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Abstract

This paper presents a method to quantitatively evaluate
information contributions of individual bottom-up and top-
down computing processes in object recognition. Our ob-
jective is to start a discovery on how to schedule bottom-
up and top-down processes. (1) We identify two bottom-up
processes and one top-down process in hierarchical mod-
els, termed α, β and γ channels respectively ; (2) We for-
mulate the three channels under an unified Bayesian frame-
work; (3) We use a blocking control strategy to isolate the
three channels to separately train them and individually
measure their information contributions in typical recogni-
tion tasks; (4) Based on the evaluated results, we integrate
the three channels to detect objects with performance im-
provements obtained. Our experiments are performed in
both low-middle level tasks, such as detecting edges/bars
and junctions, and high level tasks, such as detecting hu-
man faces and cars, together with a group of human study
designed to compare computer and human perception.

1. Introduction
In object detection and recognition, hierarchical mod-

els and contextual information are widely used [20, 5, 8],
and there are two types of computing processes for them:
bottom-up and top-down processes [20, 12, 11, 1]. The
main objective of this paper is to numerically evaluate in-
formation contributions for individual bottom-up process
and top-down process and start to discover how to schedule
them in different vision tasks. We identify two bottom-up
processes and one top-down process in hierarchical model,
and propose to (1) separately train their models through a
blocking strategy, (2) quantitatively evaluate their individ-
ual information contributions in typical recognition tasks,
and (3) integrate them for performance improvements.

In the literature, bottom-up and top-down processes are
studied with three main kinds of viewpoints: (i) pure
bottom-up feed-forward computing, such as works from
Poggio’s group at MIT [5] and many detection methods
such as AdaBoost [14], (ii) pure top-down computing, such

as template matching [18], and (iii) one pass of bottom-up
followed by a top-down phase in a separate manner, such
as DDMCMC [11], compositional boosting algorithm [15],
compositional detection method [19] and recent active ba-
sis model [16]. The pure bottom-up methods are fast but
often local and ambiguous, and the pure top-down meth-
ods can be global but too slow in searching solution space.
Optimally combining them is a desired way and remains a
long-standing problem in vision [12]. Recent cognitive and
neuroscience experiments do show that in human percep-
tion bottom-up and top-down seem to operate in a complex
interactive way [9]. But in order to mimic that with com-
puter algorithm, we think that one key step is to numerically
evaluate how much information individual bottom-up pro-
cess and the top-down process would contribute for various
objects and datasets, respectively.

This paper studies bottom-up and top-down comput-
ing processes in the hierarchical And-Or graph (AoG)
representation[20] as an example, and we hope the results
obtained here can be generalized for other types of (hierar-
chical) representations. An AoG can be represented by a
graph G =< V, E > where V represents a set of nodes and
E a set of edges linking the nodes. A portion of the AoG of
human faces is illustrated in the right panel of Fig.1 (a). Let
A be a node in V representing the object-of-interest such
as face, eye, head-shoulder, etc. In Fig.1 (a), we study the
human face node (A = human faces) and consider how to
detect faces in the image shown in the left panel of the fig-
ure. As illustrated by the arrows in three colors in the figure,
we can define three computing ways for node A:

Definition 1: (the α-channel). node A can be de-
tected alone without taking advantage of surrounding con-
texts while its children or parts are not recognizable alone
in cropped patches. Those faces in Fig.1 (b) can be detected
in this channel.

Definition 2: (the β-channel). some of node A’s child
nodes can be recognized in cropped patches while node A
itself (also without surrounding contexts included) is not
recognizable alone mainly due to occlusions. We can de-
tect those faces in Fig.1 (c) by binding their parts such as
eyes and/or nose whose α channels are on.
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(a) Left panel: human faces often appear in images with scale and occlusion variations. Right panel: A hierarchical representation for “face” in 
which the and channels  are defined for faces (see text for details). Each other node has its own and channels.

(b) channel: face as a whole and recognition is directly 
based on the patch by extracting a set of image features. 
(Although being occluded a little, of the last one is on)

(c) channel: face as an incomplete combination 
of its parts because of occlusion and recognition is 
performed by binding its detected parts.

