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Abstract

In this chapter we present a method for learning a compositional
model in a minimax entropy framework for modeling object categories
with large intra-class variance. The model we learn incorporates the
flexibility of a stochastic context free grammar (SCFG) to account for
the variation in object structure with the neighborhood constraints of
a Markov random field (MRF) to enforce spatial context. We learn
the model through a generalized minimax entropy framework that ac-
counts for the dynamic structure of the hierarchical model. We first
learn the SCFG parameters using the frequencies of object parts, then
pursue spatial relations in order of greatest information gain. The
learned model can generalize from a small set of training samples
(n < 100) to generate a combinatorially large number of novel in-
stances using stochastic sampling. To verify our learning method and
model performance, we present plots of KL divergence minimization
as the algorithm proceeds, and show that samples from the model
become more realistic as more spatial relations are added. We also
show the model accurately predicting missing or undetected parts for
top-down recognition along with preliminary results showing that the
model can learn a large space of category appearances from a very
small (n < 15) number of training samples. This process is similar
to “recognition-by-components”, a theory that postulates that biolog-
ical vision systems recognize objects as composed from a dictionary
of commonly appearing 3D structures. Finally, we discuss a composi-
tional boosting algorithm for inference and show examples using it for
object recognition.

This article is a chapter from the book Object Categorization: Computer and Hu-

man Vision Perspectives, edited by Sven Dickinson, Aleš Leonardis, Bernt Schiele,
and Michael J. Tarr (Cambridge University Press).
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1 Introduction

Modeling object categories is a challenging task due to the many structural variations
between instances of the same category. There have been many non-hierarchical ap-
proaches to modeling object categories, all with limited levels of success. Appearance

based models, which represent objects primarily by their photometric properties, such
as global PCA, KPCA, fragments, SIFTs, and patches [18, 19, 25, 27], tend to disregard
geometric information about the position of important keypoints within an object. Thus,
they are not well-suited for recognition in scenarios where pose, occlusion, or part re-
configuration are factors. Structure based models, which include information about
relative or absolute positions of features, such as the constellation model and pictorial
structures [8, 10, 27], are more powerful than appearance based approaches as they can
model relationships between groups of parts and thus improve recognition accuracy, but
are rarely hierarchical and, as such, cannot account for radical transformations of the part
positions.

Very recently there has been a resurgence in modeling object categories using gram-
mars [14, 23, 32]. Work by Fu[11, 30] and Ohta[20] in the 70’s and 80’s, and later by
Dickinson and Siddiqi [6, 15, 22] introduced these grammars to account for structural
variance. Han[13] and Chen[3]used attributed graph grammars to describe rectilinear
scenes and model clothes, but these models were hardcoded for one category of images.

Many of the problems in previous approaches come from lack of a good definition for
object category that captures what is invariant between instances of the same class. We
define an object category as an equivalence class where the object parts and their relations
to one another are the invariants that make instances in the same category equivalent.
Bikes always have wheels, clocks always have hands, and these parts are always related
similarly to one another. We can capture the variation in these commonalities through a
constrained compositional model that defines the set of instances for each object category.

From a human vision persepctive, the work we present is similar in concept to the
theories put forth by Biederman [1] about how biological vision systems recognize objects.
In his Recognition by Components theory, Biederman postulates that objects are repre-
sented by compositions of 3D objects called “geons”. These simple, repeatable geons can
be combined under different deformations to form a vast number of complicated objects.
Our representation is a similar, though more general, theory of recognizing objects as
compositions of parts related by spatial and appearance relationships.

In this chapter we provide a way to generalize the minimax entropy framework to learn
such a model for objects with dynamic structure. This model combines a SCFG to capture
the variance and hierarchy of object parts with the relational constraints of an MRF. This
framework accounts for the dynamic structure of the model, in which constraints may not
always exist from instance to instance, by pursuing relations according to their frequency
of occurrence. The MRF constraints that we add to the SCFG match two main statistics
of the model:

1. The frequencies of part ocurrences

2. The statistics on the spatial layouts of parts.

We also discuss an inference algorithm called compositional boosting that can recursively
detect and compose object parts to identify whole objects even in the presence of occlusion
or noise.
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Figure 1: (a) An example of an “And-Or Graph”. And nodes must decompose into
all of their children, while Or nodes can only decompose into one. Constraints are
shown as horizontal lines. (b)“Parse graphs”, which are each one walk of the model.
(c)“Configurations”, which consist only of terminal nodes and any constraints they inher-
ited.

