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Figure 1: Sisley renders a photograph (courtesy of pdphoto.org) into three abstract paintings at different perceptual ambiguity levels.

Abstract

We present an interactive abstract painting system named Sisley.
Sisley works upon the psychological principle [Berlyne 1971] that
abstract arts are often characterized by their greater perceptual am-
biguities than photographs, which tend to invoke moderate mental
efforts of the audience for interpretation, accompanied with subtle
aesthetic pleasures. Given an input photograph, Sisley decomposes
it into a hierarchy/tree of its constituent image components (e.g.,
regions, objects of different categories) with interactive guidance
from the user, then automatically generates corresponding abstract
painting images, with increased ambiguities of both the scene and
individual objects at desired levels. Sisley consists of three ma-
jor working parts: (1) an interactive image parser executing the
tasks of segmentation, labeling, and hierarchical organization, (2) a
painterly rendering engine with abstract operators for transferring
the image appearance, and (3) a numerical ambiguity computa-
tion and control module of servomechanism. With the help of Sis-
ley, even an amateur user can create abstract paintings from pho-
tographs easily in minutes. We have evaluated the rendering results
of Sisley using human experiments, and verified that they have sim-
ilar abstract effects to original abstract paintings by artists.
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1 Introduction
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“I considered that the painter had no right
to paint indistinctly . . . and I noticed with
surprise and confusion that the picture not
only gripped me, but impressed itself in-
eradicably on my memory.”

— Kandinsky’s comments on Monet’s famous “Haystack”

1.1 Motivation

Wassily Kandinsky, one of the most credited abstract artists ever,
considered that Claude Monet’s “Haystack” painting caused some
confusion which, as a consequence, makes it impressive. More pre-
cisely, because of the great mental efforts devoted to perception,
interpreting this painting, like solving hard puzzles, becomes an
interesting exploratory experience, which makes the picture unfor-
gettable. This confusion, usually named perceptual ambiguity, and
the mental efforts it invokes, are extraordinary for abstract arts, dis-
tinguishing them from photographs and representational arts.

This subtle phenomenon has been explained by Berlyne [1971, 61–
114] using his theory of the motivational aspects of perception,
that is, the perception of aesthetic patterns involves certain levels
of perceptual ambiguities and mental efforts that lead to arousal
level changes, which in turn cause emotional rewards and pleasures
(also see [Funch 1997, 26–33]). Following this vein of thought,
we think it is possible to simulate abstract paintings like Monet’s
“Haystack” by controlling the level of perceptual ambiguity. This
can be achieved by considering vision as a process of statistical
inference—a perspective that dates back to the 19th century [von
Helmholtz 1866]:

“What we see is the solution to a computational prob-
lem, our brains compute the most likely causes for the
photon absorptions within our eyes.”

As commonly accepted in vision research, visual perception is
achieved by computing the most probable interpretation of the ob-
served image, during which perceptual ambiguity is often caused by
the absence of a dominant interpretation with significantly larger
probability than all the other interpretations. For the numerical
measure of perceptual ambiguity, it is a common practice to adopt
the information (Shannon) entropy of the probabilities of different
interpretations. By carefully (but also subconsciously in virtually
all cases) constructing these probabilities and the entropy using
their specialized techniques [Cooke 1978], abstract painters man-
age to play duets with their activated audience.

c©ACM, 2010. This is the author’s version of the work posted here
by permission of ACM for your personal use. Not for redistribution.
The definitive version will be published in Proceedings of the 8th
International Symposium on Non-Photorealistic Animation and
Rendering (NPAR 2010), Annecy, France.
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Figure 2: Five abstract painting masterpieces. From left to right: “No. 5” by Jackson Pollock, “Violin and Guitar” and “Guernica” by
Pablo Picasso, ”Le Mont Sainte-Victoire” by Paul Cézanne, and “The Red Vineyard” by Vincent van Gogh. These abstract paintings all
preserve some visual features in certain semantic dimensions/levels and free the others.

