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Abstract

The objective of this paper is to parse object trajectories
in surveillance video against occlusion, interruption,dan
background clutter. We present a spatio-temporal graph
(ST-Graph) representation and a cluster sampling algo-
rithm via deferred inference. An object trajectory in the ST
Graph is represented by a bundle of “motion primitives”,
each of which consists of a small number of matched fea-
tures (interesting patches) generated by adaptive feature
pursuit and a tracking process. Each motion primitive is
a graph vertex and has six bonds connecting to neighbor-
ing vertices. Based on the ST-Graph, we jointly solve three
tasks: 1)spatial segmentation; 2)temporal correspondenc
and 3)object recognition, by ipping the labels of the mo-
tion primitives. We also adapt the scene geometric and
statistical information as strong prior. Then the inferenc s
computation is formulated in a Markov Chain and solved rig e 1. Trajectory parsing via deferred observationy Ttaee
by an ef cient cluster sampling. We apply the proposed frames (top row) from a image sequence and correspondieg for
approach to various challenging videos from a number of ground mask (bottom row). Object trajectories are shownaskn
public datasets and show it outperform other state of the image and different colors denote different recognizeéctsj We

art methods. use the background modeling component to detect moving pix-
els as initial proposal. (b) The parsed trajectories in appestive
1. Introduction view. Each trajectory consists of a bundle of moving priveis.

This paper presents a novel trajectory parsing frameworktUnder long occlusion and clutter in complex scenes.
to track and preserve identity of multiple moving objects in  Applying tracking methods to trajectory analysis can be
a visual surveillance application. As shown in Fig. 1, we directly viewed agi) sequential inferencebased on current
represent each trajectory using a bundle of moving prim- observation. Representative methods are particle 1t25$ [
itives in a spatio-temporal graph and aim to jointly solve and online detectors by boosting ensemble [21]. These
three challenging tasks: (i) spatial segmentation/gnogipi  methods often work well in punctual videos, where objects
at each frame, (i) temporal matching/tracking, and (ilyo  and observed moving blobs are mostly subject to one-to-
ject recognition. one mapping in each time instance. The performance is en-

In the literature tracking algorithms mostly focus on hanced by introducing graphical spatial prior [25] for mov-
recognition of moving objects and corresponding features.ing objects or multi-view model [3].
Objects can be represented 8lyape such as points [6], (ii) Deferred inference based on a period of observation
structural primitives [22], silhouettes and contours Ejd was rst proposed by Reid [9]. Many deterministic search-
skeleton models [19] etc., appearance including density  ing algorithms, such as dynamic programming [10, 12],
probability [7], template [26], and active appearance mod- multiple hypothesis tracker [11, 20], and joint probabilis
els [23] etc. Examples of tracking features are color [18], tic data-association lter [5, 14] are widely used for de-
edges [2], optical ow [23], and texture [15]. However, itis ferred logical inference. However, in real visual surveil-
still a open problem to recover the correct correspondencelance, a moving blob or region cannot be treated as an ob-



ject faithfully, due to inaccurate segmentations caused by t t |
occlusion, conglutination, or spurious motion. One moving OE%?Eé%%
object can decomposes as several foreground blobs and sev- -
eral objects may be conglutinated together. Therefore, the
large solution space entail simultaneously spatial seg¢gwen
tion and temporal tracking using stochastic inference with
ef cient driven features, as the pioneer work using Data-
driven MCMC (DDMCMC) in tracking by [22, 16].

The closet approach to ours is presented by Yu et al [16],
which also uses stochastic MCMC algorithm for spatio-
temporal association. However, there are four signi cant
differences. (1) Their approach |nf_erred_trajectory bared Figure 2. lllustration of a trajectory with motion primitg. A
foreground blpbs that are not rghablg in .complex SCeNes, v ical trajectory is shown in (a); (b) shows a cropped ey
whereas we introduce the motion primitives (see Fig. 2) fromt to t + 1; (c) shows a cross section of the trajectory at
to overcome scene perturbation and reduce the solution ditimet+ , and3 interesting features/patches (in red box); (d)Each
mensions in video sequence. (2) They performed stochasmotion primitive is a series of matched path/features inoatshme
tic sampling for temporal and spatial association indepen-span, represented as a “cubic cell3B coordinates. The features
dently in two iterative MCMC dynamics, in contrast, we are selected by the similarity discrepancy with respediédacal
use a more ef cient cluster sampling in a spatio-temporal surrounding background region (denoted by the yellow box).
graph to jointly solve the segmentation (spatial) and track
ing (temporal) together; (3) We additionally explore scene
context information as strong prior for trajectory parsing
(4) We integrate object recognition with inference.

