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Abstract

This paper presents a method for unsupervised scene
categorization. Our method aims at two objectives: (1)
automatic feature selection for different scene categories.
We represent images in a heterogeneous feature space to
account for the large variabilities of different scene cate-
gories. Then, we use the information projection strategy
to pursue features which are both informative and discrim-
inative, and simultaneously learn a generative model for
each category. (2) automatic cluster number selection for
the whole image set to be categorized. By treating each
image as a vertex in a graph, we formulate unsupervised
scene categorization as a graph partition problem under
the Bayesian framework. Then, we use a cluster sampling
strategy to do the partition (i.e. categorization) in which
the cluster number is selected automatically for the glob-
ally optimal clustering in terms of maximizing a Bayesian
posterior probability. In experiments, we test two datasets,
LHI 8 scene categories and MIT 8 scene categories, and
obtain state-of-the-art results.

1. Introduction

In this paper, we present a method for unsupervised
scene categorization which is posed as a graph partition
problem with each image being a vertex in the graph. We
consider scene categories which include outdoor scenes, in-
door scenes and object categories (such as highway, library,
motorcycle, respectively). Unsupervised scene categoriza-
tion is an important research topic with a wide range of ap-
plications such as image retrieval, web-based image search
and top-down context in object detection and recognition
[4, 15, 14, 19]. This paper addresses the following two main
problems in unsupervised scene categorization:

(1) Automatic feature selection for different scene cat-
egories. As illustrated in the top panel of Fig.1, differ-
ent scene categories are formed by class-specific appear-

ance features (such as textures, textons, sketches and colors)
and specific geometric configurations ranging from stochas-
tic ones (modeled by bag-of-words) to regular ones (mod-
eled by deformable template or active basis). In the liter-
ature of unsupervised scene categorization, most work do
not address the feature selection problem. Instead, they
use a predefined long vector of features for all categories
[15, 21, 9, 20]. Recently, the information projection strat-
egy has shown promising results on pursuing features under
an information-theoretic framework [12, 23].

(2) Automatic cluster number selection. In the existing
work of unsupervised scene categorization, the cluster num-
ber is often predefined or searched exhaustively in a given
range [9, 19]. The key for automatic cluster number selec-
tion lies in whether an algorithm can explore the solution
space efficiently instead of exhaustively. Automatic clus-
ter number selection is a very important aspect of an unsu-
pervised algorithm and affects performance largely. It en-
tails the ability of generating new clusters, removing exist-
ing clusters and switching between two different clusters,
as illustrated in the bottom panel of Fig.1. Generally, there
are two kinds of methods which are capable of this task,
one is the hierarchical Dirichlet process based on the stick-
breaking constructions [5, 16] (which, however, has no ob-
vious support for the feature selection) and the other is the
Markov chain Monte Carlo (MCMC) strategy with death,
birth and diffusion dynamics [18, 1] (which can incorpo-
rate the feature selection, but has not yet been addressed for
unsupervised scene categorization).

Motivated by the two problems, we present a method
for unsupervised scene categorization with automatic fea-
ture selection and cluster number selection. As illustrated
in Fig.1, the basic idea is to represent images of different
categories in a heterogeneous feature space. Then, we dis-
cover scene categories by information projection and cluster
sampling. Concretely, by treating each image as a vertex in
a graph, we formulate unsupervised scene categorization as
a graph partition problem under the Bayesian framework,
which has the following two key components:
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Figure 1. Illustration of the proposed method for unsupervised scene categorization. Our method addresses the automatic feature selection
and the automatic cluster number selection simultaneously in a unified framework. The top panel illustrates the heterogeneous feature space
in which we represent images of different categories to account for their large variabilities. The automatic feature selection is facilitated
by the information projection strategy in the heterogeneous feature space. The bottom panel illustrate the cluster sampling strategy for
automatically selecting cluster number. (see texts for details)

(1) The “what is what” component. We pursue features
which are both informative and discriminative by using
the information projection strategy [12, 23] and simul-
taneously learn a generative model for each cluster. The
learning starts from a reference model pooled over the
whole image set to be categorized. Then, the learned
models are used as the likelihood in cluster sampling.

