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Abstract

This article proposes a method for learning object tem-
plates composed of local sketches and local textures, and
investigates the relative importance of the sketches and tex-
tures for different object categories. Local sketches and lo-
cal textures in the object templates account for shapes and
appearances respectively. Both local sketches and local tex-
tures are extracted from the maps of Gabor filter responses.
The local sketches are captured by the local maxima of Ga-
bor responses, where the local maximum pooling accounts
for shape deformations in objects. The local textures are
captured by the local averages of Gabor filter responses,
where the local average pooling extracts texture informa-
tion for appearances. The selection of local sketch vari-
ables and local texture variables can be accomplished by
a projection pursuit type of learning process, where both
types of variables can be compared and merged within a
common framework. The learning process returns a genera-
tive model for image intensities from a relatively small num-
ber of training images. The recognition or classification by
template matching can then be based on log-likelihood ra-
tio scores. We apply the learning method to a variety of
object and texture categories. The results show that both
the sketches and textures are useful for classification, and
they complement each other.

1. Introduction
There has been large amount of work on designing im-

age features to represent visual patterns of different types.
Primitive features (e.g. [7]) explicitly record locations of
edges/bars and are good features for image patches of clean
object boundaries. We may generally call them sketch fea-
tures. In contrast, texture patches tend to be better described
by histogram features (e.g. [5], [1]). In terms of object
recognition, sketch features are shown to work well on ob-
jects with regular shapes, while histogram features seem
more suitable for complex objects with small inner struc-
tures and moderate deformations.

We propose a model for mixed templates learnable from

example images, where each constituent component of a
template is a sub-template for a local patch inside the tem-
plate image lattice. “Convolving” the template on an im-
age provides a response vector on which we can build our
statistic model. In the hedgehog example of Fig.1, the im-
age is decomposed into two types of local patches: those
with strong edges lying on the object boundaries that tend
to be described by image primitives, and those with clut-
tered structures that are described by local histograms. Im-
age sketches and local histograms compete to explain dif-
ferent local patches of the images.

To learn such a mixed template for a certain image cat-
egory, we may use discriminative methods or generative
models. In many recent papers (e.g. [8][11][14][6]) feature
combination is performed towards a discriminative goal by
concatenating long feature vectors and learning weights on
them. When there are a large number of categories with rel-
atively small number of training images, it is desirable to
have a generative learning framework, where the probabil-
ity density function of the image intensities can be written in
the form of a background density multiplied by a likelihood
ratio term. In such a framework, different types of features
are made comparable to each other by an information gain
criterion. We further constrain that the local sketches have
little overlap with each other, and so are the local textures.
Under such a constraint, the likelihood function can be fac-
torized to make possible a fast and robust estimation of the
model parameters and the normalizing constant. This may
generalize to many other image features.

The work closest to ours is the active basis model ([12]),
which learns a shape template composed of Gabor wavelet
elements at different locations. We extend this work to a
more general case by modeling both sketch patches and tex-
ture patches. We not only identify the commonly shared
sketches at different locations and orientations that have
strong responses across all the training images, but also
commonly shared textures at different locations, so that at
each location, the variance of the texture statistics across the
training images is small. Before learning the image tem-
plate, we make the training images roughly aligned.

Contribution. First, we propose a simple method for
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Figure 1. (a) A hedgehog image may be seen as a bunch of local image patches, being either sketches or textures. If a local patch I falls
within an ε-ball in the image space, i.e. I = cB + ε, where B is a geometric primitive and ε is the residual, then it is explained by the
primitiveB. If a local patch I falls within an ε-ball in the histogram feature space, i.e.,H(I) = h+ε, whereH is some histogram statistics,
then the local patch is explained by texture “prototype” h. (b) Quantization in the image space and histogram feature space provides a
primitive dictionary {B} and a texture dictionary {h} respectively, which compete to explain observed image patches. A mixed template
of hedgehog T = {B1,h2, B3,h4, · · · } is composed of sketches and histogram prototypes explaining local image patches at different
locations.

learning mixed templates composed of sketch and texture
variables and a common information theoretic criterion to
compare and merge these two different types of variables.
Second, we evaluate the strengths of sketch and texture vari-
ables and their complementarity by applying the learning
method to a variety of object and texture categories.