We introduce our framework in following three aspects:

(a)

=aa —
Frame 41 Frame 43 Frame 4

each category. The density and recognition label of moving
objects are also statistically learned as weak prior.

The remainder of this paper is arranged as follows. We
rst present the spatio-temporal graph representation in
. . Sect. 2, and formulate the problem in Bayesian framework
§pat|o-temporal graph_ rep_resentahon, scene contextimode in Sect. 3. We introduce the inference algorithm in Sect. 4
|ng,. and clgster sampling |nfe.rence. and demonstrate the experiments in Sect. 5. We conclude

(). Spauo—temporal graphis constructed based on the g paper Section 6 with a summary.
deferred observations. We rst pursue and match the se-
guential small features (interesting patches) to genexrate . ;
number of cubic cells (in 3D coordinate), called “motion 2. S.patlo temporal graph representation
primitives”, as shown in Fig. 2. Using these primitves  Given an observed image sequendg,; =
as vertices with6 bounds connecting to the neighbors, the (IT:l7+1;:::517+ ), we rst compute the foreground
spatio-temporal graph is de ned and the trajectory parsing Map”"tr and background mapg , using the background
is simply formulated as a graph labeling (coloring) problem modeling algorithm proposed in [24]. A few small feature

(ii). Cluster sampling is designed to ef ciently explore patchgs are then selected frome and matched to the
the joint space of spatio-temporal graph coloring. The move following frames. We group a short sequence of matched

between two solution states is a reversible jump following features from ad!acenf_s(_ , 5) frar:nes aqd de ne gach
the Metropolis-Hastings method, containing two steps: 1) groudp as (;)r_wem;)tmn pnmgc!ve. fT ed_motlo_n pr|rr(lj|t|ve_s
generating a cluster of motion primitives as a connected @€ de ned in the3D coordinate for dimension reduction

component after turning off some edges probabilistically, (ke the super-pixel in 2D image segmentation). Fig. 2

and 2) ipping the label (color) of the cluster as a whole. !ntuitively iII_ustrate a_trajectory and the motion prinvitis
The jointly computation of segmentation and tracking es- n pers%ectlve coordlnatches. ) N introd
sentially integrates the spatial appearance and temporals " Order to generate the motion primitives, we introduce
ilarity of moving object, and make them boost each other for a feature pursuit scheme and a template matching algorithm.
fast convergence LetB; = fBit;i =0;:::;N;t =0;:::; gdenote theth
' . . . object model over video sequenigg. ; andN denote the
(ii). Scene contexinformation [8] provides strong prior . ) '
for trajectory parsing inference in spatio-temporal gsaph object (trajectory) number. We can further de ne the featur

We model two types of context information as important templateB;; as,

cues. (1) Statistical path model, that consists of a set of Bix = fBixj ;] =1;:::Kjx @ 1)
reference trajectories clustered from training data iresup  whereK; is the number of the features selected forite
vised way, provides global motion prior for tracking ob- object at timet. As illustrated in Fig. 3(b)Bo.: denotes the
jects. (2) Surface property and camera geometry paramefemaining feature patches at tirhe Each featurd;y; is
ters, can be further use to predict object location and size f de ned as
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Figure 3. (a) Spatio-temporal graph, in which each vertexriso-
tion primitive and the edge probability is de ned on local simi-
larity. Each vertex ha6 bonds connecting to neighboring vertices.
The trajectory parsing is formulated as graph coloring (&b
Each cylinder (in3D coordinateqx;y;t)) with different colors
denotes a cluster of motion primitives and we can sampleltise ¢
ter as a whole in computation step; (baf) view of the clusters
projected on(x;y) and(y;t) coordinates.