(2) The “what goes with what” component. We explore the
partition space efficiently by using the cluster sampling
algorithm [1] which has cluster birth, death and switch-
ing dynamics. The importance of the cluster sampling
strategy is that it can jump in the solution space by flip-
ping the label of many coupled images simultaneously

(as a connected component in the graph). The cluster
number is selected automatically for globally optimal
clustering in terms of maximizing a Bayesian posterior
probability. We use the Swendsen-Wang Cuts (SWC)
algorithm [1] for the inference.

In the literature, most of the scene categorization meth-
ods are based on supervised learning [3, 13]. Unsuper-
vised scene categorization is often formulated as the prob-
lem of searching and matching re-occurrences of some vi-
sual patterns among different images. Usually, visual pat-
terns are represented by some low level holistic features
(such as global color, histogram of filter response, Gabor
filter and the gist), and scene categories are described as



bag-of-words [8], pyramid kernels [6, 22], subgraphs in a
hierarchical structure [17] and active basis [23]. The cat-
egorization methods used in the literature are Probabilistic
Latent Semantic Analysis (PLSA) [7], Latent Dirichlet Al-
location (LDA) [2] and SUM-MAX algorithm [23].

The rest of the paper is organized as follows. Sec.2 intro-
duces the graph partition formulation of unsupervised scene
categorization as well as the information projection strategy
and the cluster sampling strategy. Sec.3 presents the imple-
mentation by using the SWC algorithm. Sec.4 introduces
the methods for performance evaluation. Sec.5 shows re-
sults of our experiments. Sec.6 concludes this paper.

2. Problem formulation
By treating each image as a vertex in a graph, we formu-

late unsupervised scene categorization as a graph partition
problem under the Bayesian framework.

2.1. Unsupervised scene categorization

Let D be a set of input images containing a scene (out-
door or indoor) or object,

D = {I1, I2, · · · , In} (1)

The objective of unsupervised scene categorization is to
seek a partition of D with K inferred clusters (K is an un-
known number to be inferred and 1 ≤ K ≤ n). We have,

D = ∪Kk=1Dk (2)

where Dk 6= ∅ and Di ∩∀i 6=j Dj = ∅ (i, j ∈ [1,K]).
Denote Dk as,

Dk = {I(k)
1 , · · · , I(k)

nk
} (3)

where nk is the number of images in Dk and 1 ≤ nk < n.
We have n =

∑K
k=1 nk.

LetF be the feature pool in which we select features and
simultaneously learn a model for Dk (1 ≤ k ≤ K),

F = {f1, f2, · · · , fm} (4)

where fi can be vector valued functions of different filter re-
sponses such as the intensity, colors, Gabor filters and SIFT
descriptors extracted at certain locations in the image lattice
and scales.

Let Fk ⊂ F be the selected features for Dk and Θk

be the parameters of the model built upon Fk to describe
images in Dk.

Given D and F , the unsupervised image categorization
seeks the output,

W = (K, {Dk, Fk,Θk}Kk=1) (5)

2.2. Bayesian formulation

Under the Bayesian framework, we seek the optimalW ∗

(Eqn.5) by maximizing a Bayesian posterior probability,

W ∗ = arg max
w∈Ω

p(W |D) (6)

where Ω is the solution space, and we have

p(W |D) ∝ p(W )p(D|W )

= p(W )

K∏
k=1

[

nk∏
i=1

Pk(I
(k)
i ;Fk,Θk)] (7)

Before specifying the prior probability p(W ) and the
likelihood Pk, we first anatomize the solution space Ω and
specify the graph partition formulation.

2.2.1 Anatomy of the solution space Ω

The solution space Ω is a product of the partition space
(specifying “what goes with what”) and the model space
(specifying “what is what”).