2 Representation

The model we learn for object categories is a combination of a SCFG and an MRF, referred
to as an “And-Or Graph” 1. This model is like a language for an object category where
parts of the object are analogous to words and parts of speech in language, and relational
constraints model the context between them [3]. Figure 1(a) shows an example of an
And-Or graph. An object is created by starting at the root of the graph and expanding
nodes until only terminals remain, as in a SCFG. Node expansions in this structure can be
thought of as “And” nodes, where one node expands into multiple nodes and “Or” nodes,
which can only choose one of their child nodes to expand into. For example, node S is an
And node, and expands into nodes A and B, which in turn are Or nodes and will only
decompose into one child each. Figure 1(a) is a visualization of the following grammar

S → AB C → GH F → 6
A → C | D D → 4 G → 1
B → E | F E → 5 H → 2 | 3

The horizontal line between A and B represents a relational constraint. These con-
straints do not influence the node expansion, but act a posteriori on the selected nodes to

1The And-Or graph was previously used by Pearl in [21] for heuristic searches. In our
work, we use it for a very different purpose and should not be confused with Pearl’s work.
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Figure 2: Visualization of possible pairwise relationships to be learned in the And-Or
graph.

constrain their features, e.g. appearance. The constraints are inherited by any children of
constrained nodes as well.

We define a parse graph pg as an instance drawn from the model, which is analogous
to a sentence diagram in natural language. Figure 1(b) shows some parse graphs from
our example model. The Or nodes are determined during a walk of the graph, fixing
the parts, so only And nodes remain. We also define a configuration C, which is sim-
ply the constrained parts from the parse graph with hierarchical information removed.
This is equivalent to a sentence in natural language, and Figure 1(c) shows examples of
configurations from our example.

This compositional model can be formalized as the tuple

Gand−or =< VN , VT , S,R,P > (1)

VN = V Or ∪V And is the set of all non-terminal nodes, consisting of both the And and Or
nodes. We define a switch variable ω(v) for v ∈ V or, that takes an integer value to index
its child node.

ω(v) ∈ {∅, 1, 2, ..., n(v)} (2)

VT represents a set of terminal nodes producable by the model. S is the root node that all
instances start from. Together, these variables form the grammar structure of the model.

R = {r1, r2, . . . , rn(R)} is a dictionary of relationships between nodes. Each relation-
ship can be thought of as a filter that operates on a set of nodes V , producing a response
Φi = ri(V ). These responses can be pooled over a number of parse graphs G to create
histograms that can be used as node constraints. The type of relationship will likely differ
based on whether it is defined for one, two, or more nodes. Fig. 2 visualizes a set of
relationships that could be used to augment an And-Or graph.

Altogether these variables form a language for an object category, L(G), that can
produce a combinatorial number of constrained object configurations.

Fig. 3 shows a parse graph for the bike category. For notational convenience, we
denote the following components of a parse graph pg:

• T (pg) = {t1, ..., tn(pg)} is the set of leaf nodes in pg. For example, T (pg) =
{1, 3, 5} for the parse graph shown at the top of Fig. 1(c).

• V or(pg) is the set of non-empty Or nodes that are used in pg. For instance, the
left-hand parse graph in Fig. 1(b) has V or(pg) = {A, B, H}.

• E(pg) is the set of links in pg.

The probability for pg takes the following Gibbs form,

p(pg; Θ,R, ∆) =
1

Z(Θ)
exp{−E(pg)} (3)
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Figure 3: A parse graph of a bike. Nodes are composed via certain relations to form the
representation of the bike.

where E(pg) is the total energy,

E(pg) =
∑

v∈V or(pg)

λv(ω(v)) +
∑

t∈T (pg)∪V and(pg)

λt(α(t)) +
∑

(i,j)∈E(pg)

λij(α(vi), α(vj)) (4)

The model is specified by a number of parameters Θ, the relations set R and the vocabulary
∆. The first term in the energy is the same as that of a SCFG. It accounts for how
frequently each Or node decomposes a certain way. The second and third terms are
typical singleton and pair-clique energy for graphical models. The second term is defined
on the geometric and appearance attributes α() of the image primitives, while the third
term models the compatibility between the attributes of two related nodes.