2. A uniform design of sketch and texture vari-
ables

In this paper we adopt a design where sketch and texture
features are both defined on Gabor filtered images (or S1
maps as in [10]). To fix notation, letO be a quantized set of
orientations, and Λ be the image lattice of a template.

Sketch by local maximum pooling. We use Gabor
wavelets as the primitive dictionary, and use Bx,y,o,s to de-
note the Gabor wavelet element located at position (x, y),
orientation o and scale s. Let Λj ⊂ Λ be a region inside
image template. Consider local image patch IΛj

centered at
(x, y) and explained by a Gabor wavelet element Bx,y,o,s
with an additive residual:

IΛj
= c ·Bx+∆x,y+∆y,o+∆o,s + ε,

where c denotes the coefficient, (∆x,∆y,∆o) are the lo-
cal perturbations of location and orientation of Bx,y,o,s.
The reason we need to incorporate (∆x,∆y,∆o) is that
the edge segments in the training images are not exactly
aligned, and there can be shape deformations.

Then the sub-template for local patch IΛj is the primitive
B, and we may define the sketch variable (feature response)
for IΛj

as

r(sk)(IΛj ; o, s) = max
∆x,∆y,∆o

s(|〈IΛj , Bx+∆x,y+∆y,o+∆o,s〉|2). (1)

where s() is a sigmoid-like transformation, i.e., a monotone
function that increases from 0 to a saturation level. The
response |〈IΛj , B〉|2 is normalized globally by the average
response over the whole image template lattice Λ. The local
maximum pooling is proposed by [10] as a possible function
of complex cells in V1.

Texture by local average pooling. A locally normal-
ized orientation histogram of Gabor responses describes the
relative frequency of edges at different orientations within
a local patch, without explicitly specifying where the edges
are. The orientation histogram pooled over the region Λj is
defined as:

H(IΛj ) = (h1, ..., h|O|),

where
∑
o ho = 1 and

ho ∝
∑

(x,y)∈Λj

s(|〈I, Bx,y,o,s〉|2).

We may entertain two types of texture variables (feature re-
sponses). One is simply

r(tex)(IΛj
; o, s) = ho,



which is similar to sketch variable in Eq.(1).
The other type is slightly more complex. If the local

image patch IΛj
is explained by a “prototype” orientation

histogram h with additive residual ε:

H(I) = h + ε,

then the texture sub-template for local patch IΛj is the pro-
totype orientation histogram h and we model how well h
explains IΛj

by the squared Euclidean distance

r(tex)(IΛj
) = ‖H(IΛj

)− h‖2. (2)

The connection between the above orientation histogram
and SIFT/HoG features is obvious. The orientation his-
togram computed at a small scale would resemble the
orientation histogram of gradients. Since the local ar-
eas to pool orientation histograms are subject to selection,
an image template made of orientation histogram features
(H(IΛ1), ...,H(IΛk

)) may be considered a customizable
version of HoG.

3. Learning mixed templates
We introduce the learning algorithm for extracting a

mixed template from example images {I1, ..., In}, where
each sub-template is either a Gabor wavelet element or
a prototype histogram. Let r1(I), ..., , rk(I) be the cor-
responding feature responses from image I, as defined in
Eq.(1) and (2). Our model is built on these responses.

3.1. Feature pursuit

Let f(I) be the target image distribution where positive
exmaples {I1, ..., In} are sampled from. Let q(I) be a ref-
erence image distribution, such as the uniform distribution
on all the natural images, from which we have a sample of
negative examples {J1, ...,JN}. The learning method se-
lects most informative features and construct a probability
density function p(I). Let r1(I), · · · , rk(I) be the responses
of selected features, in principle we would like to let our
model agree upon dimensions (r1, · · · , rk) with the target
distribution, i.e. p(r1, · · · , rk) = f(r1, · · · , rk), where
p(r1, · · · , rk) is the distribution of (r1, · · · , rk) under p(I),
and f(r1, · · · , rk) is the distribution of (r1, · · · , rk) under
f(I).

Among all such models {pk : pk(r1, · · · , rk) =
f(r1, · · · , rk)}, the one with minimum Kullback-Leibler
divergence to q would have the following form [9]:

pk(I) = q(I)λ(r1, ..., rk), (3)

where λ(r1, ..., rk) is the likelihood ratio,

λ(r1, ..., rk) , f(r1, ..., rk)/q(r1, ..., rk).

pk(I) is a modification of q(I) in the following sense. (1)
We change the distribution of r1, ..., rk from q(r1, ..., rk) to
f(r1, ..., rk). (2) We keep the conditional distribution of the
remaining dimensions given r1, ..., rk to be the same.

