
 

 

 
Abstract 

 
In this paper we propose a framework that performs 

automatic semantic annotation of visual events (SAVE). 
This is an enabling technology for content-based video 
annotation, query and retrieval with applications in 
Internet video search and video data mining. The method 
involves identifying objects in the scene, describing their 
inter-relations, detecting events of interest, and 
representing them semantically in a human readable and 
query-able format. The SAVE framework is composed of 
three main components. The first component is an image 
parsing engine that performs scene content extraction 
using bottom-up image analysis and a stochastic attribute 
image grammar, where we define a visual vocabulary 
from pixels, primitives, parts, objects and scenes, and 
specify their spatio-temporal or compositional relations; 
and a bottom-up top-down strategy is used for inference. 
The second component is an event inference engine, 
where the Video Event Markup Language (VEML) is 
adopted for semantic representation, and a grammar-
based approach is used for event analysis and detection. 
The third component is the text generation engine that 
generates text report using head-driven phrase structure 
grammar (HPSG). The main contribution of this paper is 
a framework for an end-to-end system that infers visual 
events and annotates a large collection of videos. 
Experiments with maritime and urban scenes indicate the 
feasibility of the proposed approach. 

1. Introduction 
The proliferation of video cameras and networked 

video storage systems is generating enormous amounts of 
video data. Efficient automatic video analysis is required 
to enable retrieval via human readable queries, either by 
searching the meta-data or text description. Existing video 
search tools rely mainly on user-annotated tags, captions, 
and surrounding text to retrieve video based on broad 
categories. The goal of content-based visual event 
retrieval is to allow queries based on specific events and 
event attributes in the video. It requires a more detailed 
understanding of objects, scene elements and their inter-
relations. It also involves inference of complex events 
including multi-agent activities [6]. Effective annotation 

should provide rich information surrounding the visual 
events, such as “a red car enters the traffic intersection at 
a speed of 40 mph at 3:05p.m.”. Attributes such as object 
class (e.g. car), scene context (e.g. traffic intersection), 
speed, and time, provide important semantic and 
contextual information for accurate retrieval and data 
mining. 

We propose a framework SAVE: Semantic Annotation 
of Visual Events; and the architecture is summarized in 
Figure 1. We adopted the modeling and conceptualization 
methodology of stochastic attribute image grammar [20] 
to extract semantics and contextual content, where a visual 
vocabulary is defined from pixels, primitives, parts, 
objects and scenes. The grammar provides a principled 
mechanism to list visual elements and objects present in 
the scene and describe how they are related, where the 
relations can be spatial, temporal or compositional. 
Guided by bottom-up analysis and object detection, a 
bottom-up top-down strategy is used for inference to 
provide a description of the scene and its constituent 
elements. With the image parsing result, an event 
inference engine then extracts information about activities 
and produces a semantic representation. A text generation 
engine then converts the semantic representation to text 
descriptions. This paper describes the SAVE framework. 
To date, we have focused on urban and maritime 
environments to achieve rich annotation of visual events. 
We plan to later extend the framework to videos in other 
domains.  

1.1. Related work 
In literature, extensive work in video annotation has 

been reported under the TREC Video Retrieval Evaluation 
program (TRECVID) [15] to categorize video shots using 
a list of media content concepts.  Our proposed method is 
significantly different as it provides descriptive annotation 
of each activity in the video. Our work is more closely 
related to the work by Kojima et al. [9] which generated 
text description of single-human activities in a laboratory 
using case frames. Compared to [9], we use grammar-
based approaches for inferring and annotating a broader 
range of scenes and events, including multi-agent complex 
events.  