This paper aims to simulate the techniques of abstract painters on
computers, in order to render abstract paintings from photographs.
We try to achieve this simulation in our abstract painting system
named Sisley (after Alfred Sisley, the English impressionist land-
scape painter), by addressing the primal problem: how does the
computer assess and control the perceptual ambiguities of images?
Fig.1 demonstrates several representative results of Sisley.

1.2 A Further Look into Abstract Arts

From ancient Chinese and Islamic calligraphy, to impressionism
and expressionism, then to modern minimalism in the 21st century,
abstract arts have existed in various forms and styles for centuries.
Despite their great variety, these different categories actually share
a key characteristic, namely, they try to preserve visual features in
some semantic dimensions/levels (e.g., scene configuration, object
category, color scheme), and free (i.e., randomize) the others. Take
abstract paintings for example (see Fig.2),

(1) Pollock’s famous abstract drip paintings preserve some low-
level geometric statistics (e.g., fractal dimension [Taylor et al.
1999]) and totally free any other figurative features such as
identifiable scenes or objects;

(2) Picasso’s “Violin and Guitar” and “Guernica” preserve the
identifiability of some individual parts, while the former frees
the spatial configuration and integrity of the objects and the
latter frees configurations of both the objects and the scene;

(3) In most impressionist artworks (e.g., Monet’s Haystacks,
Cézanne’s Mountains, van Gogh’s landscapes), the scene hi-
erarchies are preserved, while appearances of objects/regions
are freed. We focus on this type of techniques of impression-
ists (and probably some expressionists) in this paper.

In an information-theoretic language, this characteristic of preserv-
ing some features and freeing others corresponds to an increase of
uncertainty or degree-of-freedom, which is commonly measured by
the Shannon entropy [Jaynes 1957; Cover and Thomas 2006]. And
psychological studies [Kersten 1987] have proved that the increase
of uncertainty further leads to an increase of perceptual ambiguity,
which is usually reflected by the demanded amount of mental ef-
forts in recognition (e.g., number of guesses needed until the correct
answer). Relying on the above connections from fidelity of seman-
tics, to uncertainty and entropy, then to perceptual ambiguity and
mental efforts, we consider the level of perceptual ambiguity as a
numerical measure of how much semantic information is preserved
and how much is freed. Although the ambiguity is anisotropic in
different semantic dimensions (e.g., blurring an object may have
different abstract effect from perturbing the spatial configuration),
since this general numerical measure is not restricted to any spe-
cific techniques of artistic creation, the above idea, up to concrete
analysis in future research, is capable of explaining other abstract
art forms and styles (e.g., paper-cut [Xu and Kaplan 2008]).

1.3 Previous Work

In recent years, there have been plenty of investigations towards un-
derstanding abstract artworks in mathematical or statistical ways.
For example, Pollock’s drip paintings have been analyzed using
fractal analysis techniques [Taylor et al. 1999; Mureika et al. 2005].
Rigau et al. [2008] studied aesthetic measures in the information-
theoretic framework. Wallraven et al. [2009] tried to categorize
different artistic styles using image statistics. Readers may refer
to [Stork 2009] for a more comprehensive survey of the literature.

For rendering abstract art images (not limited to specific styles
or genres) on computers, many interesting studies have been con-
tributed to the computer graphics community, especially the non-
photorealistic rendering area [Gooch and Gooch 2001; Strothotte
and Schlechtweg 2002; Durand 2002]. Haeberli [1990] proposed
abstract image representations by brush strokes, which was ex-
tended by further painterly rendering studies on brush model-
ing, stroke layout and animation [Meier 1996; Litwinowicz 1997;
Hertzmann 1998; Hertzmann and Perlin 2000; Zeng et al. 2009].
DeCarlo and Santella [2002] developed an approach for stylization
and abstraction of photographs by identifying visually attended el-
ements using eye tracking data. Winnemöller et al. [2006] built an
automatic and real-time framework for image and video abstraction
by image filtering preserving visual salience. Orzan et al. [2007]
developed a method for structure-preserving image manipulation
and enhancement. Mi et al. [2009] proposed a part-based com-
putational method for the abstraction of 2D shapes. Specific ab-
stract art styles have also been widely studied, including mosaics
and collages [Finkelstein and Range 1998; Klein et al. 2002; Smith
et al. 2005; Gal et al. 2007; Orchard and Kaplan 2008], Escheriza-
tion [Kaplan and Salesin 2004], cubism [Klein et al. 2001; Collo-
mosse and Hall 2003], surrealism by image fusion [Raskar et al.
2004], futurism by motion emphasis cues [Collomosse and Hall
2006] and abstract texture synthesis [Morel et al. 2006]. Besides,
Lee et al. [2006] developed a fluid dynamics based system for cre-
ating drip paintings of Pollock’s style.