However, we cannot select all the features at once. So
we adopt the following sequentia0l pursuit scheme: We
start from the reference distribution p0(I) = q(I), and
at the j-step, we select a feature rj , so that pj(I) =
pj−1(I)pj(rj)/pj−1(rj), where pj(rj) is pooled from pos-
itive training images, and pj−1(rj) is the distribution of rj
under existing model pj−1(I). In each step, we choose
the feature rj so that the Kullback-Leibler divergence
K(pj(rj)‖pj−1(rj)) is the largest. K(pj(rj)‖pj−1(rj))
measures the information gain after adding the new feature
rj . It also measures the decrease in the divergence from the
true distribution f(I).

The above process is essentially a generalized version
of projection pursuit ([4]). We do not have to know
q(I) explicitly. Moreover, if we enforce that the se-
lected features have little overlap, then we may simply as-
sume that pj−1(rj) = q(rj) as an approximation. So
we only need to pool q(rj) from natural images. That
means the likelihood ratio can be factorized, and pk(I) =
q(I)

∏k
j=1 [pj(rj)/q(rj)].

3.2. Log-linear model

If the selected features have little overlap, we may as-
sume a factorized log-linear form for pk/q, so that:

pk(I) = q(I)
k∏
j=1

[
exp{λjrj(I)}z−1

j

]
,

where zj = Eq [exp{λjrj(I)}] is the normalizing constant
for the j-th term. And K(pk‖q) can be written as:

K(pk||q) =
k∑
j=1

(λjEp[rj ]− log zj). (4)

This suggests a step-wise algorithm that selects one feature
at a time, which maximizes the marginal KL divergence be-
tween pj(rj) and q(rj). q(rj) can be estimated off-line.

The template matching score (Fig.2) for any observed
image I is then

Score(I) = log
pk(I)
q(I)

=
k∑
j=1

(λjrj(I)− log zj), (5)

which can make binary decisions given a threshold.

3.3. Modeling sketch features

LetB be a Gabor wavelet explaining local patch Λj . The
marginal distribution p(r(sk)) = p(s(|〈IΛ, B〉|2)) is:

p(r(sk)) = q(r(sk)) exp{λr(sk)}z−1. (6)



(a) (b)
Figure 2. Template matching and template learning. (a) Matching the mixed template to a hedgehog image. Each component of the template
is matched to a local patch and produces a response r calculated for sketch and texture in Eq.(1) and (2) respectively. The mixed template
gives each observed image a template matching score that takes the form of log-likelihood ratio, which is a linear combination of individual
feature responses. (b) Learning the mixed template. The best template to explain a set of images {I1, ..., In} is the one that scores highest
on them, i.e., the one that achieves maximum likelihood. Sketch features and texture features compete to be better explanations for local
patches across image examples, and the information gain in Eq.(10)(14) measures their contributions to the template. By projecting image
patch IΛj to one dimensional response rj , we are able to get robust estimation for model parameter λj and the normalizing constant zj .

We need to find λ such that:

Ep[r;λ] = r̄ ,
1
n

n∑
i=1

r(Ii) ≈ Ef [r]. (7)

Given the log-linear form we are able search efficiently for
λ by a simple look-up table. For a grid of possible values of
λ: (λ(1), ..., λ(M)) in ascending order, we estimate their as-
sociated z’s and Ep[r]’s by importance sampling on a set of
random natural images (negative examples) {J1, ...,JN}:

z(l) ≈ 1
N

N∑
i=1

eλ
(l)r(Ji), (8)

Ep[r;λ(l)] ≈ 1
N

N∑
i=1

[
r(Ji)eλ

(l)r(Ji)
] 1
z(l)

. (9)

Then we look up r̄ in the table to find the best λ. This
Monte-Carlo approach is reasonable because in our design
r is one dimensional. So a moderate sample size would be
able to provide a robust estimate for z.

Following the above analysis, among all pairs of
(B,Λj), we select the one that has maximum information
gain, defined as the marginal KL divergence

gain(B,Λj) = K(p(r(sk))||q(r(sk)))

≈ 1
n

n∑
i=1

λ · s(|〈Ii,Λj
, B〉|2)− log z. (10)

where the estimation of λ and z is already explained. For a
sketch feature λ is positive, so the above information gain
selects the r(sk) with the largest sample mean.