This model can be derived using the maximum entropy principle under two types of
constraints on the statistics of a training set. One constraint matches the frequency at
each Or node, like a SCFG, and the other matches the relation statistics, such as the
histograms modeling relative appearance or co-occurrence. Θ is the set of parameters in
the energy,

Θ = {λv(), λt(), λij(); ∀v ∈ V
or

, ∀t ∈ VT , ∀(i, j) ∈ R}. (5)

Each λ() above is a potential function, not a scalar, and is represented by a vector created
by discretizing the function in a non-parametric way, as was done in the FRAME model
for texture [33]. ∆ is the vocabulary for the generative model. The partition function is
summed over all parse graphs in the And-Or graph Gand−or

Z = Z(Θ) =
∑

pg

exp{−E(pg)}. (6)
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3 Learning and Estimation with the And-Or Graph

Suppose we have a set of observed parse graphs that follow f , the true distribution gov-
erning the objects.

D
obs = {(Iobs

i ,pg
obs
i ) : i = 1, 2, ..., N} ∼ f(I,pg). (7)

The parse graphs pgobs
i are from a ground truth database or other labeled source. The

objective is to learn a model p which approaches f by minimizing the Kullback-Leibler
divergence KL(f ||p). This is equivalent to the ML estimate for the optimal vocabulary
∆, relation R, and parameter Θ.

Learning the probability model includes two phases, both of which follow the same
principle above.

1. Estimating the parameters Θ from training data Dobs for given R and ∆,

2. Learning and pursuing the relation set R for nodes in G given ∆.

3.1 Maximum Likelihood Learning of Θ

For a given And-Or graph hierarchy and relations, the estimation of Θ follows the MLE
learning process. Let L(Θ) =

∑N

i=1 log p(Iobs
i ,pgobs

i ; Θ,R, ∆) be the log-likelihood. By

setting ∂L(Θ)
∂Θ

= 0, we have the following two learning steps.
1. Learning the λv at each Or node v ∈ V or. The switch variable at v has n(v)

choices ω(v) ∈ {∅, 1, 2, ..., n(v)} and is ∅ when v is not included in the pg. We compute
the histogram hobs

v (ω(v)) in all the parse graphs in Ωobs
pg . Thus,

λv(ω(v) = i) = − log h
obs
v (ω(v) = i), ∀v ∈ V

or
. (8)

This is simply the sample frequency for the Or node decompositions, as shown in [4].
2. Learning the potential functions λt() at the terminal node t ∈ VT and λij() for

each pair relation (i, j) ∈ R. ∂L(Θ)
∂λt

= 0 and ∂L(Θ)
∂λij

= 0 lead to the statistical constraints,

Ep(pg;Θ,R,∆)[h(α(t)] = h
obs
t , ∀t ∈ VT (9)

Ep(pg;Θ,R,∆)[h(α(vi), α(vj))]] = h
obs
ij , ∀(i, j) ∈ R. (10)

In the above equation h() is a statistical measure of the attributes of the nodes in question,
such as a histogram pooled over all the occurrences of those nodes in Ωobs

pg . The λ pa-
rameters, when learned, will weight the h histograms so that p(pg; Θ,R, ∆) is normalized
correctly.

The equations (8), (9) and (10) are the constraints for deriving the Gibbs model
p(pg; Θ,R, ∆) in equation (3) through the maximum entropy principle.

Due to the coupling of the energy terms, equations (9) and (10) are solved iter-
atively through a gradient method. In a general case, we follow the stochastic gradient
method adopted in learning the FRAME model [33], which approximates the expectations
Ep[h(α(t))] and Ep[h(α(vi), α(vj))] by sample means from a set of synthesized examples.
This is the method of analysis-by-synthesis adopted in our texture modeling paper [33].
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3.2 Learning and Pursuing the Relation Set

In addition to learning the parameters Θ, we can also augment the relation set R in an
And-Or Graph, thus pursuing the energy terms in∑