Most past research focused on low-level image features (e.g., color,
gradient), except a few trying to work in the perceptual space by
modeling visual salience or attention [DeCarlo and Santella 2002;
Winnemöller et al. 2006]. In contrast, the appreciation of art usu-
ally requires an exploratory behavior of image understanding, in the
sense of recognizing the scene and objects through certain paths of
perception [Berlyne 1971; Funch 1997], and finally grasping the
event semantics. For example, one tends to recognize the moun-
tain then the trees and huts while looking at Cézanne’s “Le Mont
Sainte-Vicoire” (see Fig.2), and finally get a global impression as
if being personally on the scene. And for van Gogh’s “The Red
Vineyard”, the path of perception usually starts from the sun in the
sky, then continues to the field and the working people. For such
pictures, the balance between obviousness and obscurity of image
semantics is particularly important. In other words, it is crucial
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to control the level of perceptual ambiguity for appropriate arousal
level shifts which are just right to cause aesthetic pleasure [Berlyne
1971; Funch 1997].

1.4 Our Approach

Motivated by the above points, we deploy a three-step method for
rendering abstract paintings in Sisley.

Interactive Image Parsing An input image (usually photograph)
is first decomposed into a hierarchical tree representation, with each
node in the tree corresponding to an image component (e.g., region,
object). This is achieved by (1) interactive image segmentation for
the regions, (2) hierarchical organization of the nodes, and (3) man-
ual annotation of the nodes’ category labels. These three tasks are
all performed on Sisley’s software interface. With image parsing,
Sisley “understands” the image before painting it.

Customization and Rendering Users can specify desired levels
of perceptual ambiguity (or abstract levels as named in Sisley) for
the result painting and/or its individual components. According to
these levels, Sisley automatically changes the image appearance,
and synthesizes an abstract painting image. With different image
components having different abstract levels, Sisley simulates the
effect of paths of perception, to increase the subtlety of the painting.

Computation and Control Sisley assesses the abstract levels of
the scene and objects for the result painting image, by referencing
a large dataset of human annotated images [Yao et al. 2007], propa-
gating information in the context [Yedidia et al. 2001], and comput-
ing the Shannon entropies. If the difference between the computed
abstract levels and the user’s desired values is too large, Sisley will
adjust the parameters and repaint an image. This process iterates in
a servomechanism until the difference is within a threshold, or an
allowed maximum number of iterations is reached. This enforces
appropriate abstract levels for the painting to be enjoyable.

Sections 2 through 4 will explain the above steps in detail. To em-
phasize the importance of the third step for the system, it is worth
pointing out that abstract levels are quite subjective measures in the
sense that they vary a lot among people who have or haven’t seen
a painting’s corresponding photograph before. In contrast, Sisley
does the numerical computation in a relatively objective way, to
match the perspectives of the majority of people instead of only the
software user whose sense has been greatly affected by the knowl-
edge of the photograph.

The main contribution of this paper is the execution of a computa-
tional idea towards the explanation and simulation of abstract art.
More specifically, we find a quantitative way to define and com-
pute the abstract level as the degree of perceptual ambiguity in
scene/object recognition, using which we manage to synthesize ab-
stract art images at abstract levels desired by the user. This paper
aims to introduce this novel numerical measure and the correspond-
ing computational process, rather than merely a rendering system
focusing on good painterly effects.

