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Abstract

In this paper we present a novel method for parsing
aerial images with a hierarchical and contextual model
learned in a statistical framework. We learn hierarchies
at the scene and object levels to handle the difficult task of
representing scene elements at different scales and add con-
textual constraints to resolve ambiguities in the scene inter-
pretation. This allows the model to rule out inconsistent
detections, like cars on trees, and to verify low probability
detections based on their local context, such as small cars in
parking lots. We also present a two-step algorithm for pars-
ing aerial images that first detects object-level elements like
trees and parking lots using color histograms and bag-of-
words models, and objects like roofs and roads usingcom-
positional boosting, a powerful method for finding image
structures. We then activate the top-down scene model to
prune false positives from the first stage. We learn this scene
model in a minimax entropy framework and show unique
samples from our prior model, which capture the layout of
scene objects. We present experiments showing that hierar-
chical and contextual information greatly reduces the num-
ber of false positives in our results.

1. Introduction and Related Work

Aerial image understanding is a widely studied topic of
great importance for military, navigational, and surveillance
tasks. Aerial images have two prominent features that dif-
ferentiate them from other natural images:
Long Range: Objects of interest in aerial images exist at
very different sizes, from large blocks of buildings to small,
individual cars. It is nearly impossible to model and detect
these objects successfully at a single scale.
Wide View: Unlike many images used for object detection
that have a few objects present in consistent configurations,
aerial images can have hundreds of objects present, creating
a countless number of potential spatial layouts.

Work in aerial image understanding has commonly ad-
dressed the problems above in one of two ways. One sim-
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Figure 1. Our three-level hierarchy. The scene decomposes into
sets of group nodes, which in turn decompose into sets of individ-
ual objects, which are represented either at that level or byfurther
hierarchical decomposition. The features at the bottom areused to
detect the objects during the inference stage.

plification of the problem is to work in a narrow depth
range and detect just one type of object, such as rooftops
[9, 15, 16] or cars [18]. In this domain, higher level cues,
such as context, are of little benefit, as researchers need only
concern themselves with intraclass context, such as whether
two of the same object overlap. This line of study has pro-
duced good results for single objects, but generally ignores
multi-category situations.

An improvement over the method above is to extend the
task to identifying multiple object types, but to code spatial
context using a hardcoded logic-based model [10, 12]. This
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work approaches the goal of image understanding much
more closely than the single-class case, but relies on hand-
coded models and relationships, which are non-scalable
and require human intervention should the model need to
change. The work in [13] proposes probabilistic relation-
ships between objects, but the hierarchical grouping and in-
stantiation of these relationships is still fixed.

The field of object recognition has recently begun focus-
ing on hierarchies and context information for object and
scene classification [3, 5, 7]. We adopt some of these ideas
to apply to aerial image understanding:

Multi-category hierarchy- We propose a novel two-layer
hierarchical model that represents the image from the scene
level down to the pixel level. Figure1 shows a depiction
of this hierarchy, in which the scene level decomposes first
into groups of objects. Groups, like blocks of buildings or
rows of cars, are fairly unique to aerial images, as there are
few image domains in which multiple instances of the same
object exist in large groups. These groups decompose into
single objects, some of which, like roofs, decompose further
into parts and primitives.

Context learned from real data- We model context as
constraints on the attributes of objects in the scene. For ex-
ample, cars are associated with roads and appear contained
within them at the appropriate scale. This context also lets
us resolve ambiguities across different object scales, forex-
ample ruling out vents on roofs that are often detected as
cars.

Our two-layer hierarchical model helps capture thelong
range of object sizes by representing scene elements at
different scales, while the contextual part of the model
captures the interactions across thewide view of objects
present in the scene.

Our hierarchy also models the different characteristics of
the scene at varying scales. At the scene level we observe
loosely constrained groups of objects, easily modeled by
the soft, descriptive constraints of an MRF model [6, 11].
At the object level, however, we observe tightly constrained
parts, such as the edges forming the boundary of a roof.
These require explicit bindings. There is still variation at
the object level, modeled by the “Or” nodes in Figure1. A
roof can take many different shapes, each of which can be
formed from many different combinations of subparts. The
Or nodes model the possibility for an object to be modeled
as one of many part compositions.