Bitj = fXiti 1Vitj sWigj s higj s Figi 0 2)
where (Xt ;VYitj ) and (Wi ;hitj ) are center position
and size of the window covered by featBg; . Fiy;
h(Biyt; ) is the feature descriptor extracted from the patch
"By »andwe use a2 bins normalized histogram of gra-
dient in this work. Lettind?; (“ir jBit ) denote the fore-
ground distribution of théth object andy(" .c ) denote the
reference distribution, we can pursBgy; from a over-
complete dictionary by maximizing the likelihood ratio of
foreground distribution with respect to the background dis
tribution,

Pi (Ai;t;F jBt) - Y Pi (ABm jBi;t;j )
q(/\ F ) q(/\ B istj )

®3)
i
The background distributiog(” g ,; ) is collected from the
surrounding region of the feature pateh,,. , asillustrated

it

in Fig. 2(d). Here we reasonably assume the feature being
conditionally independent with each other given the object

model at framd;. This model will maximize the contrast

of the foreground and background by sequentially select-

ing the most discriminative feature set, similar to the sdar
sketch algorithm proposed in [26].

We match each selected feature into successive frames t

obtain the matching correspondencg at timet,
it TBit 1;Bit 2;::9[f o Bit+1:1;Bir+1;2;00 gff

which can be optimized by,

g

5(i:t

i = argmin DB (Big ; it (Bigy ) (4)
it ]:O
§(i:t
+ o 10 iw(Big )= )
j=0
DB(le;sz) = fKL (h(B;,)jjh(Bj,))g (5)

Where g is a penalty factor for unmatched featurgg) 2
f0; 1g is an indicator function for a Boolean variable, and
DB () returns the KL divergence of two feature distribu-
tions. Note that the features at tinhemay be mapped
to/from; due to object moving, lighting change, or occlu-
sion.

Thus, we represent each trajectory using a set of motion
primitives. LettingC; denote théth trajectory andP;; de-
note theg th motion primitive of thath trajectory, we have,

Ci = fPij = fxij ;vij i fBijt 999 (6)
denotes the total number of trajectoriBs, is the primitive
number of theth trajectory andx;; ;y;; ) denotes the cen-
tral position. [t ;tija ] is the lifespan of the primitive
Pi; ,e.g3 5frames.

A spatio-temporal graph G (V;E) is thus con-
structed with the motion primitives being graph vertites
we de ne a vertexas; = P;;j 2 [1; Ny ] with Ny being
the total number of vertices. In order to form a sparse ad-
jacent graph structure, we assume each vertex aeoads
connecting to neighbors art is thus a neighborhood sys-
tem in 3D coordinateqx;y;t). Fig. 3 illustrates the ST-
Graph as well as its projection on coordinafgsy) and
(y;t). In this ST-Graph, a cluster is one connected compo-
nent of primitives (called aST-CCP”) and will receive the
same label in sampling inference (described in Sect. 4).
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Figure 4. Similarity probability histograms learned froraihing
data. (a)The joint frequency of appearance distance arthkpa
distance. (b)The joint frequency of appearance distandeem-
poral distance(sequential frames).

Foreachedge=<u;v>2 E;V, = P;;W = P, 2
Q/, we introduce an auxiliary variablg which indicates
how likely the two connected vertices belong to the same
trajectory, i.e. receiving the same label. We compuytby
combining two types of measurements: geometric distance
and appearance distance,



G = HS( E;V;DEJV) HT( -LIJ—;V;DE;V) (7) W[o; 1= arg mV?XP(W[O: ]jI[O: ];T) (15)
=argmax P(Ipo; 1jWp; 1;T; )P (W, )iT; )