2 Parse Tree and Abstract Levels

We adopt a hierarchical image representation named parse tree in-
troduced by Tu et al. [2005]. A parse tree has a root node corre-
sponding to the scene, and a few other nodes corresponding to the
objects in the image. As shown in Fig.3, the photograph in Fig.1 is
labeled as a seascape scene, which is then decomposed into five ob-
jects/regions: sailboat, sea, buildings, trees, and sky. The sailboat
node is further decomposed into sail and hull. In general, a parse
tree is a directed acyclic graph (DAG) G = 〈V, E〉, whose vertices
V represent the nodes and edges E represent the parent→child links

seascape

sailboat

sea buildings trees sky

sail hull

Figure 3: An example parse tree of the photograph in Fig.1.

in the tree, and each node i ∈ V is associated with its category la-
bel `i (see Table 1 for the categories covered by Sisley) and visual
features Ai (e.g., color and shape statistics).

Suppose a parse tree of image I has K nodes, for interpreting I in
the sense of recognizing the scene and objects, we are interested in
finding the most probable combination of the nodes’ category labels

L = (`1, `2, · · · , `K) (1)

for the image, namely, the combination that maximizes the condi-
tional probability p(L|I). However, this most probable interpre-
tation only captures the major mode/peak of p(L|I), but fails to
describe the uncertainty or ambiguity associated with multimodal
probabilities. To address this problem, in an information-theoretic
way, we adopt the Shannon entropy

H(L)|I =
∑

L
−p(L|I) log p(L|I) (2)

to measure the abstract level of image I. For the abstract paint-
ings we study in this paper, we expect H(L)|I to be significantly
greater than those of photographs, with p(L|I) usually having more
than one local maxima, corresponding to multiple competing under-
standings [Yevin 2006].

In order to obtain the parse tree for abstract level assessment, Sisley
provides three functions on its graphical user interface.

Image Segmentation We adopt the banded version [Lombaert
et al. 2005] of the graph-cut algorithm [Boykov and Kolmogorov
2004] for interactively segmenting the image into two parts using
foreground and background scribbles. Then each part is further bi-
narily segmented using the same method. This continues until the
user considers that every object is separated from its neighboring
regions.

Hierarchical Organization The previous step generates a binary
tree, in which some middle-level nodes might not correspond to
meaningful individual objects (e.g., a node containing object A and
part of object B), and some objects might be mistakingly separated
and placed in two or more branches. In order to obtain the desired
multiway tree as shown in Fig.3, Sisley provides an interactive tool
for tree editing (e.g., node deleting, merging).

Category Labeling Users can label the category of each
scene/object node in the tree resulted from the previous step. This
step is optional, but proper labeling can much improve the accuracy
of the assessment of abstract levels (we will explain this in Sec-
tion 4.1). For any category not directly covered by Table 1, users
may keep the node unlabeled, or simply choose a similar item, for
example, choose “cloth” for “sail”, and “boat” for “hull”, for the
image in Fig.1, by assuming they are equivalent.

3 Customization and Rendering

Before rendering the painting, Sisley lets the user slide a bar to
indicate the desired abstract level of the result image. It also allows
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Table 1: Scene and object categories adopted in Sisley, which distribute widely over those usually appearing in paintings.

Scene Categories Object Categories

close-up abstract background big mammal bike bird bridge building
indoor bus/car/train butterfly chimney clothing/fabrics door/window face/skin

landscape fish flag flower fruit furniture glass/porcelain
portrait grass/straw/reed ground/earth hair house/pavilion human kite/balloon

seascape lamp/light leaf mountain pillar/pole road/alley rock/stone/reef
skyline sand/shore ship/boat sky/cloud/glow small mammal snow/frost statue

streetscape sun/moon/star tower/lighthouse tree/trunk/twig umbrella wall/roof water/spindrift

the user to specify different abstract levels for different nodes in
the parse tree, to simulate the phenomenon of paths of perception.
For example, if the user expects that most people should recognize
node i earlier than node j, he/she can assign a much lower desired
abstract level to i than that of j. In fact, the specified abstract level
of each node is treated as an extra factor to be multiplied to the
global abstract level during rendering.

The main task of Sisley’s rendering engine is to transfer the input
image’s visual appearance from photograph style to abstract paint-
ing styles. Since colors, shapes and textures are the key features
of an image that affect its perception [Marr 1982], Sisley tries to
operate on the statistics of these three aspects.