(d) -channel: face as a part of its parent such as 
head-shoulder because of too low resolution and 
recognition is by predicting from detected parent.
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Figure 1. Illustration of the α, β and γ computing channels. In (a), the left panel is a typical image for human faces, and the right panel is a
portion of the And-Or graph [20] for human faces. For the human face node, three computing channels can be defined as illustrated by the
arrows in red, blue and green colors respectively. The three computing channels handle different types of image data, such as the human
face as a whole in (b) for the α-channel, as an incomplete combination of parts in (c) for the the β-channel and as a part of its parent in (d)
(see texts for their definitions and details).

Definition 3: (the γ-channel). node A can not be recog-
nized alone in isolation, so does its parts, mainly due to too
low resolution, but it can be recognized through its detected
parent nodes. Here, we let the parent node pass the context
information, such as information from some sibling nodes.
Those faces in Fig.1 (d) can be predicted from some parents
such as the head-shoulder whose α-channel was on.

The α and β channels are bottom-up processes and the
γ-channel is a top-down process. They all contribute to the
detection of node A, for example, face detection in Fig.1
(a). In the hierarchical AoG, each node has its own α, β
and γ channels, and the definitions of the three channels
are recursive. In computing, each channel has two states,
”on” or ”off”. The root node’s γ channel and all leaf node’s
β channels are always off. Intuitively, the three processes
can be formulated as three kinds of conditional probabilities
modeling different types of image data as the faces shown
in Fig.1 (b), (c) and (d).

The motivations of this paper are in three-fold: (1) it
would be computationally impossible to apply the three
channels of all the nodes in an AoG in detection tasks with
the sliding window technique, especially when the AoG was
big, so it entails scheduling orders among them, (2) differ-
ent object categories in different (task-dependent) datasets
would have different computing orders which must be eval-

uated before the testing stage in order to improve perfor-
mance and speed up computing, and (3) we hope the method
presented here can be applied to various object categories
and datasets to explore information contributions therein.

For an overview, some results obtained in this paper are:
(1) Strong β-channel in low-middle vision tasks, we test

the α and β channels for detecting five generic image pat-
terns, say, flat/homogenous region, edge/bar, L-junction,
T/Y/arrow-junction and cross-junction, and the evaluated
information contributions show that the β-channel con-
tributes much more to detect them than the α-channel as
shown in Fig.4.

(2) In high level vision tasks, human faces have strong α-
channels while cars seem to have strong β-channels mainly
because of occlusions of car in street and the strong α chan-
nel of the wheel. The results are shown in Fig.6 and Fig.7.
This may help us explain that why the AdaBoost method in
[14] works very well on frontal faces but not yet as effective
on other objects such as cars.

(3) The three channels contribute differently under differ-
ent tasks due to scale changes and occlusions. We evaluate
their information contributions at multiple scales and un-
der different kinds occlusions as the results shown in Fig.4,
Fig.6 and Fig.7.

(4) Performance improvements are obtained by integrat-



ing the three computing channels. Because objects can ap-
pear in images at different scales and with different degree
of occlusions, this entails the integration of the three chan-
nels for better recognition rates. Some improvements ob-
tained in our experiments shown in Fig.4, Fig.6 and Fig.7.

2. Evaluating the α, β and γ channels

2.1. Isolating the α, β, γ channels

In order to measure their information contributions in-
dividually, we need to separately train the three channels
through isolating the three channels of node A. We do that
through scaling and masking the image patches with respect
to node A:

(1) Isolating the α-channel. The γ-channel is turned off
by cropping image patches of node A out of its context, as
the face patches shown in Fig.1 (b), and the image patches
are down-sampled up to some suitable scales at which the
parts, if cropped in isolation, can not be recognized, thus
the β-channel be blocked.

(2) Isolating the β-channel. The γ-channel is blocked
through cropping the compact image patches of node A.
The α-channel is blocked by adding suitable occlusions
onto some parts, as the face patches shown in Fig.1 (c). But
some parts are recognizable alone, if cropped.