S;v = Ji(Xu Xv)jj2 + Ji(Yu YV)ij (8)
b = y‘(tu;b tybli 9) whereT is current system time(e.g A.M.8.00),and are
P B the parameters for the likelihood and prior models.
Duv = minD® (But,;Buit,); (10)
' y, 3.1. Prior model
ty 2 [tuptvalitz 2 [tup;tva] We de ne the prior model of solutiokVp, | given the

system timeT ,
HS andHT respectively denote the spatial and temporal
edge probability histogram, which can be counted from a
set of manually annotated trajectories. Fig. 4 shows the A
two probability histograms corresponding to the scene in P(ConiiT) = P( po; iT)  P(GijT)
Fig. 1(a) and it indicates the primitives share more similar i=1
appearance in temporal tracking than in spatial S_egm_enta'whereP( o 11 T) denotes the spatial prior of trajectories,
tion, such that th_e forme_d ST-CCPs are alyvays string-like. including o[bje]ct location and sizeP (C;jT) denotes the
Compare_d W'th the mdependent spat_|al an_d _t?mpqraltemporal motion consistency for each trajectory, inclgdin
representation in [16], ST'C(.:P with motion pr|m|t.|ves IS trajectory birth/death position, length, and global shape
able to capture both the spatial and the temporal mforma—P(NjT) andP (L 0. 1jT) are trajectory density and recog-
tion. Thus the trajectory parsing is equal to ipping the la- nition label distrit[)dti(])n in the surveillance scene.
bel of a generated ST-CCP. I. Trajectory density prior Itis de ned by a histogram
on object number over system tirieand accounts for how

P(Wp; 1iT; )= PINJT)P(Lion i T)P (Cion i T) (16)

3. Bayesian Formulation busy the scene is at a given time, as,
Given the ST-Graph via the observed image sequence P(NjT) = Histo(NjT) (17)
lo; 1= (ltil7+1;5:::55 11+ ), we de ne the following so-

This distribution can be directly learned from the labeled
training data directly.

Wio: 1= fN;Cpon i Lion 19 (11) II. Recognition prior We utilize a multi-nomial distri-
bution (dirichlet model) in Statistics for recognition @ri

lution representatioWV as

where G ;n_otl;g"\:'h’;"bi’t:]”d ’ oll:)gect tra'ec(:tlozr) over system timd . It can be learned from an initial uni-
. ' . J J Y form histogram, given a batch of observations.

N is the total trajectory number, L; 2 "

f %car®pedestrian®°bike®°motorcycle’y is the recog- . ..

nition label. Each trajector; with life span [tip tiq] P(Lpon ]JT):. P(iIT) (18)

includesK; vertices (motion primitives); and skeleton - ) =0

shape ; . We useCy to collect the remaining foreground PCijT)=Hist (T)= (T)=( ;2215 4)  (19)

blobs and false alarm in current state. This solution essen-VNere( 1;:::; 4) denotes the histograms étategories.

IIl. Trajectory spatial prior We assume the moving ob-
ject is segmented independently at each framthe seg-
mentation prior distribution is de ned as

tially integrates three tasks: moving object segmentation
temporal tracking and object identity preserving.
Given the trajectorie€g;y |, the moving object segmen-

tation in each frameis also de ned as ( ) Yoy ( ) (20)
P . 1iT: Lo = P(Ri. iL;
o 1=f ¢=fRit0g (13) SR =0 t=0 s
Rit = Cix =fXit ;i s Wit s i 9 (14) Unlike traditional segemtation/grouping method using
wheret = 1;:::; ;i =1;:::;Nt. o, ] denotes the spa-  Potts model [1], each type of interested objects in surveil-
tial segmentation of all trajectories at time2 [0; ], Rt lance system, e.g. human, vehicle and bicycle, have strong
denotes the foreground region(transverse plane) oftthe  prior about their physical size at each position where they
trajectory at timet, de ned by object position(Xi ; Vit ) may occur. For example, a pedestrian cannot be off the

and size(wi ; hit ). Ny is the trajectory number at tinte ground without the other support surfaces. With camera

Note that each transverse pladRig is the foregroundregion  calibration and ground-plane estimation, we can calculate

covered by the feature templa®g; ( see Eqgn. 1). the expected physical size of each foreground blob in the
We can thus solve the problem of trajectory parsing by image-plane.

maximizing a posterior (MAP) probability in the framework Therefore, we predict object location and size according

of Bayesian, to the scene surface property and camera calibration as,



P(RitjLi) = PXiiYiellis s) (21)
P (hit s Wit JXit s Vi s Lis s5 c)

The rst term denotes the prior distribution of object posi- 7
tion, and it can be set as uniform function or counted from &
training videos. The second term is the marginal distribu- SE8
tion of object size given object position in image and the ,/ &=l
recognition label. s is the scene surface property model ¢ // .
(such as ground, road and vertical planes) ands cam- -
era parametric model respectively. The implementation for
these two term can be referred in the literature [8].