A variety of approaches have been proposed for 
detecting events in video. Most of these approaches can be 
arranged into two categories based on the semantic 
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significance of their representations. Approaches where 
representations do not take on semantic meaning include 
Stochastic Context Free Grammars (SCFG) [13], learning 
methods such as Bayesian Networks (BN) [7], and Hidden 
Markov Models (HMM) [2]. On the other hand, 
semantically significant approaches like the state 
machines [10], and PNF Networks [16] provide varying 
degrees of representation to the actions and agents 
involved in the events. Also, the Video Event 
Representation Language (VERL) was proposed in [14] 
where complex events are semantically represented with a 
hierarchical structure.  

Detecting and annotating complex visual events in a 
broader range of scenes would first require the 
understanding of the scene to provide contextual 
information surrounding events. Image parsing with scene 
element labeling [20] is an important stage towards this 
goal. This motivates the design of the SAVE framework, 
where the goal is to provide an end-to-end system that 
infers visual events and annotates a large collection of 
videos, in a human readable and query-able format. 

2. SAVE: Semantic Annotation of Visual 
Events framework 

The overall architecture for SAVE is shown in Figure 
1, which consists of three main components. The first 
component is an image parsing engine that consists of the 
stochastic attribute image grammar [20]. Grammars, 
which are mostly studied in natural language processing, 
are known for their expressive power, i.e. the capability of 
generating a very large set of configurations from a small 
vocabulary using production rules. Transferring the idea 
of a grammar from natural language processing to 
computer vision, a visual vocabulary is defined from 
pixels, primitives, parts, objects and scenes, and specify 
their spatio-temporal or compositional relations and a 
bottom-up top-down strategy is used for inference. The 
grammar also provides a principled mechanism to list 
visual elements and objects present in the scene and 
describe how they are related. Also, the bottom-up image 
analysis techniques include edge detection, segmentation, 

and appearance-based object detection.  
The output of the image parsing engine is further 

processed by the second component: the event inference 
engine. In this component, descriptive information about 
visual events is extracted, including semantic and 
contextual information, as well as, relationships between 
activities performed by different agents. The Video Event 
Markup Language (VEML) [14] is adopted for semantic 
representation and a grammar-based approach is used for 
event analysis and detection. Finally, in the text 
generation engine, the semantic representation is 
converted to text description using head-driven phrase 
structure grammar (HPSG) [17]. The following sections 
describe each of these components in detail. 

2.1. Image parsing 
The first component in the SAVE framework is the 

image parsing engine to classify the imagery into scene 
elements and objects. It consists of a stochastic attribute 
image grammar [20] that serves as a unified methodology 
for analysis, extraction, and representation of the visual 
elements and structure of the scene, such as the roads, sky, 
vehicles, and humans. These image elements form the 
basis of a visual vocabulary of scenes. At the lowest level 
of the grammar graph are the image primitives such as 
image patches, lines or color blobs. Serving as basic cues, 
these primitives are combined to form larger objects and 
scene structure. The production rules realize the 
composition of the image elements with attributes. As 
illustrated in Figure 2, graphs are used to represent the 
grammars where the nodes represent the visual elements 
and the edges depict the rules defining the relations 
between the elements. 

Under the stochastic attribute image grammar 
methodology, the image content extraction is formulated 
as a graph parsing process to find a specific configuration 
produced by the grammar that best describes the image. 
The inference algorithm finds the best configuration by 
integrating bottom-up detections and top-down 
hypotheses. As illustrated in Figure 2, with a maritime 
scene as an example, bottom-up detection includes 

Figure 1: The SAVE framework for semantic annotation of visual events. The three main components are: image parsing, 
event inference, and text generation. 
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classification of image patches as regions of sky, water, 
and watercraft, which generate data-driven candidates for 
the scene content. Top-down hypotheses, on the other 
hand, are driven by scene models and contextual relations 
represented by the attribute grammar. The fusion of 
bottom-up and top-down information yields a more robust 
image content extraction method.  