We implement a two step inference algorithm that takes
advantage of the hierarchy and context in our model. In the
first phase, we use compositional boosting [17] to detect
roofs and roads, while we use low-level features, like those
shown at the bottom of Figure1 to detect the remaining
object categories, parking lots, trees, and cars. Composi-
tional boosting is a hierarchical process that groups edges
into larger structures based on weak classifers learned on

their geometric and photometric features. This grouping
process passes information up and down its hierarchy un-
til objects are finally confirmed. This is a powerful method
for object detection that has not yet been applied to aerial
image modeling.

The first inference phase is designed to ensure a very
high true positive rate, but at the cost of having many false
positives. In the second phase of our algorithm we activate
the top-down scene-level component of the model to prune
inconsistent false positives using local context, resulting in
a much improved interpretation of the scene.

Figure 2 shows an example of an aerial image parsed
using our model. Figure2(b) shows the labeled objects
detected in the scene, while Figure2(c) shows the hierar-
chical decomposition of the scene. In this decomposition,
edges have been grouped into buildings, which have been
grouped into city blocks. These objects are constrained by
contextual relationships, examples of which are shown in
Figure2(d). This figure visualizes which relationships exist
between different objects in the parse. For example, Fig-
ure2(d)(1) shows which objects are aligned. Figure2(d)(2)
and Figure2(d)(3) show which objects are related by the
overlap and relative position relationship, respectively. For
example, cars obey the constraint that they overlap the road.
These relationships have been learned from a training set of
parsed aerial images.

In this paper we first discuss the representation of our
contextual hierarchy in Section2. We then discuss how
to learn its parameters and show samples from this learned
prior in Section3. Next we describe a greedy inference
algorithm in Section4, which combines bottom-up results
from our object model with our top-down scene model to
arrive at the most reasonable explanation of the scene. We
finally show results where the hierarchical and contextual
information greatly improve our pure bottom-up detection.

2. Contextual Hierarchical Model

Figure1 shows a diagram of our two-layer hierarchical
representation consisting of the scene-level hierarchy and
the object-level hierarchy model.

2.1. Hierarchical Composition

Scene-Level Hierarchy We can express the decom-
position rules for the scene-level in a grammar format:

1. S → Roofs(n1) ⊕ Cars(n2) ⊕ Roads(n3) ⊕
Trees(n4) ⊕ Parking Lots(n5), ni ∼ p(ni)

2. Roofs→ Roof(m1), m1 ∼ p(m1)

3. Cars→ Car(m2), m2 ∼ p(m2)

4. Roads→ Road(m3), m3 ∼ p(m3)

5. Trees→ Tree(m4), m4 ∼ p(m4)

6. Parking Lots→ Parking Lot(m5), m5 ∼ p(m5)
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Figure 2. A running example. (a) Original image (b) Detection results on image (c) Hierarchical parse graphg (d) Constraints between
objects (1) Aligned objects grouped together (2) Objects that overlap or contain one another (3) Objects related by relative position.

where ni and mi are integral values determining the
cardinality of each decomposed set.

This portion of the model is very similar to a hierarchi-
cal Dirichlet prior [14], in that the scene decomposes into
a number of groups, which in turn decompose into a num-
ber of single objects. We choose instead to represent these
decomposition rules as constraints to keep our formulation
unified, which we discuss in Section3.

Object-Level Hierarchy Nodes in the object-level hier-
archy can terminate as implicit representations or decom-
pose into their own hierarchy. Cars, trees, and parking lots
are modeled using color histograms and bags of SIFTs, and
thus terminate at this level. Roofs and roads, however, are
defined by a hierarchy of grouped edge primitives.

Figure1 shows the object-level decomposition. Roofs
can take on one of many shapes, each of which can be
formed from simpler edge groups, which in turn can be
formed from collections of edges. For example, a rectangle
can be formed from two L-junctions, or from two perpen-
dicular sets of parallel lines. The uncertainty in decompo-
sition is modeled by the Or nodes in Figure1, indicating
that a roof can decompose into one of many shapes. Each
Or node takes on an integral value during the parse phase
that determines which child it decomposes into:ω(vOr) =
i; i = 1, 2, . . . , m.