Partition space. In Eqn.2, when the image set D is cat-
egorized into K disjoint clusters, we call it a K-partition,
denoted by πK ,

πK = {D1, D2, · · · , DK} (8)

Let ΠK be the set of all possible K-partitions and we
have,

ΠK = {πK ; |Dk| > 0, k = 1, · · · ,K} (9)

Then, the partition space, denoted by ΩΠ, is,

ΩΠ = ∪nK=1ΠK (10)

Model space. For each Dk ∈ πK , we need specify a
model Pk which comes from a model space ΩPk . We have,

ΩPk = {Fk,Θk;Fk ∈ F} (11)

Solution space. The solution space Ω is a union of sub-
spaces ΩK and each ΩK is the product of one partition
space ΠK ∈ ΩΠ and K model spaces ΩPk , that is,

Ω = ∪nK=1ΩK

= ∪nK=1{ΠK × ΩP1
× · · · × ΩPK} (12)

In terms of the anatomy of Ω, Eqn.5 can be rewritten as,

W = (K,πK , {Fk,Θk}Kk=1) (13)

So, in Eqn.7, the prior probability p(W ) is,

p(W ) = p(K)p(πK)

K∏
k=1

p(Fk)p(Θk|Fk) (14)



where p(K) is the prior model for the number of cluster
which is often assumed as an exponential family model,

p(K) ∝ exp{−βK} (15)

β is a tuning parameter, p(πK) is the uniform distribution in
the partition space ΠK , and both p(Fk) and p(Θk|Fk) are
the uniform distribution in the model space.

2.2.2 The graph partition specification

Based on the anatomy of the solution space Ω, we present
the graph partition formulation which includes the specifi-
cations of the adjacency graph and the edge probability.

The adjacency graph. This graph represents a K-
partition πK by treating each image in D as a vertex. De-
note G =< V,E > as the adjacency graph. We know that
V = D. E is the set of edges linking images in V . The
initial adjacency graph G0 =< V,E0 > is a fully con-
nected graph so the initial edge set E0 could be very large
(|E0| = n(n − 1)/2). Each edge e ∈ E0 is augmented
with a Bernoulli random variable µe ∈ {on, off}, which in-
dicates whether the edge e is turned on or off. We define the
edge turn-on probability to reflect the image-to-image simi-
larity based on the generative model learned by the informa-
tion projection strategy (see Sec.2.3). Then, by turning off
the edges probabilistically based on the edge probability, we
obtain a relatively sparse adjacency graph G =< V,E >
(E ⊂ E0).

The edge probability. Let Is and It be the two images
linked by edge e ∈ E. Denote qe as the edge probability,

qe = p(µe = on |Is, It) (16)

where qe indicates the probability of images Is and It being
from the same category.

By treating the image Is and It as a cluster De =
{Is, It}, we can learn a probability model Pe based on the
method described in Sec.2.3. Then, we define qe as

qe ∝ Pe(Is)× Pe(It) (17)

which will be specified in Eqn.21.
In next section, we present the information projection

strategy to do automatic feature selection and learn a gener-
ative probability model Pk for each inferred cluster k.

2.3. Feature selection by information projection

For each Dk in a K-partition πK , the goal of the feature
selection is to pursue a subset of features Fk ⊂ F which are
both informative and discriminative for Dk, and simultane-
ously learn a generative probability model Pk. To achieve
that end, we use the information projection strategy [12].

In information projection, we start from a reference
model for Dk, denoted by qk(I). It means that we spec-
ify a null hypothesis, H0 : I ∼ qk(I), for image I ∈ Dk

(for simplicity, we omit the subscript in I(k)
i when there is

no confusion). In this paper, in order to make different Pk’s
comparable, we use the same reference model for them, so
we denote the reference model as q(I) (which could be the
uniform distribution or Gaussian white noise distribution).
Furthermore, information projection tells us that we do not
need to specify q(I) explicitly except that we need specify
the marginal distribution qi(I) of q(I) projected onto each
feature dimension fi (i ∈ [1,m]) to do the feature selec-
tion. qi(I) is obtained by pooling the transformed response
h(fi(I)) of each feature fi ∈ F over the whole image set
D where h(r) = ζ[ 2

1+e−2r/ζ − 1] is a sigmoid transforma-
tion function with ζ being the saturation level (ζ = 6 in our
experiments).