A parsed image is an instance or configuration of the 
attribute graph grammar that aims to find a parse-graph 
that maximizes the posterior probability, under the 
Bayesian framework. The objective is to find the graph 
configuration that best represents the input image. The 
process is initiated with the bottom-up approach that 
generates candidate proposals by changing the labeling of 
scene elements based on local features. These proposals 
are used, in a stochastic manner, to activate the 
instantiation of production rules in the attribute grammar, 
which in turn generate top-down hypotheses. The top-
down inference guides the search based on domain 
knowledge and contextual relations between objects and 
scene elements, as illustrated in Figure 2. These rules 
specify how attributes of elements are estimated and 
passed along the parse-graph through the use of constraint 
equations. Data-Driven Markov Chain Monte Carlo 
(DDMCMC) [19] is used to maximize the posterior 
probability for scene content inference.  

The attribute grammar method is formulated as a graph 
partition problem [1] where the graph is denoted by 

>=< EVG , which is an adjacency graph where V is a set 
of vertices representing image elements and E is a set of 
edges or links representing adjacency relations between 
elements. In image parsing, the objective is to partition the 
vertices into subsets, { }nVVV ,...,, 21=π , where vertices in 
each subset iV  belong to the same element class, and n is 
the number of partitions.  Given the observable data, the 
objective is to find the partition that maximizes the 
posterior probability, ( ) ( )Datapp |ππ =  over the set of 
all possible partitions Ω. Each edge in the partition graph 
is denoted by Etse >∈=< , , where s, t, are vertex 
indices. When computing the posterior probability, a 
discrimination model is used to measure the coherency 
between adjacency nodes. This local probability is 
denoted by, ))(),(|( tFsFeqqe = , where )(),( tFsF  are 
local feature vectors (such as color, texture, and location) 
used as inputs to the discrimination model. The image 
statistics is learned from a set of annotated training data. 

The bottom-up analysis involves detecting image 
features and other low level processing for the 
classification of the objects and scene elements. For 
moving objects, we used the Adaboost classification 
method which utilizes a set of features to detect humans, 
vehicles, and watercrafts. The set of features include 
Histogram of Oriented Gradient (HOG) [3] and C2 
features [18]. For scene elements, we initially perform 
over-segmentation to divide the image into super-pixels 
using the mean-shift color segmentation method. Since 
adjacent pixels are highly correlated, analyzing scene 
elements at the super-pixel level reduces the 
computational complexity. For each super-pixel, a set of 
local features are extracted including color, hue, 
saturation, intensity, spatial texture, difference of oriented 
Gaussian filter, image location, size, shape and normalized 
‘x’ and ‘y’ means. These local features are used for image 
parsing within the attribute grammar framework. The 
detected scene elements include water, road, sky, 
vegetation, and land. 

Top-down scene model is represented using a mixture 
Markov random field [5]. Compared to traditional MRF, 
the mixture MRF can handle nodes and edges of different 

Figure 3: Regions of the same type are connected using address 
variables in the layered image representation framework. A 
mixture of Gaussians is used for the generative model for the 
appearance of each region type. 

Figure 2: Image content inference with bottom-up proposals 
and top-down hypotheses. The parsed image is represented
by a semantic graph consisting of the image elements and
their relationships. 
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types. For scene modeling, mixture MRF can be used to 
represent relations between non-adjacent scene elements 
which, in the graphical model, are connected by edges 
known as address variables (see Figure 3). Thus the 
method is more flexible and can handle more complex 
relations. In a typical image, regions of the same element 
type (e.g. roads, water) share similar characteristics even 
though they might not be connected. This is modeled with 
a layered image representation [5], where the color 
distribution of each image layer is represented by a 
mixture Gaussian model. For each scene element type, the 
prior on the number of Gaussian components is modeled 
using Poisson distribution and is estimated from training 
data.  