Decomposing the scene node down into objects and then
into parts creates a “parse graph”g from our model, consist-
ing of a set of nodesV and relations between them. Every
node instancevi ∈ V can be represented by the following
attributes, derived from the boundary points defining it:

A(vi) = {Xi, θi, σi} (1)

whereXi is the center of mass,θi the orienation, andσi the
scale.A(vi) serves as a general set of features for constraint
formulation in the next section.

2.2. Contextual Relations

The true power of our model comes from adding con-
text to the existing hierarchy through contextual constraints,
which determine the relative appearance of related parts.
Contextual constraints model the distributions of certainre-
lationships between objects, for example relative scale. Fig-
ure1 shows these constraints as dashed horizontal lines.

Scene-Level ContextA contextual relationshipri is
simply a function of the geometric attributes of one or more
nodesV = {v1, v2, . . . , vk}, φ = ri( ~A(V )).

We define a dictionary of relationship functions,∆R.
For a relationshipri ∈ ∆R, we can compute its valueφij

for every realizationVj ⊆ V of a set of nodes in a dataset.
For example, to compute the position relationship between
the “car” and “road” nodes, we obtain every pair of cars
and roads nodes in a set of training data and return the dis-
tance between them. We can then model the distribution
of these values using a histogram,H(ri( ~A(Vj))), for each
constraint. These loose distributions are similar in spirit to
the MRF models proposed in [6] and [11].

AdjacenciesWe only want to measure relationships
across node instances that influence each other. For exam-
ple,Vj may be{Roofs, T rees}, but the instances of roofs
and trees in eachVj may be so far away as to not influence
one another. Thus we add an indicator function for each re-
lationshipri to determine if a set of nodes is adjacent, and



thus valid to be operated on.

Ii( ~A(Vj)) =

{

1 if fi( ~A(Vj)) < ti,

0 else

wherefi is a function over the node instances inVj andti
is its corresponding threshold. Note that “adjacent” here is
defined differently for eachri, and is not necessarily solely
a function of distance.

Object-Level Context At the object-level our con-
straints change slightly. We are now more interested in low-
level Gestalt features, such as parallelism, perpendicularity,
collinearity, but these can still be modeled as above.

3. Learning

We now learn a probability distribution,p(g; Θ), on both
levels of our hierarchical representation together.p(g; Θ) is
the probability of a parseg and is learned in two steps. We
first define the hierarchical component of the whole model
p0(g; Θ0), then iteratively add contextual relations to get
our final constrained model,p(g; Θ).

p0(g; Θ0)
r1⇒ p1(g; Θ1)

r2⇒ . . .
rk⇒ pk(g; Θk) (2)

whereΘ is the parameter vector for the model.

3.1. Probability Model

Given a set of annotated parse graphs of aerial images
gobs = {gobs

1 , gobs
2 , . . . , gobs

n }, we would like our model,
p(g; Θ), to approximate the true underlying distribution,
f(g; Θ), of these parses. This model needs to match:
1. The distribution of the number of parts the scene and
group nodes decompose into.
2. The frequency with which Or nodes decompose into their
children.
3. The distribution of the relationships between nodes.

We can use these constraints to derive our probability
model using minimax entropy, resulting in a standard Gibbs
distribution [19, 20] whereΘ = {λα, λβ , λw, λi} are La-
grange parameters to be estimated:

p(g; Θ) =
1

Z(Θ)
exp−(E0(g)+E1(g)) (3)

E0(g) =

5
∑

i=1

λα(|vG
i |) +

5
∑

i=1

|vG
i |

∑

j=1

λβ(|vO
j |))+ (4)

∑

vi∈V Or(g)

λw(ω(vi))

E1(g) =

k
∑

i=1

∑

Vj∈V

λi(ri( ~A(Vj)))Ii( ~A(Vj)) (5)

HereE0(g) is the energy associated with the hierarchical
component of our model, including terms for the number
of group nodesvG and object nodesvO present, as well
as for the decomposition of each Or nodeV Or. E1(g) is
the energy of thek contextual constraints selected for this
model. The indicatorIi ensures that only instances that are
adjacent are counted towards the energy. We can first learn
the hierarchical parameters{λα, λβ , λw} using MLE [1],
then iteratively add relations to the hierarchy following a
minimax entropy framework [20].

