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Abstract

In this paper we present a novel framework for learn-
ing contextual motion model involving multiple objects in
far-field surveillance video and apply the learned model
to improving the performance of objects tracking and ab-
normal event detection. We represent trajectory of multi-
ple objects by a 3D graph G in x,y,t, which is augmented
by a number of spatio-temporal relations (links) between
moving and static objects in the scene (e.g. relation be-
tween crosswalk, pedestrian and car). An inhomogeneous
Markov model p is defined over G, whose parameters are
estimated by MLE method and relations are pursued by a
minimax entropy principle (as in texture modeling) [16] so
that we can synthesize entirely new video sequences that re-
produce the observed statistics from training video. With
the learned model, we define the abnormality of a subgraph
given its neighborhood by log-likelihood ratio test, which
is estimated by importance sampling. The learned model
is applied to tracking and abnormal event detection. Our
experiments show that the learned model improve tracking
performance and detect sophisticated abnormal events like
traffic rule violation.

1. Introduction
In this paper, we present a novel approach for learn-

ing contextual motion model involving multiple objects in

video surveillance. We represent objects in space and time

in a Trajectory Graph G, and augment it with a number of

spatio-temporal relations that link objects (nodes) in G. The

relations are grouped into four categories (see the “Rela-

tion Library” in Figure1): i) Relation between moving ob-

jects and semantic regions in a scene (i.e. source, sink,

path)[13]; ii) Relation between several frames of a single

object; iii) Relation between multiple objects in one frame;

iv) Relation accounting for interactions between multiple

objects in a time period (e.g. car and pedestrian moving

across a crosswalk at the same time). An inhomogeneous

Markov model p is then defined over G, whose parameters
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Figure 1. Diagram of algorithm. Left panel is the learning pro-

cesses: At each stage, a new relation with largest information gain

δ(r+) (i.e. minimizing the KL divergence between the learned

model with observed video) is pursued from a Relation Library.

Right panel is the abnormality detection process. More sophis-

ticated abnormal behaviors detected as new relations are added.

Three typical images of detected abnormal events are shown. The

bottom panel plots the information gain and abnormality recall rate

along with the relation pursuit iterations.

and relations are learned following an analysis-by-synthesis

scheme. Given a set of relation estimating parameters and

synthesizing samples using a Gibbs sampler until samples

reproduce observed statistics over the selected relation set.

Relations are pursued iteratively following a minimax in-
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Figure 2. Source, sinks and paths. First row for vehicle, second row for pedestrian. Starting from left, the 1st figure is trajectories plotted

with different colors representing different clusters of traffic. The 2nd and 3rd figure show the source and sink maps respectively, which

are represented by 2D Gaussian distributions. The 4th figure illustrates the boundary of paths.To cancel perspective effects, all trajectories

are projected to the bird-eye view by homographic transformation [6]

formation criteria, which sequentially selects new relations

minimizing the KL divergence between learned model with

observed. As shown in Figure1, at the first stage, relation

between objects and scene semantic regions is pursued and

thus the model is capable of detecting abnormal trajectories

that move off the paths. Then with more complex and subtle

relations pursued at each stages, new abnormal events with

longer time periods, more structures and involving more ob-

jects are detected. This framework is closely related with a

previous work for texture modeling known as the FRAME

model [16] learned by minimax entropy principle. In this

work, we extend the FRAME model to learning inhomoge-

neous Markov model in G, which has a dynamic graphical

configuration instead of a fixed neighborhood. In section

4, we test the learned model as dynamic prior of a particle

filtering tracking algorithm. Moreover, we present a novel

abnormality measure definition in section 5. The abnormal-

ity of a sub-graph g given its neighborhood ∂g is defined

as a log-likelihood ratio test between g and expectation of

learned model, which is estimated by importance sampling.

Finally, we demonstrate that the algorithm is able to detect

abnormal events such as object moving off road, several ob-

jects hit each other and traffic rule violation with the learned

whole scene contextual motion model.