The learning procedure in information projection tells us
that we can modify q(I) to the model Pk by identifying test
statistics of feature responses of Fk on Dk (say, the pro-
jected marginal distributions) to reject the null hypothesis
H0. For simplicity, we can design the feature set F to make
all the fi’s independent (in a spatial or frequency domain
sense). Let p(k)

i (I) be the marginal distribution of h(fi(I))

pooled on Dk. We parameterize p(k)
i (I) by the exponential

family [12],

p
(k)
i (I) = qi(I)

1

Z(λ
(k)
i )

exp{λ(k)
i h(fi(I))} (18)

where λ(k)
i is estimated by MLE and then Z(λ

(k)
i ) can be

calculated (as in the active basis model [23]).
The information gain of a feature fi for the inferred cat-

egory k, denoted by ∆(k)(fi), is defined as,

∆(k)(fi) = log
p

(k)
i (I)

qi(I)

= λ
(k)
i h(fi(I))− logZ(λ

(k)
i ) (19)

which guides us to pursue features sequentially up to a cer-
tain threshold of the information gain (zero in our experi-
ments) and then we obtain the selected feature subset Fk
for Dk. Denote mk as the number of features in Fk which
may vary for different categories. Here, because qi is pooled
from the whole image setD and pki is pooled fromDk ⊂ D,
we can see that features selected according to the informa-
tion gain criteria in Eqn.19 are both informative and dis-
criminative to Dk. Then, we learn a generative probability
model for Dk,

Pk(I) = q(I)

mk∏
i=1

p
(k)
i (I)

qi(I)

= q(I)

mk∏
i=1

1

Z(λ
(k)
i )

exp{λ(k)
i h(f

(k)
i (I))} (20)

where f (k)
i ∈ Fk.



Now, we specify the edge probability qe in Eqn.17. We
havePe(I) = q(I)

∏me
i=1

1

Z(λ
(e)
i )

exp{λ(e)
i h(f

(e)
i (I))}. Let

∆(e) = log Pe(Is)q(I) + log Pe(It)q(I) . The edge probability is
defined as the sigmoid transformation of ∆(e),

qe =
2

1 + exp{−∆(e)
T }

− 1 (21)

where T is the temperature factor for simulated annealing,
and all ∆(e) are calculated offline and stored in a look-up
table for cluster sampling.

Algorithm 1: Discovering scene categories by infor-
mation projection and cluster sampling

Input : A set of images D (Eqn.1) to be categorized,
a feature pool F (Eqn.4), and the posterior
probability p(W |D) (Eqn.7)

Output: The unsupervised categorization results
W ∗ = (K∗, {D∗k, F ∗k ,Θ∗k}Kk=1) (Eqn.5).

Initialization: create the initial adjacency graph
G0 =< V,E0 > and compute qe (Eqn.21) for all
e ∈ E0, then obtain the adjacency graph
G =< V,E > by sampling the edges in E0 and
random clustering for CP s in G.
Repeat: for a current partition πK with the solution
state W ,

. Graph clustering: create a new set of CP s by turning
off e ∈ E(πK) with probability 1− qe.

. Graph flipping: select a CP V0 with probability
q(VO|CP ) and suppose V0 ⊂ Dk, and then flip V0 as a
whole to cluster k

′
which is sampled from q(k

′ |V0, πK).
Accept the flipping with probability α(W →W

′
)

(Eqn.23)

3. Implementation
We adopt the SWC algorithm [1] for the inference. By

recalling the posterior probability in Eqn.7, the prior proba-
bility in Eqn.14 and the factorized likelihood in Eqn.20, we
can rewrite Eqn.6 as,

W ∗ = arg max
W∈Ω

exp{−βK} (22)

×
K∏
k=1

[

nk∏
i=1

q(I
(k)
i )

mk∏
j=1

1

Z(λ
(k)
j )

exp{λ(k)
j h(f

(k)
j (I

(k)
i ))}]

Since we do not specify q(I
(k)
i ) explicitly beyond the

marginal distributions on the selected feature dimensions,
the energy (say, − log p(W |D)) could take on negative val-
ues (see the energy plot in the left bottom panel in Fig.2).

Next, we specify the clustering sampling procedure with
the SWC algorithm to solve Eqn.22.

3.1. Inference by Swendsen-Wang Cut

The SWC algorithm is very effective for sampling ar-
bitrary posterior probability or energy functions [1] with a
graph partition formulation. To solve Eqn.22 by SWC, we
need to specify the following three steps.