3.2. Relationship Pursuit

Scene-Level Relationship PursuitWe begin with a
modelp0(g; Θ0) containing only our hierarchical parame-
ters, then augment that model top+(g; Θ+) one constraint
at a time. Keeping with a minimax entropy framework,
we select the relationshipr∗+ at each step that maximizes
the distance between our current model and the augmented
model, givingp∗+(g; Θ∗

+). Like texture synthesis, we use
the squared distance between our current model and the ob-
served histogram forri as our metric. Unlike texture syn-
thesis, however, not all constraints may be present between
the same sets of nodes in every image, so we must weight
this distance metric by the frequency of each relationship,
f(ri).

r∗+(g) = argmax
r+

{KL(f(g)|p+(g)) − KL(f(g)|p(g))}

= argmax
r+

D(p+(g)|p(g)) (6)

D(p+(g)|p(g)) ∼= f(ri)|H(ri)
obs − H(ri)

syn| (7)

H(ri)
obs is the observed histogram for this relationship,

while H(ri)
syn is the histogram created by samples drawn

from our current model. The bigger|H(ri)
obs − H(ri)

syn|
is, the more information adding this relation would con-
tribute to this model. In this way, we add constraints that
produce the most information gain, i.e. bring our new model
p+ maximally far away from our old modelp.

BuildingsRoads

Cars

Trees

Parking 
lots

Figure 4. Relationship constraints between groups modeledas a
directed acyclic graph. This adjustment is made to the modelfor
sampling.

It bears noting that the relationships at the group level
can exist between any pair of objects, but can be rewritten
in a partial ordering as a directed acyclic graph where each
object’s appearance depends only on a set of the other ob-
jects. An example is shown in Figure4. This is necessary



Figure 3. Samples drawn from the scene prior. This analysis-by-synthesis shows the traits our model captures, similar to texture modeling.

for sampling, in which it is intractable, without adapting
something like Swendsen-Wang cuts, to arrange all of the
parts at once. We can first sample roads, then sample cars
given roads, then sample roofs given roads and cars, and so
on.

Figure3 shows samples drawn from our learned scene-
level model. Here we model four categories of objects and
model the relationships of relative scale, relative position,
relative orientation, percentage overlap, aspect ratio, and
alignment. The boundaries are sampled from the training
data. We can see that the scenes are similar to urban aerial
images, marked by roads of consistent size, cars contained
within roads, no overlaps, and clustering of objects.

Object-Level Relationship PursuitRelationships at the
object level are not pursued, but instead are all present.
We learn thresholds on these energy functions, or “explicit
tests”, to determine if nodes should be combined during in-
ference. In addition to these explicit tests for nodes, we
learn “implicit tests” for single nodes, which are simply
strong classifiers learned from Adaboost [2].

4. Inference

Our inference algorithm proceeds in two phases. We
first identify single object nodes in the image using specific
bottom-up detectors for each object class. We then activate
the top-down object/scene level of the model to prune in-
compatible proposals and arrive at the most likely descrip-
tion of the scene.

A

Multiple channels of evidence

β

γ

γα

a1 a2 a3

Figure 5. Information about the presence of a node may come from
a bottom-up detector, detected children, or a detected parent.

4.1. Bottom-up Object-Level Detection

We first detect single objects in the scene using detectors
suited to their representations.
Cars: Cars are represented by Haar filter responses, and are

detected using Adaboost [2].
Trees: Trees are represented by color histograms. For every
7x7 window in each image, we compare the window’s his-
togram to a learned category histogram and accept the pixel
as belonging to a tree if the product between the two is be-
low some threshold.
Parking Lots: Parking lots are represented using a his-
togram of SIFT features. Like trees, we move 80x80 win-
dows across the image to find matching parking lot regions.