3.4. Modeling texture features

The marginal distribution on r(tex) is:

p(r(tex)) =
1
z
q(‖H − h‖2)eλ‖H−h‖2 . (11)

h is an additional parameter. The optimal h∗ is obtained by
averaging over positive training images:

h∗ =
1
n

n∑
i=1

H(Ii). (12)

Although λ and the corresponding information gain can be
computed similarly to Eq.(10) (λ < 0 for texture feature),
in this paper, we simply assume the following Gaussian-like
form

p(r(tex)) =
1
z

1√
2πσ2

exp{− 1
2σ2

r(tex)}q(r(tex)), (13)

where σ2 is estimated by
∑n
i=1 ‖H(Ii)− h∗‖2/n, and z is

approximated by Monte Carlo method.
The information gain for a histogram feature (h,Λj) is

then defined as:

gain(h,Λj) = K(p(r(tex))||q(r(tex)))

≈ − log z − log
√

2πσ2 − 1
2σ2

1
n

n∑
i=1

‖H(Ii)− h‖2

= − log z − log
√

2πσ2 − 1/2. (14)

That histogram features with the least σ2 are more informa-
tive.



An alternative way to model the texture feature is

p(Ho(I)) = q(Ho(I)) exp{λo ·Ho(I)}z−1
o , (15)

where each orientation bin Ho(I) is treated as one feature
response. The learning of such a model may proceed simi-
larly as the learning of the sketch model.

3.5. Decouple sketch and texture by adaptive back-
ground

If we already include a local texture feature that de-
scribes a local patch, then if we want to add a lo-
cal sketch rj within the same patch, then in pj(I) =
pj−1(I)pj(rj)/pj−1(rj), the pj−1(rj) should account for
the local texture variable, in other words, we should let
pj−1(r) = q(r) exp(−λr)/z(λ) for some λ, so that Eλ(r)
matches the local average of the Gabor filter responses (af-
ter sigmoid transformation). pj−1 fitted in this way then
serves as an adaptive background model for the newly se-
lected sketch variable rj (Fig.3). In other words, we should
measure the local maximum against the local average, in
order to decouple sketch and texture.

Currently we adopt the adaptive background in our im-
plementation of template matching, where the averages are
pooled over either global or local image lattice for each
testing image, at different orientations. We then score the
strength of a sketch variable against this adaptive back-
ground in the testing stage.

Figure 3. Sketch arises from adaptive textural background. For
each image I, adaptive q’s are pooled over the Gabor responses for
different orientations. Such adaptive q’s capture texture informa-
tion in image I. Each p(r(sk)) is paired with an adaptive q(r(sk))
at the same orientation.

The stepwise learning algorithm for mixed image tem-
plates is described in table 1.

4. Experiment
4.1. Classification experiments

Single scale mixed templates. Firstly, we study the
sketch/texture combination for a single scale of Gabor ele-
ments in the context of classifying objects from background
clutters. In Fig.5, to compare the sketch-only, texture-only
and mixed templates, the area under ROC curve (AUC) is

Algorithm. Stepwise pursuit for sketches and textures.
Let template T = empty .
For each scale of Gabor filter s:

Compute maps of Gabor response for example images
Si(x, y, o) = s(|〈Ii, Bx,y,o,s〉|2)

Pursuit of sketch features:
Repeat:

(1) Select (x, y, o) with the largest mean response (locally
maximized): 1

n

∑n
i=1 max(x′,y′,o′)∈∂(x,y,o) Si(x′, y′, o′);

(2) Compute information gain by Eq.(10).
(3) Add (Bx,y,o,s, (x, y, o, s), gain) to T , and inhibit

nearby positions in each image: for image Ii find the de-
formed location (xi, yi, oi), then set Si(x′, y′, o′) = 0 if
(x′, y′, o′) is in a small neighborhood of (xi, yi, oi).

until gain is smaller than a threshold.
Pursuit of texture features:
For each radius δ of local region (to pool histogram):

(1) Compute maps of local histograms Hi(x, y, o) nor-
malized over orientations.

Hi(x, y, o) ∝
∑
|x′−x|<δ,|y′−y|<δ Si(x, y, o)

(2) Compute average histogram map H̄ ← 1
n

∑n
i=1Hi.