(i,j)∈E(pg) λij(α(vi), α(vj)) in the same way as filters and statistics were pursued in

texture modeling by the minimax entropy principle [33].
Suppose we start with an empty relation set R = ∅, creating a parse graph with just

its SCFG componenent defined, p = p(pg; λ, ∅, ∆). We define a greedy pursuit where,
at each step, we add a relation e+ to R and thus augment model p(pg; Θ,R, ∆) to
p+(pg; Θ,R+, ∆), where R+ = R∪ {e+}.

e+ is selected from a large pool ∆R so as to maximally reduce KL-divengence,

e+ = arg max KL(f ||p) − KL(f ||p+) = arg max KL(p+||p), (11)

Thus we denote the information gain of e+ by

δ(e+)
def
= KL(p+||p) ≈ f

obs(e+)dmanh(hobs(e+),hsyn
p (e+)). (12)

In the above formula, fobs(e+) is the frequency that relation e+ is observed in the training
data, hobs(e+) is the histogram for relation e+ over training data Dobs, and hsyn

p (e+) is
the histogram for relation e+ over the synthesized parse graphs according to the current
model p. dmanh() is the Mahalanobis distance between the two histograms.

Intuitively, δ(e+) is large if e+ occurs frequently and creates a large difference between
the histograms of the observed and the synthesized parse graphs. Large information gain
means e+ is a significant relationship.

4 Experiments on Learning and Sampling

We tested our learned model on 24 categories of objects, shown with representative samples
in Figure 5. Categories were selected from the Lotus Hill Database [29], and between 40
and 60 training instances were collected for each category. The training data for each
image consisted of the labeled boundaries of a pre-determined set of object parts. The
object parts were selected by hand for each category (e.g. a teapot consists of a spout,
base, handle, and lid) and outlined by hand. Each part category consists of about 5
- 10 different types (e.g. round handles vs. square handles), which are also selected
by hand. Our dictionary of relationships ∆R consists of the following relations: (aspect
ratio, relative position, relative scale, relative orientation, overlap). Aspect ratio is the one
singleton relationship, while all other relationships are measured over pairs of parts. When
initializing the learning algorithm, we measure each relationship across every possible pair
of parts. For an object category consisting of k parts and a dictionary of m singleton
relationships and n pairwise relations, the algorithm begins with a pool of m∗k+n∗( k(k−1)

2
)

potential relationships.
Learning By Random Synthesis Figure 4 shows samples drawn from the model at

each stage of the relationship pursuit in 3.2. At each stage, a new relationship was added
and the parameters were estimated using the process in 3.1. Figure 4 shows this process
for the clock and bicycle categories. The initial samples are wild and unconstrained, while
the objects appear more coherent as relationships are added. Figure 5 shows samples
from the learned model for 24 different object categories. We can see that the samples are
perceptually equivalent to their category examples, even if slightly different on a part-by-
part basis.
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Figure 4: Samples from p during each stage of the relationship pursuit. Objects become
more coherent as new relationships are added.
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Figure 5: Twenty-four object categories with high intra-class variability and their cor-
responding samples.
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Figure 6: The learned And-Or graph for the bicycle category, showing the relationships
added between pairs of nodes.
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Prediction Error

Pursuit Iteration

Figure 7: Top-down prediction of missing parts at each stage of the relationship pursuit.
A neighborhood of parts is fixed and the remaining parts are Gibbs sampled. The accuracy
of the prediction is measured by the Thin-plate-spline + affine transformation needed to
move the predicted part to its true position. We can see that this energy decreases
drastically as we add more relations to the model.

Figure 6 shows the And-Or graph that was learned for the bicycle category and the
relationships that were added to pairs and single parts. We can almost see causal chains
appearing in the relationships learned (the frame constrains the chain’s position and scale,
which in turn constrains the pedal’s position and scale). Each part decomposes into one of
a number of terminals. These terminals could be represented by an appearance model for
each part, though in our case we used exemplars from the initial dataset, scaled, oriented,
and positioned to create new object configurations.