Color Sisley transfers the image (or image region) into the HSV
color space, then adds a random shift to the hue channel, which fol-
lows a truncated normal distribution N (0, σ2, a = −3σ, b = 3σ).
The standard deviation σ is proportional to the expected abstract
level, with σmax = 15◦. This lets hue move in a 90◦ interval.
Meanwhile, a positive shift also proportional to the expected ab-
stract level is added to the saturation channel to make the image
more bright-colored.

Shape Sisley captures the boundary pixels of an image region, and
shifts each of them by a 2D truncated normal offset, whose standard
deviation and truncation for each dimension are also proportional
to the desired abstract level, with a factor corresponding to the size
of the image region. For boundary points shared by two regions
with different desired abstract levels, Sisley takes the value of the
region closer to the viewer (i.e., marked by foreground scribbles in
segmentation).

Texture Sisley applies painterly rendering to simulate a textured
painting appearance. We adopt the painterly rendering algorithm
introduced by Zeng et al. [2009] with adaptations for fast process-
ing. For example, we use a smoothed proposal map from the first
phase of primal sketch [Guo et al. 2007] as the orientation field
which determines the directions of strokes, thus avoid the rela-
tively slow sketch pursuit and orientation diffusion phases (see the
two references above for detailed explanations of the italic terms).
This field also contains the magnitude (i.e., salience) of each pixel,
which determines the corresponding stroke size. While laying
out the brush strokes, we run inhomogeneous Poisson disk sam-
pling [Deussen et al. 2000; Bridson 2007] instead of the original
greedy algorithm, to determine the positions and sizes of strokes,
and the radius of each disk is inversely proportional to its central
pixel’s magnitude. This method can cover the canvas with near-
minimal overlap among the strokes.

During the rendering process, Sisley also perturbs the color and
geometry of each brush stroke according to desired abstract lev-
els. This adds local randomness to the painting in addition to the
global randomness obtained above. All these stochastic operations
can usually increase the perceptual ambiguity of the image. This is
because in the very sparse natural image space [Ruderman 1994],

the photograph is among the very few meaningful images located in
areas with local minima of H(L)|I, and the above operations will
move the painting image slightly away from the photograph, thus
increase the abstract level.

The entire rendering scheme can be viewed as a hierarchical data
generating process [Gelman et al. 2004]. The rendering parameters
are generated according to the desired abstract levels (i.e., hyper-
parameters), and they further generate the painting image in the
next level, with the original photograph as a constant condition.

4 Computation and Control

Once Sisley renders a painting from the input photograph, it is nec-
essary to assess the actual abstract level of this output and compare
it with the desired level, in order to ensure that the expected results
are obtained. Otherwise, Sisley needs to repaint the image with
adjusted parameters according to the feedback from the output.

Since visual perception involves direct object recognition from vi-
sual features and indirect recognition using contextual information,
in order to compute p(L|I), we treat the parse tree as a Markov
random field (MRF) composed of pair cliques, which covers both
of these two aspects. In this way, the probability of labels can be
factorized as

p(L|I) =
1

Z

∏

i∈V
φi(`i)

∏

〈i,j〉∈E
ψij(`i, `j) (3)

in which φi(`i) = p(`i|Ii) measures the local evidence of node
i, corresponding to direct recognition of the image region Ii, and
ψij(`i, `j) measures the compatibility between two neighboring
nodes i and j in the parse tree, affecting the propagation of con-
textual information in indirect recognition. In Sisley, p(`i|Ii) is
computed using a non-parametric method, and ψij(`i, `j) is ap-
proximated by counting the joint frequencies f̃(`i, `j) in the LHI
image dataset [Yao et al. 2007], which includes over 10, 000 natu-
ral/artificial scene images with human annotated parse trees.

4.1 Local Evidence

Sisley computes the local evidence p(`i|Ii) using non-parametric
(kernel) density estimation (a.k.a. probabilistic voting) [Duda et al.
2000; Torralba et al. 2008]. We use images from the LHI image
dataset as voters. For fast voting, current version of Sisley includes
a subset of 101 scene voters and 470 object voters.