(1) Initialization. Given an initial adjacency graph
G0 =< V,E0 >, we compute the edge probability qe ac-
cording to the Eqn.21. We turn off the edges in E0 inde-
pendently and probabilistically according to qe (∀e ∈ E0),
so that we can obtain a relatively sparse adjacency graph
G =< V,E > (E ⊂ E0) with probability q(E) =∏
e∈E qe

∏
e∈E0\E(1 − qe). Then, G consists of a set of

connected components (CP ). We can assign the same ini-
tial category index for all CP s or can draw category in-
dexes based on the prior probability in Eqn.14 and assign it
to CP s. We pursue the features and probability models for
each clusters, and we obtain an initial solution state. Then,
the following two steps are iterated.

(2) Graph clustering. Given a current partition πK with
K hypothesized categories, the corresponding solution state
isW = {K, {Dk, Fk,Θk}Kk=1}with the posterior probabil-
ity defined in the Eqn.7. It removes all the edges between
images of different categories, and turns off the remaining
edges according to their edge probabilities. Then, we get a
new set of CP s.

(3) Graph flipping. It selects a connect component V0 ∈
CP with probability q(V0|CP ) (in this paper, q(V0|CP ) =

1
|CP | is uniform) and suppose we get V0 ⊂ Dk), and
then flips, accepted with a probability (Eqn.23), all the im-
ages in V0 to another image category k

′
with probability

q(k
′ |V0, πK) (k

′ ∈ [1,K+1], in this paper q(k
′ |V0, πK) =

1
1+K is uniform). If it is accepted, we get a new solution
state W

′
, and we know,

• If k
′

= K + 1, it generates a new category (cluster
birth) Dk′ = V0 and we pursue the features Fk′ and
learn the model Pk′ . Then, we update the model for
Dk = Dk \ V0 (In the case when V0 = Dk, we give
death to the cluster k actually at the same time).

• If k
′ ∈ [1,K] and k

′ 6= k, it does regrouping and
model diffusion by updating Dk = Dk \ V0 (cluster
death happens when V0 = Dk) and Dk′ = Dk′ ∪ V0

and pursuing the feature sets Fk and Fk′ and the mod-
els Pk and Pk′ .

• If k
′

= k, we have W
′

= W .

The acceptance probability, denoted by α(W →W
′
), is,

α(W →W
′
) = min(1,

Q(W
′ →W )

Q(W →W ′)

p(W
′ |D)

p(W |D)
) (23)



where Q(W
′ → W ) and Q(W → W

′
) are proposal prob-

abilities for the state jumping and their ratio Q(W
′
→W )

Q(W→W ′ ) can
be derived as in [1].

Algorithm.1 summarizes our unsupervised image cate-
gorization method.

4. Performance evaluation
For the input image setD, suppose there are L categories

and the corresponding ground truth category label set is,

C = {c1, c2, · · · , cn} (24)

where ci ∈ {1, · · · , L}, and both L and C are unknown to
the categorization algorithm.

Given the categorization result W =
(K, {Dk, Fk,Θk}Kk=1), we have the inferred category
label set,

Ĉ = {ĉ1, ĉ2, · · · , ĉn} (25)

where ĉi ∈ [1,K] and we know that it is possible that K ≤
L or K > L

For each Dk ⊂ D with the inferred cluster label k, we
also know the corresponding groundtruth label set Ck,

Ck = {c(k)
1 , · · · , c(k)

nk
} ⊂ C (26)

As noted in [19], we adopt the purity (larger value means
better performance) and the conditional entropy (smaller
value means better performance) as the evaluation criteria,
which make more sense for evaluating performance of un-
supervised image categorization.

The purity is defined as,

Purity(Ĉ|C) =
∑
k∈Ĉ

p(k) max
l∈C

p(l|k) (27)

where p(k) = |Dk|
n and p(l|k) is estimated from Ck.