Toward the objective of modeling object event in a scene,

previous work mainly falls into three categories. One school

models the geometric, topological and semantic structures

of the scene by clustering features of trajectories over many

objects. Wang and Grimson [13] proposed a clustering

method based on spatial feature of trajectory together with

object features to learn semantic regions (i.e. sources,

sinks and paths). Such methods discard the temporal in-

formation of trajectories, and thus fail to model interactive

event between multiple objects. The second school models

the object event as a sequence of states and their transla-

tions. Stauffer and Grimson [12] extracted feature proto-

types from tracked objects and classified activities by hier-

archically clustering the prototypes using the co-occurrence

statistics of the prototypes within a track. Abnormal be-

haviors are detected by measuring the deviation from the

learned prototype density and the co-occurrence statistics.

In [11], the author proposed a Propagation Networks based

representation of the events, which integrates both temporal

and logic order relationships of the events. Nguyen, et al.[7]

utilized the Hierarchical Hidden Markov Model to charac-

terize the hierarchic and shared structure of complex events.

Recently, Hakeem et al.[3] proposed a method to learn the

dependencies between sub-events and cluster the detected

sub-events in novel videos by N-cut algorithm according to

the pre-learned dependencies. Another school uses a ex-

emplar based approach to model the events [10, 15, 4]. A

common character is that they define the pre-observations as

exemplars and try to compose the new-come video by ex-

emplars to determine their abnormality. For example, Irani

et al. decompose existing observations into regions as the

exemplars. Zhong et al.[15] use the pre-observed video clip

features as prototypes. And Jiang et al.[4] model each ob-

served trajectory by a 5 state HMM and cluster them as pro-

totype models. To deal with variance in events, Chellappa

et al.[2] use a star diagram representation to model events.

The star diagram consists of several epitomes and are seg-

mented based on linear kinematic assumption. Another in-

teresting work worth mention here is [9] by Rosario et al.,

they proposed a synthetic system that mimic human activi-

ties, which simulate our work. But they employ no statistic

model or learning mechanism, which is the major strength

of our work.

2. Representation and Formulation
2.1. Sources, Sinks and Paths

For far-field traffic surveillance scene, semantic structure

refers to source(entry), sink(exit) area and paths of vehicle

and pedestrian. Given a training video sequence with tra-



jectories of objects labeled manually, semantic regions can

be learned from the object trajectories by a clustering tech-

nique proposed by Wang et al. [13]. For example, in Figure

2, there are 8 paths of vehicles and 5 paths of pedestrians

marked with different color. To cancel the perspective ef-

fects of slanting view, we adopt a 3D calibration technique

based on ground plan assumption [6], which enables us to

project the scene to a bird-eye-view by holographic trans-

formation.

Considering a traffic surveillance video clip denoted by

I[0, τ ] as an image sequence on a 2D lattice Λ in a dis-

crete time interval [0, τ ] = {0, 1, . . . , τ}, let Iobs[0, τ ] be

an observed video sequence. We denote the state of an

object in the sequence at time t by π(t). We denote ob-

ject state with π = (X,B), where X = (x, y) is the spa-

tial coordinates of the object, B denotes its bounding box.

Commonly, an object moves from a source to a sink fol-

lowing a path. Let C[tb, te] be the trajectory of an ob-

ject: C[tb, te] = (c, l, {π(t)|t = tb, tb+1, . . . , te}), where

[tb, te] ⊂ [0, τ ], tb and te represent for the object’s birth and

death frame respectively, c denotes the type of the object

(i.e. car, bus or pedestrian) and l denotes the path the object

is following. The birth event is governed by a probability:

PB(C) = PB(tb, c, l)PB(X|c, l) = PB(tb, c, l)N (X; Θ(c, l))

where birth point is characterized with a 2D Gaussian

distribution and PB(tb, c, l) can be represented in a non-

parametric form using Parzen windows. [14]. Similarly, the

death event of a given trajectory is governed by a Gaussian

distribution.