Compositional BoostingFor the more complex cases
of roads and roofs we use compositional boosting [17], ex-
ploiting the implicit and explicit tests we learned in Section
3. Figure5 shows the way compositional boosting intro-
duces context during inference. A nodeA may receive ev-
idence of its existence from one of three channels, named
the α, β, andγ channels. Theα channel comes directly
from pixel-level evidence, such as Adaboost detection re-
sults for that node. Theβ channel submits evidence forA

from the existence of its children. Theγ channel provides
evidence forA due to the existence of its parent. For ex-
ample, a roof may be detected directly from the pixel-level
results of Adaboost, or it may be proposed because two op-
posing L-junctions exist under certain constraints. Thanks
to theγ channel, we can also detect mid and low-level nodes
that were previously undetected due to the existence of their
parent.

Compositional boosting operates on a primal sketch of
an image, which is similar to an edge map [17]. The algo-
rithm strives to encode this sketch with as many composite
edge features as possible. In our case, we are trying to find
the best “roof encoding” of a sketch of our image. This is
done by first searching the input sketch for every possible
node in the hierarchy using its implicit representation, the
strong classifier learned for that node. Each particle is then
weighted by a local posterior probability ratio of how well
it encodes a patch relative to other particles. The algortihm
then proposes new candidates by binding or decomposing
the implicitly detected nodes into higher and lower level
structures. These proposals are similarly weighted.

At each iteration we greedily select the candidate from
our proposal set with the highest weight. We then reweight
the remaining candidates according to whether or not the
newly selected particle overlaps their domain or alters the
evidence that they exist. For example, if we select a low



False Positives

U Junction Parallel Lines L Junction Opposite L Junctions
D

et
ec

tio
n 

R
at

e

D
et

ec
tio

n 
R

at
e

False Positives False Positives False Positives

D
et

ec
tio

n 
R

at
e

D
et

ec
tio

n 
R

at
e

Figure 6. ROC curves for line structures with and without compositional boosting. The blue curve shows results using just one-pass of
Adaboost, while the red curve shows the improvement from using top-down information from compositional boosting.

level node, it would increase the weight on the proposal that
its parent existed. We refer the reader to [17] for more de-
tails on this formulation. Suffice it to say that, given an
edge image, we first propose nodes using implicit and ex-
plicit tests, then iteratively select and reweight particles that
best explain the image. By the end we have a hierarchical
decomposition of the sketch of the image, yielding roof and
road candidates.

4.2. Top-down Pruning

The previous step produces a huge number of candidate
particles for each object category. We now want to pur-
sue theg∗ that maximizes our posterior distribution for the
scene level:

g∗ = argmax
g

p(I|g; Θ)p(g; Θ) (8)

We optimize this value by pursuing candidates found in the
bottom-up phase, similar to [8]. We greedily add nodes to
a running parse,g, initially empty. At every iteration, we
reweight each particleci from a set of detected candidate
particles,C = {c1, c2, . . . , ck} by the change in energy its
addition produces, whereg+ = g ∪ {ci}.

w(ci) = log
p(I|g+; Θ+)

p(I|g; Θ)
+ log

p(g+; Θ+)

p(g; Θ)
(9)

We model the likelihood for each objectci based on how
well it matches a color histogram for its object type,
Hi(I(x,y)), relative to the previous explanation of that area,
Hj(I(x,y)), which may be uniform ifg doesn’t yet explain
those pixels, or may belong to whatever object is currently
covering that region. We also measure the energy of the
prior ong+, which is simply the energy of the relationships
created due to the addition ofci.

log
p(I|g+; Θ+)

p(I|g; Θ)
=

∑

(x,y)∈Λi
log Hi(I(x,y))

∑

(x,y)∈Λi
log Hj(I(x,y))

(10)

log
p(g+; Θ+)

p(g; Θ)
= −

k
∑

i=1

∑

Vj∋ci

λi(ri( ~A(Vj))) (11)

This proceeds until no candidates remain withw(ci) > 0.