To classify scene elements in the image, the data-driven 
Markov chain Monte Carlo (DD-MCMC) [19] is used for 
Bayesian inference. This is an iterative process modeled 
as a stochastic Markov chain. Suppose A and B are two 
different states (i.e. different graph configurations), at 
each iteration, the acceptance probability of a Markov 
transition from A to B is given by  

⎭
⎬
⎫

⎩
⎨
⎧

→
→

=→
)(
)(

)(
)(,1minarg)(

Ap
Bp

BAq
ABqBAα , 

where )( ABq → is the proposal probability formulated 
from bottom-up observation. The output of DD-MCMC 
algorithm is a parsed image with labeled scene elements. 

2.2. Event inference 
The second component in the SAVE framework is the 

event inference engine which leverages the existing state-
of-the-art in knowledge representation and natural 
language processing, and focuses on extracting descriptive 
information about visual events, including semantic and 
contextual information as well as relationship between 

activities performed by different agents. The Video Event 
Markup Language (VEML) [14] is adopted for semantic 
representation, while a grammar-based approach is used 
for event analysis and detection. The module is composed 
of four sub-components described next. 
2.2.1 Scene Region Analysis  

The first sub-component of the event inference engine 
deals with the scene region analysis. This sub-component 
enhances the scene understanding by analyzing the 
functional and contextual property of scene regions. Pixel-
level scene element classification can be further analyzed 
to derive higher level scene content. For instance, in road 
analysis, the aim is to extract road structure, junctions and 
intersections using information from existing 
transportation ontology [12]. To analyze road structure, 
we expand the taxonomy and object class properties, and 
derive object class relations. Based on these relations, 
roads are detected using the data-driven approach with 
data from the observed trajectories of vehicles (the object 
class that travels on road), which are clustered to extract 
roads. The vehicles are detected and tracked using 
background subtraction and Kalman filtering. Combining 
road information with superpixel-based scene element 
classification, the boundaries of roads can be extracted 
fairly accurately. Junctions are then detected as 
intersections of roads. The algorithmic steps of road 
extraction process are illustrated in Figure 4 (a)-(d). Based 
on ontology, similar inference can be made on other types 
of scene regions, such as waterway (used by watercraft), 
and sidewalk (used by pedestrians).  

Figure 5: Events with respect to zone include entering and 
exiting. The speed of the object inside the zone is measured 
and checked for abnormity. 
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Figure 4: Road extraction and zone demarcation. (a) Object
trajectories, (b) Road scene element detection, (c) Extracted roads 
(color-coded with traffic direction), (d) Extracted roads
boundaries and intersection, (e)-(i) Extracted ROI zones on roads.
The extracted semantics information and ROI zones are used for
event detection and description. 



 

 

A key benefit of scene region extraction is the 
automatic demarcation of Region Of Interest (ROI) zones 
for higher level analysis. A zone is a generic term to 
describe an image region that has semantic, contextual or 
functional significance. Examples of zones include road 
junctions, port docking areas, and entrances to buildings. 
A zone serves as a spatial landmark; the position and 
motion of other objects can be described with respect to 
this landmark. This allows us to detect semantic actions 
and events, and it facilitates the textual description of the 
events thereafter. Examples of zone demarcation result are 
shown in Figure 4 (e)-(i). 
2.2.2 Spatio-Temporal Analysis 

The second sub-component deals with the analysis of 
the spatio-temporal trajectories of moving objects. 
Assuming that an object is moving on a ground plane, the 
detected trajectory is a series of tracked “footprint” 
positions of the object.  The trajectory is then 
approximated by a series of image-centric segments of 
straight motions or turns, such as “move up”, “turn left”, 
etc. The trajectory can be described concisely in terms of 
these motion segments. A trajectory is also described in 
relation to the zones that are demarcated in the scene, such 
as entering and exiting a zone. The system analyzes the 
motion properties of objects traveling in each zone, such 
as minimum, maximum and average speeds. From a 
collected set of trajectories, histogram-based statistics of 
these properties are learned. Comparing new trajectories 
to historical information, abnormal speeding events inside 
the zone can be detected (see example in Figure 5). 