Predicting Missing Parts Using Learned Model The sampling process can be
used to provide top-down proposals for inference. Figure 7 shows the results of removing
the wheel, frame, and handle bars from a perfect sketch of a bike and predicting the true
part positions at each stage of the learning process. The missing parts of the structure are
first reintroduced, and then their constraints are sampled for 100 iterations. The model
with few constraints does not yield good results, while the full model predicts the part
locations perfectly, as shown overlaid in the original image. The error is measured as the
sum of the thin-plate-spline deformation energy [2] and affine energy needed to move the
predicted part to its true location, and is shown in the last column. This shows that the
compositional model provides strong top-down cues for part positions and appearances,
and can predict the presence of parts that are occluded, missing, or had weak bottom-up
cues for recognition and detection tasks.

Small Sample Set Generalization Due to the consistency of many of the percep-
tual similarities between objects in the same class, e.g. relative position, we can learn our
model from a very small sample set. Fig. 8 shows samples drawn from the model learned
from just 6 training instances. Despite there being so few training instances, their parts
can be reconfigured and adjusted according to the model to produce radically different
instances. Note that the part configurations and appearances in the samples differ greatly
from those in the training set, yet the objects are still coherent. This is useful for recog-
nition tasks, where new instances can be recognized despite not appearing in the training
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Figure 8: Demonstration of the model’s generalizability. The model learned from only
6 training instances can produce the varied samples below.

data. One can also generate large amounts of training data for discriminative tasks using
this model, learned from a small, easily obtained set of images. Such an experiment was
done comparing recognition results using two different datasets. The first was fully hand-
collected, while the second consisted of hand-collected data and samples generated from
our model. The latter classifier showed a 15% improvement over solely hand-collected
data, likely because there were more varied data samples available in the second dataset
[16]. Further work is being done on this topic.

5 Inference with the And-Or-Graph

This section contains a brief introduction to our compositional inference algorithm for rec-
ognizing objects by parts. We refer readers to [13, 32, 17] for a more detailed explanation.

Given an input image I, we would like to compute a parse graph pg that maximizes
the posterior probability

pg
∗ = arg max

pg

p(I|pg; ∆sk)p(pg; Θ, ∆). (13)

The likelihood model is based on how well the terminal nodes match the image, and
the prior is defined by the grammar model in equation 3. In our implementation, our
likelihood model follows that of the primal sketch [12].

Because the And-Or graph can be defined recursively, so too can the inference al-
gorithm, which largely simplifies the algorithm design and makes it easily scalable to
arbitrarily large number of object categories. This algorithm is known as a compositional

boosting algorithm [28].
Consider an arbitrary And node A. Let us assume that A can be decomposed into

n(A) = 3 parts, or can just terminate at a low-resolution version of itself.

A → A1 · A2 · A3 | t1 | · · · | tn. (14)

This recursive unit is shown in Fig. 9.
This representation borrows from some common concepts in artificial intelligence [21].

An Open List stores a number of weighted particles (or hypotheses) generated by bottom-
up detectors for A. A Closed List stores a number of instances for A which have been
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open list (weighted particles for hypotheses)

closed list (accepted instances)

Figure 9: Data structure for the recursive inference algorithm on the And-Or graph.

accepted in the top-down process. These instances are nodes in the current parse graph
pg.

The bottom-up process creates the particles in the Open lists using two methods.
(i) Generating hypotheses for A directly from images using bottom-up processes,

such as Adaboosting[9, 26] or Hough transforms, to detect various terminals t1, ..., tn.
The weight of a detected hypothesis is the logarithm of some local marginal posterior
probability ratio given a small image patch Λi,

ω
i
A = log

p(Ai|IΛi)

p(Āi|IΛi)
≈ log

p(Ai|F (IΛi))

p(Āi|F (IΛi))
= ω̂

i
A. (15)

Ā represents a competing hypothesis. For computational effectiveness, the posterior prob-
ability ratio is approximated using local features F (IΛi) rather than the image IΛi .

(ii) Generating hypotheses for A by binding k of A’s children from the existing Open
and Closed lists. The binding process tests the relationships between these child nodes for
compatibility and quickly rules out obviously incompatible compositions. The weight of
a bound hypothesis is the logarithm of some local conditional posterior probability ratio.
Suppose a particle Ai is bound from two existing parts Ai

1 and Ai
2 with Ai

3 missing, and
Λi is the domain containing the hypothesized A. Then the weight will be

ω
i
A = log

p(Ai|Ai
1, A

i
2, IΛi)

p(Āi|Ai
1, A

i
2, IΛi)

= log
p(Ai

1, A
i
2, IΛi |Ai)p(Ai)

p(Ai
1, A

i
2, IΛi |Āi)p(Āi)

(16)

≈ log
p(Ai

1, A
i
2|A

i)p(Ai)

p(Ai
1, A

i
2|Ā

i)p(Āi)
= ω̂

i
A.

where Ā represents a competing hypothesis.
The top-down process validates the bottom-up hypotheses in all the Open lists fol-

lowing the Bayesian posterior probability. During this process it needs to maintain the
weights of the Open lists.