2.2. The Graph Representation for Trajectories

Assume there are K trajectories in a video sequence, we

define the points of the ith trajectory at frame t as graph

nodes: V = {vi(t) : i = 1, 2, . . . ,K; t ∈ [tbi , t
e
i ]}. A num-

ber of spatial, temporal and functional relations is defined

between the nodes in V to form a graph with colored edges

where the color indexes the type of relations.

Definition 1 A Trajectory Graph G consists of a set of

nodes and a number of relationsR:

G = 〈V,R〉
The node set V = {vi(t) : i = 1, 2, . . . ,K; t ∈ [tbi , t

e
i ]},

where v = (π, c, l), K is the number of trajectories. The re-

lations R = {r1, r2, ..., rN(R)} represents a set of directed

or undirected links among a subset of nodes (sub-graph)

g ⊂ V . Each relation is defined as a function rk = ψk(gk)
of each node’s attributes.

An example of relation library is illustrated in Figure 1,

which has been divided into four categories:

Rs: Relation between moving objects and semantic re-
gions in a scene. Defined over nodes from a single trajec-

A flat graph at time t

Figure 3. Illustration of a trajectory graph. Left: observed image

sequence; Middle upper: a graphic view of the trajectory graph

in (x,y,t) coordinate. Trajectories are represented by colored lines,

Graph nodes are points in the trajectories. Middle lower: projec-

tion onto (x,y) plane, which is the common view of object track.

Lower right is a slice of the trajectory graph, which denotes spatial

relations between objects in a frame.

tory. Rs = {rdist}, represents for the distance from a tra-

jectory to the “central line” of its corresponding path using

a modified Hausdorff distance [5]. The central line is the

most visited track of a path, computed by averaging all tra-

jectories.

Rc: Relation between several frames of a single ob-
ject. Defined over nodes from a single trajectory. Rc =
{rspeed, racc, rsmth}. rspeed represents a histogram of the

speed of a object at each frame. racc represents by a his-

togram of object accelerations at each frame. rsmth repre-

sents for histogram recording the absolute value of direction

angle change at each frame.

Rf : Pair-wise relation between objects in same frame.

Defined over nodes in a frame. A flat graph is dynamically

computed to represent for the spatial relationships between

objects. Whether two nodes are linked or not is decided

by their relative distance. (See Figure3) The Rf is com-

puted over linked nodes. Rf = {rped
ped, r

ped
veh, r

veh
veh}. For

pedestrian, we use one histogram for relative distances. For

vehicle, we use n = C2
3 histograms representing for com-

bination of relative directions (e.g. back-to-front, etc.).

Re: Relation accounting for interaction between multi-
ple objects in a time period. Defined over nodes form n
trajectories (n � 1). We only exploit one type ofRe in this

paper: revent, which is a 1(·) function measuring whether

there are events that pedestrians and cars are moving across

a crosswalk at the same time period. Crosswalks are la-

beled from the training video.(This definition can be easily

extended to similar events such as car tailgating and so on)

2.3. Stochastic Models on the Trajectory Graph

We define a probability model p on the G. It combines

both the birth/death events that affects the topological struc-

ture of the graph model and the MRF relations between



graph nodes that represent the object interactions.

We use a probabilistic model in Gibbs form to integrate

the birth/death events of a Gand the Markov relations be-

tween graph node:

p(G;β,R) =
1

Z(β)
exp{−ε(G)} (1)

where ε(G) is the total energy,

ε(G) =
K∑

i=1

βi(ω(Ci)) +
∑

rk∈R(G)

βk(ψk(gk)) (2)

The model is specified by a number of parameters β
and the relations set R. The first term defines the topo-

logical events of the G (i.e. birth/death events of objects).

