each putative candidatg, € (2, do the follow-
ing: Form = 1,...,M, choose the optimabB,, ;
that maximizesl,,, B,, ;] among all possibl&,, ; ~
B;. Then choose that particular candiddsg with

results from the algorithm. The algorithm retunns= 48
elements using the stopping criterion (17). The first plot
displays the learned active bads = {B;,i = 1,...,n}
where eachB; is represented symbolically by a bar at the
same location with the same length and orientatiolas
The intensity of the baB; is the average;. For the re-
maining M pairs of plots, the left plot showk,,, and the
right plot showsB,,, = (Bpm.i,? = 1,...,n). The intensity
of eachB,, ; is r,ln/f TheseM examples are arranged in de-
scending order by their log-likelihood scores (16). All the
examples with non-typical poses are in the lower end. We
obtained similar result using active correlation. The exam
ples displayed in figure (1) are produced after we force the
algorithm to select 60 elements.

Experiment 2: Find and sketch/sing the learned model
in experiment 1, we can find the car in the testing image
shown in figure (4). The upper left plot is the testing image.

the maximum correspondiny’, (L., Bm.:]*/2. Set The upper right plot displays the sketch of the car at the
0; = >, L, Bm i)/ /M. maximum likelihood scale and location. The lower left plot
(2) The same as maximum likelihood displays the maximum log-likelihood score over scale. The
' lower right plot displays the map of the log-likelihood ag¢th
(3) If i = n, normalized so that||¢||*> = 1, then stop.  optimal scale. We obtained similar result based on active

Otherwise let < ¢ + 1, and go to (1).

We can also use the active correlation score for find-and-
sketch.

5. Experiments

Parameter values.Size of Gabor wavelets £7 x 17.
(z,y) is sub-sampled every 2 pixels. The orientation
takesK = 15 equally spaced angles {A,x]. The satu-
ration threshold in approximation log F'(r) &~ min(r, &)
is ¢ = 16. The shift along the normal directiofy, ; €
[<b1,b01] = {-6,—4,-2,0,2,4,6} pixels. The shift of
orientationd,, ; € [—b2,b2] = {—1,0,1} angles out of
K = 15 angles. SdA| = 21. The orthogonality toler-
anceis¢ = .1.

Experiment 1: Learning active basisWe apply the
shared pursuit algorithm to a training setldf= 37 car im-
ages. The carimages &2 x 164. Figure (3) displays the

~
~

correlation.

One issue that concerns us is normalization. In this ex-
periment, we normalize within the whole image instead of
normalizing within the sliding bounding box. We also tried
the latter normalization scheme. Active correlation skt
lects the correct scale. However, for log-likelihood, tbe-c
rect scale is near a local maximum instead of the global
maximum. Another issue revealed by more experiments
is that the maximum likelihood position is not always the
correct position. We shall investigate these issues irréutu
work.

Experiment 3: ROC comparisonFigure (5) displays
12 of the 43 training examples paired with thér,,
(Bm,isi = 1,...,n), n = 40, obtained by maximum likeli-
hood.

Figure (6.a) and (b) display the active basBs =
(Bi,i = 1,...,n), n = 40, selected by the shared pursuit,
using log-likelihood and active correlation scoring respe



shows that our method is comparable to adaboost.

0.4

true positive rate

correlation, AUC=0.971
0.2| = = =log-likelihood, AUC=0.941
 adaboost, AUC=0.936

2 - 0 0.5 1
20 : false positive rate
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Figure 7. ROC curves for active basis models learned by ectiv
correlation and log-likelihood respectively, and adalboosUC

0 2 4 6 8 10

Figure 4. find and sketch. Lower left: the maximum log-likeldd means area under ROC curve.
score over scale. Lower right: the map of log-likelihoodrscat
the optimal scale. Experiment 4: Mixture and EMSuppose there are two

categories in the training examples. We may assume a

L /QL ﬁ__{:‘? ﬂ_ﬁ ﬂ}‘i mixture modeb (7.1, -, Tmn) = PP Py ooy Trnn ) +
B -

(1-— p)p(o)(rm Tsevos Tmon)s wherep(k)(rm Lyevos Tmon) =

| ] ) ) ) )
@\ h —Q J@N I, AZ(.’“) exp{—/\gk)rm,i}, k =0, 1. We can fit the model
. )ﬁ\ m ﬂ 5 ﬂ 5 ’1‘5—1 by the EM algo_rithm. Then we cla.ssify the e_>$a_1mples into

the two categories based on posterior probabilities prediuc
Figure 5. Some training examples and the corresponBing by the last iteration of the E-step. After that, we re-ledua t

active basis model for each category separately.