For each query node i corresponding to image region Ii, p(`i|Ii) is
computed by accumulating the weighted votes:

p(`i|Ii) ∝
∑

n

exp{−λD(Ii,Jn)}1(`i = `n) (4)
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Figure 4: In belief propagation, the parse tree is treated as a MRF
composed of pair cliques, in which each node’s belief is computed
with its local evidence and messages from its parent and children.

where {Jn} are the voters’ images, 1 is the indicator function, and
λ is a rate parameter controlling the overall entropy level. The dis-
tance function D measures the difference between two images or
image regions. As suggested by van de Sande et al. [2010], we
adopt the Opponent-SIFT descriptor [Lowe 2004; van de Sande
et al. 2010] of the images/regions which covers color, shape, and
texture features, and compute D as the squared Euclidean distance
between the two Opponent-SIFT feature vectors.

As we mentioned in Section 2, if the user has correctly labeled the
nodes in the parse tree, this computation can be made more ac-
curate. This is achieved by including the original node (from the
parse tree of the input photograph) as an additional voter, which is
reliable thus heavily weighted. In most cases, if the output painting
image is not very different from the original photograph (i.e., within
or near the photograph’s neighborhood area in the image space as
mentioned in the last paragraph of Section 3), the abstract level of
the node should not be too high, thus adding this powerful voter will
improve the accuracy of estimation by pushing up a strong mode in
the probability distribution p(`i|Ii).

4.2 Belief Propagation

With the local evidences p(`i|Ii), probabilities p(`i|I) (i.e., be-
liefs with contextual knowledge) are computed using belief prop-
agation [Yedidia et al. 2001] over the parse tree, as shown in Fig.4.
Using uniform initialization, Sisley visits the nodes in sequential
order to update their messages and beliefs, and iterates the process
to continue the propagation. Each time when node i is visited,

(1) Its outgoing message to neighbor node j is updated using

mij(`j) =
∑

`i

p(`i|Ii)f̃(`i, `j)
∏

k∈∂i\j
mki(`i) (5)

where ∂i\j denotes the neighborhood of node i excluding
node j, and

(2) Its belief is updated using

bi(`i) ∝ p(`i|Ii)
∏

j∈∂i
mji(`i) (6)

where local evidence and incoming messages are combined.

Sometimes it is necessary to swap `i and `j in f̃(`i, `j) since we
must make sure the first label corresponds to the parent node. We
finally set p(`i|I) = bi(`i) after convergence, which is guaranteed
for our tree structure [Yedidia et al. 2001].

4.3 Assessment and Control of Abstract Level

Even if all local evidences and pairwise terms are available, it is still
impractical to compute p(L|I) since the space of L is usually too
large as the amount of nodes or categories grows. Instead, Sisley
looks at the marginal probabilities p(`i|I), and gives an approxi-
mate estimate of p(L|I) as the weighted average of their entropies

H(L)|I ∼
∑

i

wiH(`i)|I =
∑

i

wi

∑

`i

−p(`i|I) log p(`i|I) (7)

where the normalized weight wi of node i is proportional to its lat-
tice size on image. This approximation is reasonable for our case
because the correlations between `i and its neighboring nodes’ la-
bels are already greatly decreased by the propagation.

Based on this approximation, Sisley further computes the relative
abstract level of image I as

H̃ =

∑
i wiH(`i)|I∑
i wi log |Ω`i |

∈ [0, 1] (8)

which is the ratio of the approximatedH(L)|I over its upper bound
(here |Ω`i | denotes the volume of `i’s space Ω`i ). This relative
number is actually the one to be compared with user’s desired ab-
stract level. If the computed (output) level H̃O is close to the user’s
desired (input) level H̃I (e.g., within ±10%), then Sisley achieves
success and finishes the job. Otherwise, it is necessary to adjust
the parameters and repaint an image from the photograph. For the
adjustment, after the t-th iteration, Sisley compares H̃(t)

I and H̃(t)
O

for assigning H̃(t+1)
I to the next iteration according to

H̃(t+1)
I =





[
H̃(t)

I

]2

H̃(t)
O

, if H̃(t)
O > H̃(t)

I ,

1−
[
1−H̃(t)

I

]2

1−H̃(t)
O

, if H̃(t)
O < H̃(t)

I .