Speed information is generally expressed in image-
centric measure (pixel-per-second). Objects’ image sizes 
in then used to coarsely estimate the ground sample 
resolution (meter-per-pixel) to compute metric-based 
speed measure (e.g. mile-per-hour). More accurate 
estimation can be obtained by automatic calibration 
method but this is outside the scope of this paper. 
2.2.3 Event Detection 

The third sub-component utilizes the information 
obtained from the previous sub-components to perform 

event detection. We use the stochastic context-free 
grammar (SCFG) [13] to detect events. The grammar is 
used to represent activities where production rules 
describe how activities can be broken down into sub-
activities or actions. In the stochastic approach, a 
probability is attached to each production rule for the 
sequence of actions, depicting the likelihood of a 
particular production rule to be utilized in the generation 
of the activity.  

Given an input sequence of detected actions, the 
Earley-Stolcke Parsing algorithm [4] is used to parse the 
sequence based on the SCFG. The parsing algorithm is an 
iterative process for each input sequence of actions. Each 
iteration consists of three steps: prediction, scanning, and 
completion, in a manner similar to the top-down bottom-
up approach of the image attribute grammar. The parsed 
result defines the event that occurred. To overcome the 
presence of unrelated concurrent actions, we use 
semantics and contextual information to identify 
associations between visual elements and actions based on 
factors such as target type, time, location, behavior and 
functional roles. This process removes unrelated data for 
event detection, thereby reducing computational 
complexity.  

For instance, this method is used to analyze multi-agent 
events around traffic intersections, where vehicle’s actions 
include approaching and stopping before an intersection, 
entering and exiting the intersection. By observing 
sequences of these actions, the system learns the 
stochastic grammar for these actions and later uses the 
grammar to detect unusual events. In addition to using 
learning-based method, the system also detects user-
defined events expressed in VERL [14], where complex 
events are represented as hierarchies of sub-events or 
atomic actions. 

Scene Understanding 
Report generated on <date and time> 

Source Information 
   Information on video source … 
 
Scene Context 
   Scene context description … 
 
Object Summary 
   Brief description of objects in the scene … 
 
Events of Significance 
   Significant events detected … 
 
Detailed Object Information 
   Detailed events  description … 

<document> 
    <title>Scene Understanding</title> 
    <section> 
        <title>Source Information</title> 
        <paragraph> 
            <sentence> 
               … 
            </sentence> 
            … 
        </paragraph> 
        … 
    </section> 
    <section> 
        <title>Scene Context </title> 
        … 
    </section> 
    … 
</document> 

(a) Text report layout (b) Corresponding text-planner structure (XML) 
Figure 6: An example of document structure for text report. 



 

 

 
2.2.4 Semantic Representation  

The final sub-component expresses the extracted 
information to a semantic representation that encodes the 
detected scene elements, moving objects, events, and the 
spatial and temporal relation between them in a semantic 
representation. We adopted the Video Event Markup 
Language (VEML) [14] for semantic representation which 
is based on XML and therefore can be easily generated 
and parsed using standard software tools. The format of 
the output XML file consists of the following main 
sections: Ontology that lists the location of the ontology 
file and describes the visual entities, subtype relations, 
other relations, and their properties; Streams that identifies 
the input video source; Context that describes scene 
contextual information related to the video which include 
static scene elements such as roads, intersections, etc; 
Objects that describe objects that are present in the scene; 
and Events that describes events detected in the scene. The 
Events section is further divided into Significant Events 
(e.g. traffic violation, abnormal events) and Detailed 
Events (a complete list of all detected events).  