In a not-too-busy scene, the object’s birth/death event can

be assumed to be independent with each other. There-

fore, the first term can be written as a summation. βi() is

a function accounts for the parameters of PB() and PD()
of each trajectory ω(Ci). (Since PB() is represented non-

parametrically by Parzen windows, thus βi() is a vector-

ized weighting function corresponding to each bin of the

histogram). The second term are typical Markov relation

energy defines over the all relations in a trajectory graph.

It models the spatial, temporal and event-level constraints

between trajectory graph nodes.

This model can be derived from a maximum entropy

principle under two types of constraints on the statistics of

training data ensembles. One is to simulate the birth/death

patterns (frequency, position, path, etc.) in the training data,

and the other is to match the constraint statistics between

objects, such as speed, relative position. β is the set of pa-

rameters in the energy,

β = {βi(), βk();∀i ∈ (1, 2, . . . ,K),∀k ∈ R}.

Each β() above is a potential function, not a scalar, and is

represented by a vector through discretizing the function in

a non-parametric way, as it was done in the FRAME model

for texture [16]. Therefore, we can rewrite function (2) as:

ε(G) =
∑
α∈R

〈βα, Hα(c)〉 (3)

where c is a clique of nodes related with relation α, H(.) is

a vectorized function represent statistic property of c. The

partition function is summed over all trajectory graph. Z =
Z(β) =

∑
G exp{−ε(G)}

3. Learning the Prior Model
Given annotated training set sampled from an underlying

distribution f governing the motion patterns of object in the

observed video sequence Iobs[0, τ ] (suppose the τ is large

enough for the motion pattern form an ensemble):

Dobs = {(Gobs
i ) : i = 1, 2, . . . , N} ∼ f(G)

Gobs are from interactive labeling method mentioned in

Section 1. The objective is to learn a model p which ap-

proaches f by minimizing a Kullback-Leibler divergence.

p∗ = arg minKL(f‖p)
= arg min

∑
G∈ΩG

f(G) log
f(G)

p(G;β,R)
. (4)

This is equivalent to the ML estimate for the optimal rela-

tionR and parameters β,

(R, β)∗ = arg max
N∑

i=1

log p(Gobs
i ;β,R).

Learning the probability model includes two phases and all

these phases follow the same principle above.

1. Estimating the parameters β from training data Dobs

for givenR
2. Learning and pursuing the relation setR of G.

In the following, we discuss the two phases respectively.

3.1. Maximum Likelihood Learning of β

For a given relation set R, the estimation of β
follow the MLE learning process. Let L(β) =∑N

i=1 log p(Gobs
i ;β,R) be the log-likelihood, by setting

∂L(β)
∂β = 0, we have the following two learning steps.

1. Learning the βk() at each trajectory k ∈ (1, 2, . . . ,K)
accounts for its topological events (birth/death).

∂�(β)
∂βk

= 0
leads to the following statistical constraints,

Ep(G;β,R)[h(A(Ck))] = hobs
k ,∀k ∈ (1, 2, . . . ,K). (5)

In the above equation, A(Ck) are the vectorized func-

tion represents for the death/birth events parameters,and

h(A(Ck)) is a statistical measure of the parameters, such

as the histogram. hobs is the observed histogram pooled

over all trajectories in DobsG .

2. Learning the potential function βα() for each relation

rk ∈ R.
∂�(β)
∂βa

= 0 leads to the following implicit function.

Ep(G;β,R)| h(ψk(gk))| = hobs
gk
, ∀rk ∈ R (6)

In the above equation, ψk(gk)are the attributes of gk and

h(ψk(gk)) is a statistical measure of the attributes, such as

the histogram. hobs
gk

is the observed histogram pooled over

all the subset of gk in DobsG .
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Figure 4. Information measure during the pursuit iterations.

Dashed line is the observed frequency of each relation. dotted

line is the Mahalanobis distance between hsyn and hobs. Solid

line is the information gain (KL divergence between p+ and p).

R1=rdist, R2=rspeed, R3=rsmth, R4=racc, R5=rveh
veh , R6=rveh

ped ,

R7=rped
ped , R8=revent. Relations with both large Mahalanobis dis-

tance and high observed frequency are selected first.