(i) Given a hypothesis Ai with weight ω̂i
A, the top-down process validates it by com-

puting the true posterior probability ratio ωi
A stated above. If Ai is accepted into the

Closed list of A then the current parse graph pg moves to a new parse graph pg+. In
a reverse process, the top-down process may also select a node A in the Closed list and
either delete it (putting it back into the Open list) or disassemble it into independent
parts.
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Figure 10: The combination of bottom-up and top-down influences for detecting an
occluded bicycle (presented in [17]).

(ii) Given two competing hypotheses A and A′ which overlap in a domain Λo, accepting
one hypothesis will lower the weight of the other. Therefore, whenever we add or delete a
node A in the parse graph, all the other hypotheses whose domains overlap with that of
A will have to update their weights.

The acceptance of a node can be performed using a greedy algorithm that maximizes
the posterior probability. At each iteration, the particle whose weight is the largest among
all Open lists is accepted. This continues until the largest weight is below a certain
threshold.

6 Experiments on Object Recognition Using the

And-Or Graph

We apply our inference algorithm to five object categories – clock, bike, computer, cup/bowl,
and teapot. Fig. 10 shows an example of inferring a partially occluded bicycle.

In Fig. 10. The first row shows the input image, an edge map, and bottom-up detec-
tion of the two wheels using a Hough transform. The second row shows some top-down
predictions of bike frames based on the two wheels, sampled from the learned MRF model.
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Figure 11: Recognition experiments on 5 object categories (presented in [17]).

The third row shows the template matching process that matches the predicted frames
(in red) to the edges (in blue) in the image. The frame with minimum matching cost is
selected. The fourth row shows the top-down hallucinations for the seat and handlebar
(in green), which are randomly sampled from the And-Or graph model.

Fig. 11 shows recognition results for the five categories. For each input image, the
image on the right shows the recognized parts from the image in different colors. It should
be mentioned that the recognition algorithm is distinct from most of the classification
algorithms in the literature. It interprets the image as a parse graph, which includes the
classification of categories and parts, matches the leaf templates to images, and halluci-
nates occluded parts.

Some recent work was done to show the accuracy of our method versus common
recognition and classification techniques in [17]. This work uses our methodology for
learning but includes additional experimental results for the inference algorithm. In this
work, our model was trained on the categories of rear car and bicycle and these models
were used to recognize objects in the Lotus Hill Database [29] as well as the Caltech 101
dataset [7]. Figure 12 shows the results of this experiment. Our model was compared
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Figure 12: ROC curves for recognizing bicycles (from the LHI dataset) and rear-cars
(from the Caltech 101 dataset). Our model outperforms a HOG-based SVM and Adaboost
on bicycles and PBT and SIFT-based boosting for rear-cars (presented in [17]).

against a HOG-based SVM [5] and a Haar-feature-based Adaboost model [26]. One can
see that our model performs much better than either of these two methods. For the
Caltech 101 dataset, we trained our model and ran it against a Probabilistic Boosting
Tree [24] as well as a SIFT-based boosting method [31], both of which performed worse
than our grammar-based approach.

7 Summary

In this chapter we have discussed a minimax learning algorithm for a compositional model
of object categories. The grammar structure of this model accounts for the variability of
part configurations, while the relational cosntraints at each level capture the variability
of part appearances. Samples drawn from the model are visually similar to the training
data, yet novel instances can be created from even very small training sets. With the use
of compositional boosting, objects can be reliably recognized and parsed in new images
as well. Our algorithms are similar to theories of recognition in the human-vision system
and yield encouraging results for the implementation of part-based recognition theories
for biological vision. These are promising results and we plan to continue studying using
grammars for representing visual knowledge.
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