(9)

with the desired H̃ as the initial input. The rendering-computation-
adjustment loop ends when the difference between H̃I and H̃O
drops below the predefined threshold, or an allowed maximum
number of iterations is reached. This idea of servomechanism is
similar in concept to the bisection method in root-finding, and gra-
dient descent in optimization, but convergence is not guaranteed
for our case due to the existence of randomness (e.g., random color
shifts), especially if the nodes have not been properly labeled.

5 Experimental Results

Fig.1 demonstrates three abstract paintings with H̃ at approxi-
mately 0.25, 0.5 and 0.75 respectively. In these images, both the
sailboat and the background become harder to recognize as H̃ in-
creases. While different viewers may feel different abstract levels
due to various personal backgrounds (e.g., some may have seen the
photograph before), Sisley gives a more objective estimate of the
abstract level. In this way, the user can create abstract painting im-
ages at proper levels of perceptual ambiguity for others to enjoy, by
diminishing the affection of his/her knowledge of the photograph
and subjective feelings during the interactive process.

Fig.5 includes more results generated by Sisley. These images were
all generated at medium abstract levels (H̃ ≈ 0.5), but the results
may seem somewhat different because of the different complexi-
ties of their parse trees (thus also different absolute abstract lev-
els in spite of similar relative abstract levels). For example, with
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Figure 5: More results produced by Sisley. Photographs (bottom row from left to right): “Palazzo Vecchio” (by thephotoholic), “Neptune
Fountain” (by thephotoholic), “Old Wrecks At West Mersea” (by Tom Curtis), “Sunday Walk” (by Simon Howden), “Old Man And Gull” (by
Federico Stevanin), “Ullswater” (by Susie B), “Promenade Morecambe” (by Tom Curtis), and “Conwy Bay” (by Matt Banks). Photographs
courtesy of FreeDigitalPhotos.net.
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Figure 6: “Vladivostok Transport” (photograph courtesy of Matt
Banks / FreeDigitalPhotos.net). The two paintings have similar ab-
stract levels according to computation, but their ambiguities dis-
tribute over the objects in different ways, which may lead to differ-
ent paths of perception for the audience.

more objects and greater depth of field in the scene, the last paint-
ing “Conwy Bay” often appears more ambiguous than the others.

Fig.6 displays two paintings with similar global abstract levels ac-
cording to Sisley’s computation, but their abstract patterns differ in
the way that the ambiguities distribute over the image components
differently, which may lead to different paths of perception. In the
first painting, the car in the front is more figurative than the bus, and
the second painting was created in an opposite way.

6 Evaluations

In addition to the above computation which might not be intuitive
enough, to further verify that Sisley really achieves satisfactory ab-
stract effects, we performed comparative human experiments over
three groups of images:

(1) Photographs,

(2) Original abstract paintings by artists, and

(3) Our synthesized images (at various relative abstract levels be-
tween 0.25 and 0.75).

Our studies focused on two potential hints of abstract effects:
recognition accuracy and response speed by human subjects. These
two statistics can be objectively measured and they reflect the per-
ceptual ambiguity and mental efforts, respectively, which are of our
main interests (see Section 1.1).

We randomly selected 40 images from each of the three groups
above. These images cover approximately half of the categories
in Table 1. We labeled several objects in each image as query ob-
jects whose associated recognition accuracies were observed. Fig.7
shows a few example query objects cropped from the images.

The 40×3 images were then displayed in random order on a color
monitor to 20 human test subjects (graduate and college students of
different majors), with the query objects highlighted. As soon as a
subject felt he/she understood an image, he/she hit a key to record
the response time, then reported the category labels for the query
objects by choosing from Table 1.

Recognition Accuracy As shown in Fig.8, both original paintings
by artists and our synthesized images have slightly lower recogni-
tion accuracy than that of photographs. It is also noticed that the
diagonal elements still dominate for most categories, suggesting
that usually test subjects could still recognize objects in abstract
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Alley Flying Bird Buildings Butterfly

Figure 7: Example query objects cropped from images used in our
human experiments described in Section 6.