(3) Isolating the γ-channel. For this aim, it is to only
remain the contexts of node A in its image patches, as the
face patches shown in Fig.1 (d).

2.2. Measuring the information contributions

In general, we denote the α, β and γ channels as test-
ing functions, T (), to define their information contribu-
tions. Let D+(A) be a set of positive images of node A
and D−(A) a set of negative images. Based on the isolat-
ing strategy stated above, we can separately generate train-
ing and testing datasets for the three channels from D+(A),
say, D+

α (A) , D+
β (A) and D+

γ (A). The training and infer-
ence algorithm is addressed in Sec.3. Here, we present the
method to measure the information contributions.

Definition 4: (Information Contributions (IC)). The
information contribution of testing function T () is mea-
sured by the uncertainty reduction after applying T () in its
testing datasets D+ and D−. We denote D+

T and D−T as the
result datasets after testing.

Let q(D+ ∪ D−), q+
T (D+

T ) and q−T (D−T ) be the popu-
lation distribution of positive and negative samples in the
original dataset and the two datasets after testing, respec-
tively. Therefore, their entropies can be calculated, denoted
as H(q), H(q+

T ) and H(q−T ).
The uncertainty is defined as the product of the popula-

tion size and the entropy, so the information contribution is

measured by,

IC(T ) =(|D+|+ |D−|)×H(q)

− |D+
T | ×H(q+

T )− |D−T | ×H(q−T ) (1)

The information contribution defined in Eqn.1 is empirical.
In our experiments, we use this measurement in both com-
puter experiments and human study to compare computer
and human perception. In the literature, an alternative ap-
proach from some theoretical viewpoints for measuring T ()
is studied in [1].

3. Implementing the α, β and γ channels

3.1. Problem formulation

Given a node A in the AoG, it can be represented by a
graph GA =< VA, EA >, where VA = V P

A ∪{A}∪V C
A cor-

respond to the parent node(s), A itself and the child nodes,
and EA = E

�
A∪E↔A represent vertical decomposition edges

and horizontal spatial relation edges. More details about the
AoG is referred to [20].

Given an input image I , the task is to detect all the
instances of each node in VA and output their parse
graphs pgA by maximizing a posterior probability under the
Bayesian framework,

pg∗A = arg max
pgA

p(pgA|I) = arg max
pgA

p(I|pgA)p(pgA)

(2)

where p(I|pgA) is the likelihood model and p(pgA) the
prior. The likelihood model is based on the primal sketch
model [20] and the prior can be modeled by stochastic con-
text free grammar [2, 20];

Above, as all information in I about node A can be di-
vided into the α, β and γ channels, I would be equivalently
represented by their corresponding proposal maps, denoted
as α(A, I), β(A, I) and γ(A, I), respectively. Then, we
would instead maximize,

pg∗A = arg max
pgA

p(I|pgA)p(pgA)

= arg max
pgA

p(α(A, I), β(A, I), γ(A, I)|pgA)p(pgA) (3)

where α(A, I), β(A, I) and γ(A, I) are independent given
pgA, so p(α(A, I), β(A, I), γ(A, I)|pgA) can be factorized
into p(α(A, I)|pgA)p(β(A, I)|pgA)p(γ(A, I)|pgA).

Next, we first separately train the α, β and γ channels,
then evaluate their information contributions as stated in
Sec.2. Based on the training and evaluating results, we can
integrate the three channels in Eqn.3 to do inference for per-
formance improvements.



3.2. Training the individual α, β and γ channels

The training data preparation is as stated as in Sec.2.1
and Sec.2.2. For node A, we have three types of positive
datasets, D+

α (A), D+
β (A) and D+

γ (A) for training the α,
β and γ channels separately. Negative images D−(A) are
collected hugely as a common dataset. The same process
can be prepared for any node v ∈ V P

A ∪ V C
A .