2.3. Text generation 
The third component in the SAVE framework is the 

text generation engine which generates text reports based 
on the output of the event inference engine. The text 
generation process is a pipeline of two distinct tasks: text 

planning and text realization. The text planner selects the 
content to be expressed, specifies hard sentence 
boundaries, and organizes content information according 
to these boundaries. Based on this formation, the text 
realizer generates the sentences by determining 
grammatical form and performing word substitution. We 
now describe these tasks in detail in the following 
sections. 
2.3.1 Text Planner 

The text planner module translates the semantics 
representation to a representation that can readily be used 
by the text realizer to generate text. This intermediate step 
is useful because it converts a representation that is 
semantic and ontology-based, to a representation that is 
based more on lexical structure. The output of text planner 
is based on text generator input representation known as a 
functional description (FD) which has a feature-value pair 
structure, commonly used in text generation input 
schemes. Our system uses the HALogen representation 
[11]. For each sentence, the functional description 
language specifies the details of the text that is to be 
generated, such as the process (or event), actor, agent, 
predicates, and other functional properties. The text 
planner module also organizes the text report document. 
The document structure is dependent on applications. For 
this paper, a simple text report document structure is 
designed, as shown in Figure 6.  

 Precision Recall 
Sky 0.90 0.75 

Water 0.93 0.74 
Road 0.69 0.83 

Vegetation 0.79 0.67 
Land 0.41 0.51 

Table 2. Classification result for each 
scene element type. 

Actual\Detecte
d 

Road Vegetation Water Land Sky 

Road 0.781 0.086 0.026 0.098 0.009 
Vegetation 0.069 0.677 0.001 0.240 0.013 

Water 0.126 0.008 0.824 0.018 0.023 
Land 0.223 0.171 0.025 0.527 0.053 
Sky 0.025 0.056 0.021 0.132 0.766 

Table 1. Confusion matrix at pixel level. 

Figure7: Examples of scene element classification result. 



 

 

2.3.2 Text Realizer 
A simplified head-driven phrase structure grammar 

(HPSG) [17] is used to generate text sentences during the 
text realization task. HPSG consists of two main 
components: a highly structured representation of 
grammatical categories; and a set of descriptive 
constraints for phrasal construction. The generation 
grammar represents the structure of features with 
production rules. Textual descriptions of visual events are 
mostly indicative or declarative sentences and this 
simplifies the grammar structure significantly. The 
grammatical categories in HPSG consist of: S, sentences; 
NP, noun phrase; VP, verb phrase; PP, preposition phrase; 
N, noun; V, verb; A, adjective; DET, determiner; Pron, 
pronoun; P, Preposition; and ADV, Adverb. The set of 
production rules or descriptive constraints include: S → 
NP VP, NP → DET (A) N, VP → V NP, VP → V PP, VP 
→ V ADV, and PP → P NP. Rules with features are used 
to capture lexical or semantic properties and attributes. 
For example, to achieve person-number agreement, the 
production rules include variables so that information is 
shared across phrases in a sentence: S  → NP(per,num) 
VP (per,num). A unification process [8] matches the input 
features with the grammar in a recursively manner, and 
the derived lexical tree is then linearized to form sentence 
output. 

As an example, the sentence “Boat_1 follows Boat_0 
between 08:34 to 08:37” is generated from the following 
functional description 

(e1 / follow 
     :AGENT (d1 / Boat_1 )  
      :PATIENT (d2 / Boat_0) 
     :TEMPORAL_LOCATING (d3 / time 
           :ORIGIN 08:34 
           :DESTINATION 08:37)). 

3. Results 
We focused our evaluation on urban traffic and 

maritime scenes and it consists of two parts. First, we 
evaluated our method for scene labeling with static 
images. Second, we evaluated event detection and meta-
data/text generation with sequences of different scenes. 
The evaluation of object tracking is outside the scope of 
this paper. The results and discussion follow. 

3.1. Image parsing  
For evaluation, a dataset of 90 different scenes is 

collected, of which 45 is used for training and the 
remaining for testing. These include maritime and urban 
scenes. Figure 7 shows some result of scene element 
classification and error masks.  The overall classification 
accuracy is 73.6%. For comparison, the SVM method was 
used to classify each superpixel region independently and 
the overall accuracy by SVM is 60.4%. 