VI. Trajectory temporal prior We de ne the tracking
prior following two aspects: i) object birth/deadth pomiti
and ii) global trajectory shape. Assuming these two terms| 2=
are independent with each other, we have,

P(CGijT) = P(tip;tiaJT; 7)P( ijT; 1) (22) e c
yvhere the rst term denotes th_e prior distribution of tra-_ Figure 5. Scene path model for trajectory temporal prioy.Qlb-
jectory lifespan based on the birth/death map as shown inseryeq scene;(b)Trajectory birth and death position miggl with
Fig. 5 (b), a.nd the second term denotes the prior distri- Gaussian distribution; (c) Reference trajectories chesterom
bution of trajectory skeleton based on the path medel  training video; (d)Trajectory skeleton. The prior distriion of
which consists of a set of reference trajectories, as shown i trajectory skeleton can be calculated by shape matchirty twi
Fig. 5 (c). t denotes the parameters of the birth/death map reference trajectories.

and the path model, which can be learned from the tra_liningwhere s denotes the parameters of the background mod-
V|deos., as Fhe work proposed by Wang et al [27]. A$ illus- eling component (more details can be referred in [24])
trated |_n Fig. 5 (P ( ijT; 1) can_ b? further factorized and rec denotes the parameters of the recognition mod-
by a mlxture)gnodel plus robu;t Sta_tIStIC, as ule. The recognition modulerec embedded in our frame-
P(iT; 1) g el lie)m (23)  work is proposed by [15] and it can be replaced by any

Cj2< o other state-of-art method. The correspondence similarity
where ;; denotes the geometric distance between two tra-p (R, ., jig,, ) can be further factorized as

jectories,K is the Gaussian function with kernel sibg,

H R it SRt +
H () returns the similarity distance ands the tuning pa- P(Rig+1jRix; )/ e P (R iRica) (26)
rameter for robustness. Here we calculdté) using the whereDR () is the distance metrics of two matched re-
schema proposed by Lin [13]. gions, and here we ug2® () de ned in Eqn. 4 for instead.

. Note we neglect the system tirniehere for clarity.
3.2. Likelihood model

Given an observed video, the proposed method explainy4 . |Inference
each framel into three parts: (i) regions of segmented
(foreground) object, (ii) false alarm foreground regicans
(iii) background regions. Formally, we have,

Given the spatio-temporal gragh=< V;E > via de-
ferred observationf®; ], the trajectory parsing can be for-
mulated as graph multi-coloring problem3B® coordinate.
A= Ae [M o s KA = ! Rit (24) A; shown in Fig. 3, we r_1d the solution_ is essentially_ a

i1 joint form of foreground object segmentation and matching.
Note the recognitior. o. ; is solved with partition deter-
ministically. In order to search for the global optimal solu
tion in the large and complex space, we present a stochastic
cluster sampling algorithm.

Our method simulates a Markov chain which visits a se-
guence of states in the joint solution space over time span

, and realizes a set of reversible jumps between any two

Therefore, the likelihood model can be calculated from
three aspects: (i) false alarm regiohgy and background
regions” g should t the background modeling compo-
nent in the surveillance system;(ii) moving objects in se-
guential frames should match in appearance similarity, and
(iii) recognition con dence generated by a learnt detector

P(lp: iWo. 1 8) P(ue): 8)P("to 8) successive states. For each stochastic jump step, whether a
' ' =0 ' ' new state is accepted is decided by the Metropolis-Hastings
W oty 1 method which is able to guarantee the global convergence

P(Rit+1jRit )P(Ritj'i; rec)) (25) of the inference algorithm. Given two successive stétes
i1 =t ' ' ' andB, the acceptance rate is de ned as,



(a) (b) (€)
Figure 6. Three typical solution states in ST-Graph3lih Coordinate System). Reversible jumps are designed tothisie states. The
redk denotes a “cut” operation to turn off the edge probabilatic The red cylinder is a generated ST-CCP.