The equations (5) and (6) are the constraints for deriv-

ing the Gibbs model p(G;β,R) in equation (1) through the

maximum entropy principle.

Due to coupling of the energy terms, equations (6) are

solved iteratively through a gradient method. In a gen-

eral case, we follow the stochastic gradient method adopted

in [16], which approximates the expectations Ep(G;β,R) in

equation (6) by sample means from a set of synthesized ex-

amples.

3.2. Learning and Pursuing the Relation Set R
Besides the learning of parameters β, we can also aug-

ment the relation setsR in a trajectory graph, and thus purse

the energy terms in
∑

(i,j)∈Es
βij(νi, νj) in the same way

as pursuing the filters and statistics in the texture modeling

by the minimax entropy principle [16].

Suppose we start with an empty relation set R = ∅
thus p = p(G;β, ∅). The learning procedure is a greedy

pursuit. In each step, we add a relation r+ to R and

thus augment model p(G;β,R) to p+(G;β,R+), where

R+ = R∪ {r+}.
r+ is selected from a large pool ΔR so as to maximally

reduce KL-divergence,

r+ = arg maxKL(f‖p)−KL(f‖p+)
= arg maxKL(p+p). (7)

Thus we denote the information gain of r+ by

δ(r+) � KL(p+‖p)
≈ fobs(r+)dmanh(hobs(r+),hsyn

p (r+)). (8)

In the above formula, fobs(r+) is the frequency that rela-

tion r+ is observed in the training data, hobs(r+) is the

histogram for relation r+ over training data Dobs, and

hsyn
p (r+) is the histogram for relation r+ over the synthe-

sized trajectory graphs according to the current model p.

dmanh() is the Mahalanobis distance between the two his-

tograms.

Intuitively, δ(r+) is large if r+ occurs frequently and

tells a large difference between the histograms of the ob-

served and the synthesized trajectory graphs. Large infor-

mation gain means a significant relation r+. We refer reader

to [16] for more detailed description of the algorithm. Fig-

ure 4 shows how the information gain, observe frequency

and Mahalanobis distance changes along the pursuing pro-

cess to the scene described in Figure2.

4. Extended Particle Filter Tracking

X1X2 Xm

Y1Y2 Ym

g1 gm+1
Predict

Ym+1

Xm+1

Figure 5. Graphical model for extended particle filter tracking,

similar to m-order Hidden Markov Model

Following the general probabilistic framework [1, 8], we

formulate a color-based tracking problem by a graphical

model illustrated in Figure 5. We denote the target states

and image observations in each frame by Xt and Yt, where

Xt = (d1
t , d

2
t , ..., d

n
t ), di

t = (x, y) are the locations of all the

objects at time t. g denotes the state space withinm frames:

gt = (Xt, Xt+1, ..., Xt+m−1). Here we assume g is a

stationary random process p(gt|G[0:t−m]) = p(gt|gt−m),
which is true when m is large (100 frames in our experi-

ments). In [8], the ‘scale’ of tracking bounding box is a

variable to be estimated. In our method, however, objects’

real world position can be recovered from 2D image using

a geometrical calibration method [6] and an object’s scale

is simply associated with its location. The tracking problem

can be formulated as an inference problem with the predic-

tion prior p(gt|gt−m) given by the learned model. We have

p(gt|Y[0:(t+m−1)]) ∝ p(Y[t:(t+m−1)]|gt)p(gt|Y[0:(t−1)])

p(gt|Y[0:(t−1)]) =
∫
p(gt|gt−m)p(gt−m|Y[0:(t−1)])dgt−m

where p(Y[t:(t+m−1)]|gt) represent the measurement of ob-

servation likelihood (as in [8]), which is a Bhattacharyya

distance between the HSV color histograms of the observed

object and the reference model.