tively. We also built an adaboost classifier [9] using the
same set of training examples plus 157 negative examples, ‘ﬁ .p‘i‘g
which are randomly cropped from natural scenes both with .

and without human figures, to represent enough diversity. - wrwhg?
The weak classifiers are obtained by thresholding the re-
sponses from the same dictionary of Gabor wavelets. Fig-
ure (6.c) displays the 80 Gabor elements selected by ad- :
aboost, where the red ones are those whose responses are }r:f’

greater than the corresponding selected thresholds, and th fif

blue ones are otherwise.

-—@A —.— —w 7™ Figure (8) displays the 37 training examples. We first

(b) (©) learn a commom = (B;,i = 1,...,n) with n = 80. Then

Figure 6. (a)B = (Bl,z = 1,...,40) selected by active cor- we fit the mixture model on the coefficients of the 80 ele-

relation. (b)B selected by log-likelihood. (c) 80 weak classi- ments. The EM algorithm separates the examples into two

fiers (from the same dictionary of Gabor wavelets) selecyeaids clusters, as shown in figure (8), where there are 2 mistakes.

aboost. The red ones are the weak classifiers whose resgoeses Then we re-learn active basis models on the two clusters

larger than thresholds, while the blue ones are otherwise. separately, witm = 60. The bottom row of figure (8) dis-
plays the learned templates. We can also re-learn the active

We then test on a separate data set with 88 positives andbasis models within the M-step in each iteration.

474 negatives. Figure (7) displays the three ROC curves Experiment 5: Find and learnBy combining the codes

for active basis models learned by log-likelihood and &ctiv in the first two experiments, our method has the potential

correlation, and the adaboost. The AUC (area under curve)o handle training images that are not aligned, as suggested

for adaboost is .936. The AUC for log-likelihood scoring by the following preliminary experiment. There are five im-

is .941. The AUC for active correlation scoring is .971. ages of cats that are of the same size but at different loca-

We did not implement cascade for adaboost. This exampletions. The only supervision is to give the bounding box for

Figure 8. Top row: clustering result by EM. Bottom row: re-
learned templates for the two clusters.



Ym = ¢m + T, and 7, are also independent, so
P(Ym: Tm) = P(m)a(Tm), Wherep(ym) = [ g(ym —
Tm )q(Tm )d7r, IS the convolution ofy(c,,) with the Gaus-
sian noiser,,,. B

Under the linear mapping,, = (B, Bm) (v, 7))’ s
pIm)/a(Im) = P(ym, Tm)/a(Ym: Tm) = p(Ym)/a(Ym)
because the Jacobian terms get canceled. rl.et=
Figure 9. Find and learn. The first plot is the learned actasi$h B I, = (fmi,-,"mn). Then under the mapping
The rest of the plots sketch the identified cat faces. Fm = B! BV, 2(ym)/@(Ym) = p(rm)/q(rm), because
again the Jacobian terms are canceledp@g,)/q(1,,) =

the first image. We then fit the model on this single image, p(rm)/q(rm). O
and use it to find the cats in the other images. Then we
re-learn the model, and re-find the cats using the re—IearnedACknOWledgement

model. Figure (9) shows the results after 3 iterations, @her  \We thank the area chair and the three reviewers for their

the first plotisB = (B;,i = 1,...,n), n = 40. criticisms that help improve the presentation of the paper.
Reproducibility: Data and source codes can be down- We are grateful to Zhuowen Tu for helpful discussions.
loaded from the webpage listed on the title page. The work is supported by NSF-DMS 0707055, NSF-IIS

0713652, and ONR N00014-05-01-0543.
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