(Al B)=min 1. QB! A)P(B) 27) whereC, andCg are the “cut” around cluster, denoted as
"Q(A ! B)P(A% . the “redk” in Fig. 6. The edge probability is de ned in
whereP (A) andP (B) are the posterior probability de ned  gqn_ 7. Note once the ST-CCP is selected, the jump is per-
in I_Egn. 16_.Q(B. I A)andQ(A! B)are propogal prob-  tormed uniformly.

ability of “jumping” between two states. Following proof
in[1], _proposal probabl_llty ratio can pe simpli ed in cluest 5. Experiments
sampling, which contains two steps: 1) Generating a con-

nected cluster by sampling the edge connection; 2) Flipping We integrate the proposed framework into a surveillance
the label of selected cluster. Here we perform two cluster System (the detail is referred from [17]), which also in@ud
sampler in two dynamics. It is worth mentioning that the @ background modeling module [24] and an object recog-
proposed cluster sampling is an extension of the Swendsenhition module [15]. The system is capable of processing
Wang cuts sampling [1] on the spatio-temporal representa-10- 15frames per second on a PC with Core BL® GHZ
tion. CPU and4GB memory.

Cluster generationin ST-GraphG =< V:E > is We rst brie y introduce the system implementation and
to form a ST-CCP (Spatio-temporal connected componentthe parameters of our algorithm. In initial stage, we se-
of motion primitives), by sampling the edge probabil- lect10063000manually labeled frames to train the scene
ity(de ned in Eqn. 7). We rst remove the edges that con- model as discussed in Sect. 3 using an interactive toolkit
nect two different colors deterministically, and then "cut ~ (the detail is referred from [24]). In working stage, each
(turn off) some edges with probabilily g.. The remain- ~ motion primitive is generated by feature pursuit and track-
ing edges form a few of clusters, ST-CCPs, denoted as thdng process, with the xed spatial size 82 12pixels and
red cylinder in Fig. 6. Vertices in one ST-CCP usually share the adaptive temporal length 8f 5 frames. The span of
similar appearance and thus most likely belong to the samethe deferred observationis set as 30 frames, and the ob-
trajectory, in sense that they receive the same color. served window is moving with a step-size®frames. For

Reversible jumpsare designed to travel the states in so- €ach window, we set the upper-bound of sampling iterations
lution space, by ipping the color of the selected ST-CCP as80.

(we u.a.r select one if there are more than one) to drive r€-Table 1. The average pixel-level and object-level accurdtie

versible jumps. There are three possible moves as shown in,omnare the method proposed with other three state-ofgart a

Fig. 6: . ] ) proaches, including the Joint Probability Data assoaigitd, the
Split-and-merge. The selected cluster is assigned to & pmcmc-based particle ltering [25] and the MCMC-based Data
existing color, such that a portion of a trajectory is re- association [16].

grouped into another existing trajectory and the total
trajectory number remains . The move between the Data. [ [5] | [25] [16] Ours [5] | [25] [16] Ours

state (a) and () is example. LAT | 0.49 0.71 0.51 0.8§ 0.55 0.75 0.63 0.85
Split. The selected cluster is assigned to a new label, | peTs| 0.46 0.77 0.56 0.91 0.61 0.6d 049 081
that is, a new trajectory is created, like the move from | | .a9 | 051 0.8d 063 0.84 064 0.74 055 0.83
state (a) or (b) to state (c) in Fig. 6.