The state space of g is extremely high (128n×m if (x,y) is

discretized to a [128 × 128] grid) comparing with common

particle filtering algorithms (e.g. approximately 1285 × n



Input subgraph g*
(with abnormality)

G

g y

t
x

gm

frame=t+1

t

p*/p

Sample frame subgraph g Trajectory graph

Get subgraph 
g from G
with sliding 
window

i) 

Sample m 
particles g1, 
g2, ..gm from 
learned model 
with p(gi|G) 
as weight

ii) 

Compute likelihood 
ratio between test 
graph g* and sample 
mean from g 
p(g*|G)/p(g|G) as 
abnormality measure

g2g1frame=t

iii) 
�

w1 w2 wm

A spatial-temporal heat 
map for abnormality

Figure 6. Diagram of sequential importance sampling and abnor-

mal event detection

in [8]). But our method is still computationally achievable,

due to the reason that our prediction model p(gt|gt−m) is

very close to the true distribution of p(gt|Y ). Thus it is

much more effective than a general Markovian dynamics.

In practice, we achieve good tracking results (see figure 8)

by maintaining only 50 samples (particles).

5. Abnormal Event Detection
We propose a measure to detect any abnormal sub-graph

g and identify the part of g that is wrong or violating the

traffic regulations, i.e. show that part of g by color (green

segments are good, red segments are bad). We have two

observations:

(i) whether g is abnormal or not, we need to view g in the

context/boundary condition ∂g which is a neighborhood of

around g;

(ii) the abnormality is a hypothesis testing problem, we

need a ”null” model for comparison. Simply computing the

conditional probability p(g|∂g;β) won’t be right. As we

know, when you have a big g, the probability is small, then

it is hard to decide on a threshold for different g.

We choose the null model as p(G;βo), for example, βo =
0 for the uniform distribution. Therefore we consider the

ratio of two conditional probabilities.

r(g|∂g) =
p(g|∂g;β)
p(g|∂g;βo)

=
Z(βo)
Z(β)

exp{〈βo − β, h(g|∂g)〉}
(9)

(Note that we use the vectorized representation given by

equation (3) to facilitate computation). This ratio will give

us the correct normalization for ”how abnormal” the behav-

ior of g is.

The key issue here is to estimate the ratio
Z(βo)
Z(β) . We

estimate it by importance sampling. To do so, we need to

choose a reference model p(G;βref) and simulate a number

of samples from it gi ∼ p(g|∂g;βref), i = 1, 2, ..., N.
Then we have

Z(βo)
Z(β)

=

∑
g exp{−〈βo, h(g|∂g)〉}∑
g exp{−〈β, h(g|∂g)〉}

=

∑
g p(g|∂g;βref) exp{〈βref − βo, h(g|∂g)〉}∑
g p(g|∂g;βref) exp{〈βref − β, h(g|∂g)〉}

≈
∑N

i=1 exp{〈βo − βref , h(gi|∂g)〉}∑N
i=1 exp{〈β − βref , h(gi|∂g)〉}

Note that we replace the expectation with respect to the ref-

erence model by the sample mean using the samples from

the reference model. As the reference model could be any-

thing, the key to make the approximation above accurate

is that the samples from the reference model overlaps with

both models βo and β. In other words, gi, i = 1, 2, ..., N
from model βref should be also ”typical” for βo and β.

Usually, if g is large, this approximation is hard to be

accurate (e.g. in texture case g will be a patch of images in

hi-dimension), it should work well for small g which is true

in our case. We choose βref = β the real probability (or the

true probability from training data). Plug in, we have

1
r(g|∂g) =

p(g|∂g;βo)
p(g|∂g;β)

=
exp{〈β, h(g|∂g)〉}

1
N

∑N
i=1 exp{〈β, h(gi|∂g)〉}

Or we look at the log-ratio

− log r(g|∂g) = 〈β, h(g|∂g)〉

− log
1
N

N∑
i=1

exp{〈β, h(gi|∂g)〉}.

if g is abnormal, then r(g|∂g) ≈ 0, or− log r(g|∂g) >> 1
That is,

〈β, h(g|∂g)〉 − θ >> 1,

θ = log
1
N

N∑
i=1

[exp{〈β, h(gi|∂g)〉}].