(3) Compute variance map:
V (x, y)← 1

n

∑n
i=1 ‖H(x, y, :)− H̄(x, y, :)‖2.

(4) Set inhibition map η(x, y) to be all zeros.
Repeat:

(5.1) Select the non-inhibited position (x, y) with small-
est variance V (x, y).

(5.2) Calculate information gain by Eq.(14).
(5.3) Add (H̄(x, y, :), (x, y, s, l), gain) to T , and inhibit

nearby positions by setting every η(x′, y′) = 1 if |x′−x| < l
and |y′ − y| < l.

until gain is smaller than a threshold.
Output:
The template T with components sorted by information gain.

Table 1. Stepwise pursuit for sketches and textures

averaged over cross validation runs and plotted against the
number of positive training examples.

We test on four categories: human head/shoulder, cat
head, swine head and hedgehog (each with about 100 pos-
itive examples) for binary classification versus a common
set of 600 random negative images. We resize images to
have an area of about 120 × 120 pixels while keeping the
aspect ratio unchanged. Both sketch and texture features
are represented by Gabor filters of 17 × 17 pixels. And
for Gabor filters we use the same parameters as in [12].
Sketches are allowed to move 6 pixels at most and π/15
in orientation. The radius of local texture is 10 pixels.
When we fit the adaptive background model pj−1(r) for
sketch features (see sec.3.5), we pool from a local neigh-
borhood of the same radius. An threshold of 0.4 is used
as a stopping criterion for both sketch and texture fea-



tures. The selected Gabor filters are enforced to overlap
no larger than a threshold (|〈Bi, Bj〉|2 < 0.1). Local his-
tograms are also only allowed to overlap 25% of the area
(|Λi ∪ Λj | < 0.25 max(|Λi|, |Λj |)).

Among the four categories the first two are relatively
easy (AUC ≈ 99%), and the rest are of moderate difficulty.
The combined model (mixed template) is able to provide a
significant improvement over sketch/texture-only templates
for all the four categories in terms of AUC on the testing
data (for most of the training sample sizes). We also ex-
perimented with a log linear model on H(I) (Eq.15) with
local adaptive background for sketch features as explained
in section 3.5, which gives competitive results to its Gaus-
sian counterpart (Eq.11).

To see which sketch and texture features are selected
and why they complement with each other, we display the
learned mixed templates from 10 examples in Fig.6 for pig
head and hedgehog, and their matching results on the train-
ing examples.

Multi-scale mixed templates. We also extend the ex-
periments to mixed templates on multi-scales Gabors and
100+ image categories. The dataset includes 60 object cat-
egories and 41 homogeneous texture categories. Part of the
categories are selected from Caltech-101([3]) and CUReT
texture database ([2]). The dataset is made reasonably diffi-
cult by object categories easy to confuse, e.g., 18 categories
of animal faces, and some similar texture categories.

Instead of using different scales of Gabors, we change
the image lattice size (or area) |Λ| = width × height to be
1002, 1502, 2002, but keep Gabors on the same scale, 172

pixels. We also vary the neighborhood size used to pool
orientation histograms from 112, 212 to 412. Images are
transformed to grayscale, and are resized to have the speci-
fied image area while preserving the original aspect ratio.

For training and testing, in each category we randomly
select 15 examples as training positives, and the rest (at
most 50) are used for testing (around 4200 images are used
for testing in total). To compute λ and z for sketch features,
we use an independent random sample from all categories.
The Gaussian-like form is used for texture models. We use
a universal threshold 0.1 on information gain as the stop-
ping criterion of feature selection. On average about 200
features are selected per category (or per template).

We evaluate the learned templates in one-versus-all clas-
sifications and for each template we measure its average
precision (the area under precision-recall curve). Each box-
and-whisker diagrams in Fig.7 describes the distribution of
average precisions over all categories. The mixed template
performs observably better than the individual sketch or tex-
ture templates. In Fig.8 we show several examples of mixed
templates learned from training images. Though templates
are multi-scale, we only show a single scale for the clear-
ness of illustration.

Speed. Learning one mixed template of multiple scales
from 15 images takes within one minute after feature con-
volution. It can be made even faster by sub-sampling pixels.