Merge. A whole object is selected as a cluster and

merged into another trajectory, as from state (c) to state o . . . . L
— three aspects: (i) multiple trajectories parsing, (ii) rimgv
(a) or (b) in Fig. 6. . . . .
object recognition, and (iii) ef ciency analysis.
The bene t of the cluster sampling [1] lies in the fact that Experiment . We rst evaluate the trajectory parsing

we can easily compute the proposal probability ratio as,  using pixel- and object- level accuracy. The dataset we

QB! A)_dq(CCPjB)_, excs 1 @) (28) use containd 0 challenging scenes selected from the three

Q(A! B) ¢(CCPjA) ecad G) datasets: LHI [4], PETs, and 1-80. The criteria of bench-

Pixel-level Object-level

In experiments, we evaluate the system performance on
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Figure 7. Some representative results on challenging sceBach result show3 images and their foreground mask. Each recovered
trajectory can be identi ed by the bounding box (red linejiwthe numbers in images.
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Figure 8. The frequency of the trajectory coverage rate wisicle ned as the ratio of traced trajectory length with exsgio the trajectory
time span in ground truth. Horizontal axis—coverage raggtival axis—frequency. The blue, green, and red curvestdehe result of
our algorithm, MCMCDA [16], and MCMCPF [25] respectively.

mark includes two folds: (i) pixel-level accuracy, de nesla in which each cell includes the foreground region proposals
the ratio of the foreground areas tracked correctly and ob-by background modeling module (top row) and the results
ject region of ground truth in each frame; (ii) object-level of tracking parsing(bottom row).

accuracy is de ned as the ratio of correctly traced frames

and the total trajectory length in ground truth. One object ., erage rate, to demonstrate the advantages of our algo-
at each frame is counted only if the pixel-level accuracy is \jihm The coverage rate is calculated as the ratio of traced

aboveO_:5. The quantitative results with comparison are re- trajectory length with respect to the trajectory time span |
ported in Tab. 1, and each row shows the result on the d'ffer'ground truth. Fig. 8 illustrates the frequency of average co

ent datasets. We also shéwepresentative results in Fig. 7, erage rate on PETs dataset. The blue curves denote our al-

In addition, we introduce a novel benchmark, the average



gorithm, and the green and red curves denote the methodvhich integrates the tasks of spatial segmentation, teahpor

proposed in [16] and in [25].

matching and object recognition in a joint solution solved

Experiment 1. The performance of objects identity by an ef ciently cluster sampling algorithm and 3) we adapt
preservation in our framework is also tested on LHI variety of scene context information as the strong prior for
dataset [4]. We plot the ROC curves of object recogni- inference. Experiments with comparisons over several chal
tion for three categories: pedestrian, sedan, and bicycle i lenging datasets show it outperform the state of art methods

Fig. 9. Here we adopt the the recognition algorithm pro-
posed in [15]. The solid curves represent the recognition
performance with our framework, and the dashed ones rep
resent the result output by executing recognition indepen-
dently without our framework.

1

— AUC=0.916
AUC=0.816

— AUC=0.943

0 0
Figure 9. ROC curves of moving object recognition on the cate
gories: (a) pedestrian, (b)bicycle, and (c) sedan. Thel solives
represent the recognition with trajectory parsing and thshed (2
curves being executed independently without our framewbhle Gl
recognition method is proposed in [15].
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Figure 10. The average pixel-level accuracy with iteratiomber

increasing for each move in Markov chain.
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. . . . . 14
Experiment Ill. Algorithm computation ef ciency is - (el

nally evaluated. Fig. 10 illustrates the average pixeélev [15]
accuracy increases along with adding iterations number of[l6]
the simulation of Markov chain. Here we use the same data
in Experiments |I. Compared with the algorithm MCMCDA

in [16], which performs Gibbs sampling in two MCMC dy-

namics, we nd the cluster sampling output higher accuracy
and faster convergence. There are two important reasons: 1519]
the cluster sampling integrates the segmentation (or group [20]
ing) and tracking (or matching) in one single move to search ,,
the solution space; 2) the edge “cut” around the cluster canpz
be viewed as strong bottom-up proposal to drive the search.[23

[17]

[18]

6. Summary

In this paper, we present a novel approach to parse objecjys;
trajectories from surveillance videos. Our method is disti
guished from previous works by: 1) we introduce a spatio- E%
temporal graph with vertex being motion primitive for tra-
jectory representation; 2) we propose a exible framework

[24]
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