Suppose all the samples have similar (or the same en-

ergy) according to β, we can simplify it as

θ ≈ 〈β, h(gi|∂g)〉

So, the energy of g is much larger than the typical energy of

gi (which are sampled from β and are normal).



Background Stage 0 Stage 1 Stage 2 Stage 3

Figure 7. Synthesizing results during the relation pursuit. The upper image of the 1st column is the image background to be synthesized.

The lower plot shows the information gain according to learning stages. Stage 0: Random motions with no relation constraint. The upper

image is the initial frame and the lower image is a synthesized frame (same for the rest columns). Stage 1: Synthesized motion with

relation [R1-R4] (Definition see figure 4). Stage 2: Synthesized motion with relations [R1-R7]. Stage 3: Synthesized motion with all

relations.

6. Experimental Results
6.1. Experiment I Learning and Synthesizing

We select two traffic surveillance video sequences to test

our learning algorithm. Each training video clip is about

30 minutes long and contains about 1,000 objects. The ob-

jects are labeled manually. Figure 7 shows synthesized sam-

ples from one scene at several stages during the relationship

pursuit process. At first the vehicles and pedestrians move

randomly around the image following a uniform distribu-

tion. At the second stage, relations between moving ob-

jects and sources, sinks and paths of the scene are added,

which force the objects to move along the tracks, but can-

not prevent them from going too fast or colliding into each

other. After the speed and pair-wise relations are added, the

objects no longer move erratically or hit each other but we

can observe cases when vehicles and pedestrians pass cross-

walks at the same time. After all the relations are pursued,

one can see that the vehicles and pedestrians are no longer

moving together.

6.2. Experiment II Object Tracking

We test the proposed tracking method on a challenging

surveillance scene and compare the results with the color-

based particle filter tracking algorithm described in [8]. The

initialization of the particle filter algorithm is given by the

ground-truth. Figure8 shows the comparative tracking re-

sults for one scene. In this video, only cars are initialized

and therefore tracked. We observe that the common parti-

cle filter algorithm often quickly collapses to one mode and

discards all other modes, therefore fails to track two simi-

lar cars after being occluded for a long time period. In the

mean time, our algorithm keeps all the modes because the

prior term does not allow cars to collide, thus our algorithm

does not confuse two similar cars. The overall tracking per-

formance is evaluated by a pixel level precision-recall curve

shown in the right part of Figure 8.

6.3. Experiment III. Abnormal Event Detection

Since abnormal events are very rare in observed data,

we use three kinds of methods to generate abnormalities:

i. tracking failing results (e.g. moving off road, abnormal

speed, direction. etc.) ii. collision caused by randomly

added trajectories iii. manually added abnormal events such

as traffic rule violations. In total, we generate a testing

Gwith 5000 trajectories. As the abnormal event detection

is performed by sliding a window on GFigure6, we Then

we derive the ground-truth by sliding a sub-window (50

frames) on Gand manually label whether there are abnormal

events contained. Then we perform the abnormal detection

as described in Figure 6. Figure9 shows the detection re-

sults with abnormal trajectories marked with red lines and a

ROC-curve for these detections.

7. Conclusion and Future Work

We have presented a novel framework for learning mo-

tion patterns from observed video sequences and show its

ability to detect abnormal behaviors involving multiple ob-

jects. The results of sampling this model and using this

model for object tracking and abnormal event detection

show that it is very useful as prior knowledge of the scene

for tracking and object event analysis
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Figure 8. Tracking result and comparison. First row: Tracking results with common particle filter method; Second row: Tracking results

using particle filter with learned scene contextual prior. Only cars are initialized, therefore the bus and van in the video are not tracked.
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