4.2. Image complexity and feature competition

Image categories of different intrinsic complexities live
inside the whole image space. Categories with clear shape
patterns have low intrinsic complexities, while cluttered
texture categories span large intrinsic dimensions. Based on
the above experiments, we study the relationship between
this complexity and the relative importance of sketch and
texture features by the classification task.

Figure 4. Performance of sketch/texture vs. perceived complex-
ity. Top: image categories. We asked human subjects to rank
10 object/texture categories by their perceived complexity. These
categories are human head and shoulder, pistol, laptop, dog head,
mouse head, hedgehog, pizza and three texture categories. Bot-
tom: average precisions (AP) of object categories (ordered as the
plot on the top), for image templates using only sketch features,
only texture features, and both. Combination of sketch and tex-
ture features benefits the most for categories that lie in the mid-
complexity area.

Human subjects are asked to rank 10 categories of im-
ages by their perceived image complexities. Average preci-
sions of ten categories are shown for sketch-only, texture-
only and mixed templates in Fig.4, which illustrates how
sketch features are less and less important as the perceived
image complexity increases. The mixed template performs
constantly better than both sketch-only and texture-only
templates, over the whole range of image complexity. It is
also indicated in the figure that the combination of sketch
and texture benefits most for the image categories at the
“mid-complexity” zone, i.e., categories that have neither a
clean boundary nor a homogeneous texture pattern.

We show the competition of sketches vs. textures in
learning mixed templates from four categories (Fig.9). It
is observed that the relative importance of texture features
correlates positively with the complexity of the image cate-
gory. Information gains for sketch and texture features are
on the same scale, making it possible to compare the two



(a) human head/shoulder (b) cat head (c) pig head

(d) hedgehog (e) head/shoulder (local adaptive) (f) hedgehog (local adaptive)

Figure 5. Improvement on classification due to the combination of sketch and texture features. In each plot, the area under ROC curve
(AUC) is averaged over cross validation runs and plotted against the number of positive training examples. The dotted lines indicate 95%
confidence bounds. In (a)-(d) the Gaussian texture model (Eq.11) is used. In (e) and (f), the log-linear texture model (Eq.15) is used and is
combined with locally adaptive sketch feature responses.

(a) pig head (b) hedgehog

Figure 6. Matching the mixed templates to images. For each of the two figures, on the left is the learned mixed template. Black bars denote
sketch features and red dots denote texture features. On the right are matched templates on images. The black bars denote the deformation
of the sketches and their responses on observed images. The red dots in the right figure denote the texture features fired on these images.
The red blob is generated by a weighted superposing of bar symbols at all orientations, where the weights are coordinates in the orientation
histogram. The local texture could be strongly oriented or directionless, depending on different object categories and locations.

completely different types of features.

5. Conclusion

In this paper, we propose a simple and uniform design
of sketch and texture variables or features, where both de-
scriptors are extracted from common maps of Gabor fil-
ter responses, and can be decoupled by adaptive back-
grounds. We start with atomic descriptors of patches with
pure sketches or textures, then more complex model can be
developed by composing them.

We also adopt a stepwise procedure to automatically se-
lect and combine sketch and texture variables based on an
information theoretical criterion. The classification exper-

Figure 7. Box plot of average precisions. Each box shows
max/min, 25% and 75% percentiles and the median of average
precisions on 100+ object/ texture categories.



hedgehog bonsai lion head clock pizza cat head tiger head bear head pigeon head

Figure 8. Learned mixed templates of several object categories. Bold black bars denote sketches, while red blobs denote local textures
described by orientation histograms. For illustration purpose, we only show sketches/textures of a single scale and vary the (relative) Gabor
scales and information gain thresholds for different categories. We use a threshold around 1.35 for sketches and around 1.8 for textures.

head and shoulder hedgehog pizza water patches

Figure 9. Competition of sketch and texture features. Each figure plots the information gains of the first 40 selected features, ranked in
descending order. Hollow black/white bars: information gains of selected sketch features; Solid red bars: information gains of selected
texture features. For image categories with clear and regular shape, e.g., head/shoulder, sketch features dominate the information gain. As
there are more cluttered structures inside objects, texture features begin to make a bigger contribution. This is seen clearly from the feature
competition for hedgehog, pizza and the water patches cropped from a pond image.

iments on various categories verified our hypothesis that
sketch and texture variables complement with each other.

Reproducibility page: Source code and data can be
found at www.stat.ucla.edu/∼zzsi/mixed template.html.
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