Table 1 shows the confusion matrix at the pixel level 

and Table 2 shows the breakdown of recall and precision 
for each scene element type. The performance is 
reasonable for sky, water and road, while there is some 
confusion between land and road, as well as land and 
vegetation, which have similar appearance. In future 
work, we plan to investigate the use of global feature 
models to improve the overall classification. 

3.2. Event detection and text generation 
We processed 10 sequences of urban and maritime 

scenes, with a total duration of about 120 minutes and 
contain more than 400 moving objects. Visual events were 
extracted and text descriptions are generated. Detected 
events include: entering and exiting the scene, moving, 
turning, stopping, moving at abnormal speed, 
approaching traffic intersection, entering and leaving 
traffic intersection, failure-to-yield violation, watercraft 
approaching maritime marker or land area, and an object 
following another object. 

When annotating these events in both meta-data and 
text description, the system extracts and provides 
information about the object class, scene context, position, 
direction, speed, and time. Examples of text description 
and corresponding video snapshots are shown in Figure 8. 

The detected events are compared with manual 
annotation for selected events, and the recall and precision 
measures are shown in the table below.  The results are 
promising and illustrate the system’s ability to detect 
events using context information (e.g. events at road 
intersection). The recall for “turning” events is relatively 
low because of poor estimation in motion direction from 
low perspective views in some scenes; whereas human 
can use other appearance cues to infer turning motion. 

Events  Recall Precision 
Enter/leave scene 0.93 0.96 
Turning 0.66 0.75 
Moving at abnormal speed 0.75 0.90 
Crossing traffic intersection 0.88 0.94 
Failure-at-yield at intersection  0.84 0.91 
Watercraft approaching marker/land  0.67 0.80 

4. Discussion  
This paper proposes the SAVE framework that provides 

an end-to-end automatic system for parsing video, 
extracting visual event content, and providing semantic 
and text annotation. A key feature of this framework is the 
use of various grammar-based approaches to represent and 
infer visual content so that it can be seamlessly 
transformed from parsed image to semantic meta-data 
format and finally to textual description.  We have applied 
this approach on selected scenarios in urban traffic and 
maritime scenes and demonstrated capabilities in visual 
event inference and text description generation. The 
framework can be extended to other domains although the 
fundamental object detection and classification technology 



 

 

needs to be improved. 
This work is different from but complementary to 

existing technology in video shot categorization and 
caption-based video annotation, by providing richer and 
semantic-oriented annotation of visual events in video. 
With video content expressed in both XML and text 
format, this technology can be easily integrated with full 
text search engine as well as XML-query or relational 
database search engine to provide accurate content-based 
video retrieval. As a future work, we are developing a 
web-based video service from which users can retrieve 
video via keyword searches and semantic-based queries 
using standard web interface. 
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Boat_2 enters the scene on water region at 
19.50. 
 
Boat_2 approaches maritime marker at 
20.09. 

 

 
Boat_4 follows Boat_3 between 35:36 and 
37:23 

 

 
Boat_7 turns right at 55:00. 
 

 
 

Land_vehicle_359 approaches 
intersection_0 along road_0 at 57:27. It 
stops at 57.29. 
 
Land_vehicle_360 approaches 
intersection_0 along road_3 at 57:31.  
 

 

Land_vehicle_360 moves at an above-than-
normal average speed of 26.5 mph in 
zone_4 (approach of road_3 to 
intersection_0) at 57:32. It enters 
intersection_0 at 57:32. It leaves 
intersection_0 at 57:34.  
 
There is a possible failure-to-yield violation 
between 57:27 to 57:36 by 
Land_vehicle_360. 
 

 

Land_vehicle_359 enters intersection_0 at 
57:35. It turns right at 57:39. It leaves 
intersection_0 at 57:36. It exits the scene at 
the top-left of the image at 57:18. 
 

Figure 8: Samples of generated text and corresponding video 
snapshots.  