3.2.1 Training the α channel

For each image patch Iα ∈ D+
α (A), its β and γ channels

are blocked, so β(A, Iα) = Φ and γ(A, Iα) = Φ. Then,
we have pgA = {A} and α(A, Iα) = F (Iα) where F (Iα)
could be a set of image features such as responses of a filter
bank [14] or Gabor wavelets [16] directly computed on the
image patch Iα.

pg∗A = {A}∗ = arg max
pgA

p(pgA|α(A, Iα))

≈ arg max log
p(A|F (Iα))
p(A|F (Iα))

= arg max log
p(F (Iα)|A)p(A)
p(F (Iα)|A)p(A)

(4)

where A represents competitive hypotheses and p(A)

p(A)
is of-

ten treated as a constant. That is what the AdaBoost method
[14] and the active basis model [16] have done.

The α channel of each node in VA is trained and evalu-
ated. Given a observed image Iobs, for each v ∈ VA, we
could generated its proposal map α(v, Iobs).

Next, before training the β and γ channel for node A, we
first train the α channels of its parent node(s) vP ∈ V P

A and
its child nodes vC ∈ V C

A .

3.2.2 Training the β channel

For each image patch Iβ ∈ D+
β (A), its α and γ channels

are blocked, so α(A, Iβ) = Φ and γ(A, Iβ) = Φ. For
any v ∈ V C

A , we can compute the proposal map α(v, Iβ),
training the β channel of node A is to find the meaningful
alignments of its child nodes captured by deformable part
models [2, 16, 18, 20]. Here, we have β(A, Iβ) =< eu,v ∈
E
�
A, u, v ∈ V C

A > and pgA =< v ∈ V C
A >, so,

pg∗A =< v ∈ V C
A >∗= arg max

pgA

p(pgA|β(A, Iβ))

= arg max
pgA

p(E�A|V C
A )p(V C

A )

= arg max
pgA

∏

eu,v

p(eu,v|α(u, Iβ), α(v, Iβ))
∏

t∈V C
A

p(α(t, Iβ))

(5)

Here we can train different β(A, Iβ) in terms of the dataset
D+

β (A) in which the α channels of different v ∈ V C
A turn

on and others are blocked. Then we evaluate these different
compositions of child nodes.
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Figure 2. (a) is a two layer And-Or graph representation for flat
region, edge/bar, L-, T/Y- and cross junction. (b) shows some pos-
itive examples and (e) shows their frequencies counted in training
dataset. Here, flat regions and edges/bars are treated as leaf nodes,
so a L-junction is composed by two edges and two regions, and so
on. (c) and (d) illustrate the α and β channels. The α-channel is
based on statistics of response of a filter bank and the β-channel
uses explicit binding model as in [15].
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T/Y/arrow-junc
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Figure 3. One example of detection results of the five low-middle
level primitives in our experiments.

3.2.3 Training the γ channel

The γ channel can be trained in the same way as training the
β channel of the parent node(s) of node A using the dataset
D+

γ (A) and D−(A) due to the recursive definition of the
three channels.

4. Experiments

4.1. Five primitives at low-middle level vision

Regions, including flat region, texture region, etc., and
sketches, including edgelet, bar, different kinds of junc-
tions, etc., are two complementary kinds of groups of prim-
itives in representing image at low-middle level vision [15]
or as building blocks for high-level objects [16]. In our first
experiment, we evaluate five primitives: flat/homogenous



(b)  ROCs of in red and in blue for L, T/Y/arrow and cross junctions respectively

(0.04 0.94)
(0.05 0.90)

(0.02 0.95)

(a)  Information contributions (IC) evaluated for the five low-level elements.

Figure 4. The information contributions and testing ROCs. (a) The evaluation of information gain are performed under three scales 10×10,
20×20 and 30×30. The red lines are for α-channels, blue for α + β-channels and green for α + γ channels. The square points represent
the evaluated results of computer algorithm and circle points for results obtained in human perception. (b) We also plot the testing ROCs
for the three kinds of junctions with red curves for α-channel and blue for α + β channel. The performance of human on ROCs is point
plotted as square points in the figure.

texture region, edge/bar, L-junction, T/Y/arrow-junction
and cross-junction as shown in Fig.2 (b).