Photographs Original Paintings Synthesized Paintings

Figure 8: Confusion matrices visualizing the recognition accura-
cies for the three groups of images studied in Section 6. Horizon-
tal and vertical axes represent the reported and true categories,
respectively. The darkness of each grid is proportional to the fre-
quency. Uncovered categories in the experiments are not displayed.

paintings (either original or synthesized) correctly through certain
amount of efforts of thinking.

Response Speed We have recorded the data of response time
used for recognition during the experiments, and analyzed them us-
ing standard statistical hypothesis testing techniques [Montgomery
2000]. Observing that analysis of variance (ANOVA) F -test on
the effect of group difference gave an extremely small p-value at
2.955×10−8, we further computed Tukey’s Honest Significant Dif-
ferences (HSD) for testing the significance of pairwise difference in
response speed, and the adjusted p-values for multiple comparisons
are shown in Table 2. At level α = 0.05, we have not observed
significant difference between original and synthesized paintings in
response speed, but they both differ significantly from photographs
with longer response time.

As observed in the above experiments, our synthesized paintings
reproduce both of the two examined statistics of the original paint-
ings, especially, at levels where identifiability is mostly available
through certain amount of mental efforts. In contrast, readers may
see that some of the individual objects in Fig.7 are indeed very dif-
ficult to recognize without the their contexts. This suggests the im-
portance of scene configuration information to visual perception,
which was realized and greatly utilized by the impressionists, as
we mentioned in Section 1.2.
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Table 2: Summary of Tukey’s HSD test on response speed.

Group Pair ∆t̄ (ms) p-value

Photographs vs. Original Paintings 2165 < 0.01
Photographs vs. Synthesized Paintings 1183 0.03

Original vs. Synthesized Paintings −982 0.11

7 Conclusion and Future Work

We have presented a system which augments painterly rendering
with perceptual ambiguity computation and control for the simula-
tion of abstract paintings. The system relies on the psychological
findings that abstract arts are usually more ambiguous than pho-
tographs and representational arts, and accordingly tries to render
abstract paintings by increasing the perceptual ambiguities of im-
ages with numerical control. Compared with past research [De-
Carlo and Santella 2002; Winnemöller et al. 2006; Orzan et al.
2007; Rigau et al. 2008; Mi et al. 2009], Sisley works in the
way corresponding to a different level in our biological visual sys-
tem [Marr 1982], by dealing with scene/object recognition using
probability density estimation and belief propagation.

One potential future work for improving the performance of the
current system is to generalize the ambiguity measure. In Sisley,
we assume the parse tree structure of a painting is apparent to the
audience thus unchanged during image manipulation, although the
nodes’ categories are unknown. But this is not always true for real
abstract artworks. A probability model covering both image struc-
ture and component attributes with a feasible computational process
is necessary to solve the problem.

Another important aspect to study is how does each stochastic oper-
ation (including its associated parameters) on color, shape or texture
in the rendering process affect the final result. For example, it is in-
teresting to see whether the changes of color and shape lead to dif-
ferent abstract effects, and whether painterly rendering can generate
better effect than simply blurring or adding noise1. Starting from
this paper’s viewpoint on the common characteristic of abstract arts
in perceptual ambiguity, the detailed study on the behavior of differ-
ent stochastic operations actually takes one step further to discover
the intrinsic differences among various abstract art styles and tech-
niques, which will contribute to a more comprehensive understand-
ing of the subject. In the meanwhile, however, necessary systematic
strategies to choose among and apply different operations properly
will greatly increase the complexity of the rendering engine.

1In the sense of increasing the perceptual ambiguity, image degrading
operations such as blurring and adding noise are also capable of producing
abstract effects, although usually they are not considered as common artistic
techniques. Fig.9 displays a few examples of such nonstandard operations.

Original Blur Noise Pixelation Floodfill

Figure 9: A few nonstandard operations to process images for ab-
stract effects. “Nonstandard” means these operations are less fre-
quently used in artistic depiction than common techniques such as
brush strokes, color enhancement, etc.

Project Website

The latest paintings/demos/executables of Sisley are available at
http://www.stat.ucla.edu/∼mtzhao/research/sisley/ .
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