As this is a greedy algorithm, it is not guaranteed to
converge to a global minimum. However, we have found
that in practice, with good initial conditions, the algorithm
achieves sensible parses. Our detectors are reliable enough
that we are virtually ensured that the first particles picked
are in fact correct objects.

5. Experiments

Training We learned our prior model and bottom-up pa-
rameters from 196 hand-labeled, multiresolution training
images taken from Google Earth. This dataset included
10477 cars, 973 roofs, 202 roads, 584 parking lots, and 555
tree regions. We implemented relationships for aspect ratio,
relative position, relative scale, relative orientation,percent-
age overlap, and grid alignment. We imposed grouping con-
straints dictating that single objects be grouped if their rela-
tive orientation varied less than 15 degrees from one another
and were a distance less than or equal to twice the scale of
the object along each axis away from one another. With this
information, we were able to reconstruct the parses for each
of the labeled images.

Our testing set was comprised of three large Google
Earth images that were mosaicked together from many
smaller high-resolution images. This allowed us to run our
object detectors at multiple scales for each image.

Compositional BoostingFigure 6 shows ROC curves
for our compositional boosting results on a subset of the
training set. The blue curve shows just the initial implicit
testing results of four types of edge structures. This curveis
not very peaked, so Adaboost alone is not very effective for
detecting these structures. By using compositional boost-
ing to propose higher-level structures and then to re-verify
originally missed edge structures, we see a huge improve-
ment. The red curves show the improved detections using
the multi-layer evidence from compositional boosting in-
stead of just a single pass. This guarantees that we will have
a higher detection rate for roofs and roads using full com-
positional boosting than simply using implicit detectors.

Top-down + Bottom-up Figure7 shows results of the
different stages of our algorithm on a series of aerial im-
ages. The first panel visualizes the compositional boosting
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from compositional boosting. (2) shows typical bottom-up results for each category at the scene level. The central panel shows parsed
results for 3 typical images. Panel (3) shows close-up comparisons between bottom-up alone vs. bottom-up + top-down information.



results for the four part types on an area of the image. Panel
2 shows typical bottom-up detection results for an area of
the image. Note the abundance of false positives. The cen-
ter panel shows the final detection results for 3 images, us-
ing our top-down model to prune unlikely bottom-up can-
didates. We see that the majority of the objects are detected
correctly and that we have very few inconsistencies. Panel
3 shows a close up of the results before and after top-down
pruning. We can see that, beforehand, we have many over-
lapping inconsistent representations. After top-down infor-
mation is introduced, these are pruned away.

We do see incorrect labelings as well, however. For ex-
ample, the rightmost image has decided that the straight
lines of buildings are in fact roads, thus ruling out the build-
ings there. Also, our training data included trees on the
medians of roads. Thus, our model learned that trees can
overlap roads, so we see proposals where trees block the en-
tire road. These problems can be solved by weighting our
likelihood term differently and by including more complex
relations in our model.

Table 1 shows the improvement achieved using our top-
down model. We compare the number of true positives and
false positives in our testing set before and after top-down
pruning. Though we lose some true positives during the top-
down phase, we see that the false positives are drastically
reduced. Looking at the images in Figure7, these seem
to correspond to instances that are fairly difficult even as a
human to label. The top-down pruning has then in effect
eliminated the majority of the false positives.

Bottom-Up Top-Down
Ground Truth TP FP TP FP

Roofs 59 56 117 48 24
Roads 9 9 8 9 6
Cars 806 768 415 651 31
Parking Lots 6 3 15 3 3
Trees 55 53 60 53 11

Table 1. Comparison of results between bottom-up and bottom-up
with top-down pruning.

6. Conclusions and Future Work

We have shown a contextual hierarchical model that in-
corporates bottom-up and top-down information to parse a
scene containing multiple object categories. The dual hier-
archies succeed in capturing the relations at the object and
scene levels and compositional boosting greatly improves
our bottom-up detection rate. The top-down scene model
is able to prune inconsistent candidates using scene con-
text, producing far better precision than bottom-up detec-
tion alone. We hope in the future to improve this model
by extending it to handle arbitrary object types and to im-
plement top-down prediction in the scene-level hierarcy to
help detect missing objects.
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