The data and the frequency. A set of 200 natural images
from LHI image database [17] is used in which the sketches
and regions are manually labeled, and randomly divided
into two equal subsets as training and testing datasets.
Based on the labeled perfect sketches and region segmenta-
tions, the frequency of the five nodes are counted in training
dataset using the method in [6, 20], as shown in Fig.2 (e).
The order of the frequency are very intuitive.

Training and testing. We model the five elements with
the AoG representation as shown in Fig.2 (a). We learn
the α-channel models for each node where four region pro-
cess are used as in [11], the classifiers for edge/bar and the
other three junctions are, as illustrated in (c), trained us-
ing feature statistics (local histograms) of filter responses,
such as first and second derivative Gaussian filters, LoG
(Laplacian of Gaussian) filters, DoG (difference of Gaus-
sian) and elongated DooG (different of offset Gaussian),
all being extracted at 3 scales and 15 orientation (if had).
The β-channels are, as illustrated in (d), based on active ba-
sis model [16] to do explicit binding from edges/bars and
region processes to junctions, similar to the approach in
[15]. In testing, in order to handle rotations (except region

processes), the algorithm searches different angles (15 ori-
entations) for α-channel and for β-channel the algorithm
firstly selects a proposed edge/bar, then searches the others
(edges/bars and regions) in the allowed range of activities
(say, the range of relative angles) to do binding.

The results: strong β binding property at the low-middle
level vision. Fig.4 shows the calculated information contri-
butions of the three channels of the five nodes, which clearly
indicates that the strong β-channel at the low-middle level
by both computer algorithm and human perception experi-
ments. In addition, the ROCs also justify this point.

4.2. Faces and cars at high level vision

In our second experiment, we test human faces and cars
which are two of the most studied patterns in the literature
[14, 16, 13, 3, 7]. Fig.7 (c) shows the face detection results
for Fig.1 (a) using the same features and AdaBoost method
in [14], which only work well on the frontal faces whose α
channels are on.

The data. Here, we need the data with ground truth for
both objects and their parts, and we found the data from
LHI database [17] which fits the requirement. For faces,
we get training data from LHI dataset and use MIT+CMU



dataset [3] as testing set. For cars (side view at the present),
both training and testing data are from LHI dataset, and in
testing data, different degree of occlusions and smoothing
operations are randomly added to explicitly test the β and γ
channels.

Training and testing. Given the AoG in Fig.5, we learn α
channels for each node using the AdaBoost method in [14]
and the active basis model in [16], both are trained under
three scales. The learnt active basis models are shown in
the Fig.5. For the β channel, we learn the conditional ge-
ometric models as β binding models on attributes such as
the relative locations, scales and orientations, as illustrated
in Fig.5, which will be used to bind the hypotheses of parts.
For the γ channel, we use head-shoulder as the parent node
for human face node and learn its predicting model also ex-
pressed in a conditional geometric model as illustrated in
Fig.5 (a), for cars, we do not test its γ channel at the present
because the data we have are not the natural setting for cars,
such as cars in street scenes [10, 4].

The results. Human faces have a strong α channel, but
under occlusions, the β-channel would help a lot, and un-
der too low resolutions such as in video surveillance, the
γ channel would dominate. On the contrary, cars have a
strong β channels binding from the wheel, especially to-
gether with windshield. In real situations, the image data
include different kinds of scale changes and occlusions, en-
tailing the integration of the three channels as shown by
the explored information contributions and also the perfor-
mance improvements by the integration of the three chan-
nels in Fig.7.

5. Conclusion
This paper numerically evaluates information contribu-

tions of individual bottom-up processes and top-down pro-
cesses. We identify two bottom-up processes and one top-
down process in the hierarchical And-Or graph representa-
tion, termed α, β and γ computing channels respectively.
We separately train their models by a blocking strategy and
individually measure their information contributions in typ-
ical vision tasks such as detecting junctions, human faces
and cars. Based on the evaluated results, we integrate the
three computing channels in our detection experiments with
performance improvements obtained. This work is starting
to discover how to schedule bottom-up and top-down pro-
cesses in object recognition in the on-going works, and we
hope that the proposed method can be generalized to vari-
ous objects and datasets.
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