The conditional entropy is defined as,

H(Ĉ|C) =
∑
k∈Ĉ

p(k)
∑
l∈C

p(l|k) log
1

p(l|k)
(28)

5. Experiments
We test two datasets, LHI 8 scene categories (4 outdoor

scene categories, 1 indoor scene category and 3 object cat-
egories) [24] and MIT 8 scene categories [11].

Feature pool F . In our current experiments, we use four
types of features: the “Gist” feature [11], the SIFT feature
[10], the PACT feature [22] and the RGB color features. For
the “Gist” feature, we compute it on the size of 256 × 256
pixels. The other features are computed using the original
image size. For the SIFT features, we use the bag-of-words

k-mean (k=8) pLSA OursGist SIFT PACT Color SIFT
Purity 0.393 0.471 0.408 0.375 0.374 0.645

Entropy 1.619 1.412 1.502 1.601 1.592 1.052

Table 1. Results on the LHI 8 scene categories.

k-mean (k=8) pLSA OursGist SIFT PACT Color SIFT
Purity 0.509 0.410 0.458 0.267 0.352 0.635

Entropy 1.285 1.510 1.463 2.401 1.652 1.114

Table 2. Results on the MIT 8 scene categories.

configuration with 100 visual words. For the PACT feature,
we use a 2-layer pyramid with 4 cells in the second layer.
For the color feature, we use 39 bins histogram with 13 bins
for each of the red, green and blue channels. Note that more
features can be added as illustrated in the top panel of Fig.1,
such as the active basis model [23] and the constellation
model [4], and we will explore them in our future work.

Experimental setting. In the experiments, we set β =
6 in the prior probability (Eqn.14) and the temperature T
in the edge probability (Eqn.21) starts from 60 and goes
down in a logarithmic manner to 0.1 in 1000 sweeps. In
addition, for each method we test on the two datasets to
compare peformance, we run 10 times and use the average
performance to do comparisons. For comparisons, we use
the k-mean algorithm with correct cluster number (say, 8
in both datasets) specified as the baseline method. We also
compare with the pLSA method (with the SIFT features and
correct category number specified).

Experiment 1: LHI 8 scene categories1. As shown in
Fig.2, the top panel shows the feature selection results for
each category which is very perceptually intuitive, and the
bottom panel shows the energy curve for the cluster sam-
pling in which we pick up three points to show the cluster
birth, cluster death and cluster switching and diffusion, re-
spectively. The calculated purities and conditional entropies
are in Table.1. The average cluster number we obtain in 10
times is 11.2.

Experiment 2: MIT 8 scene image categories2. The re-
sult is shown in Table.2. The average cluster number from
the 10 times is 10.5 clusters.

Discussion on cluster number selection. In our experi-
ments, the β in the prior probability (Eqn.14) constrain the
cluster number, and as illustrated in Fig.3, when β is small
(the bottom panel) we can divide a category (see the top
panel) into a set of sub-clusters to fit the likelihood better.

1http://www.imageparsing.com/ImageCategory8.html
2http://people.csail.mit.edu/torralba/code/spatialenvelope/



 

Results of feature selection through information projection in the heterogeneous feature space (best viewed in color)

Results of cluster number selection through inspecting the energy curve of cluster sampling (best viewed in color)
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Figure 2. Demonstrations and results of feature selection and cluster number selection of our method on the LHI 8 scene categories. For
the feature selection, we first choose kl = argmaxk p(l|Ck) (see Ck in Eqn.26) to connect the obtained cluster label and the ground truth
category label, and then plot the features Fkl . The horizontal coordinate in the cluster sub-figures is the assigned cluster label k and the bins
with different colors are the ground truth category label l. Since we do not specify the reference model q(I) explicitly in Eqn.20 beyond
the marginal distributions on those selected feature dimensions, the energy value can take on negative values. (Best viewed in color)

Here, the cluster number K indeed depends on parameter β
which control the level of details. What we meant by ”auto-
matically” computing the numberK in this paper is that our
cluster sampling algorithm can decide the optimal K by its
MCMC dynamics in the process of optimizing the Bayesian
posterior probability with arbitrary initialization of K.

6. Conclusion

This paper presents a method for unsupervised scene cat-
egorization. We address the automatic feature selection and
the automatic cluster number selection simultaneously by
posing unsupervised scene categorization as graph partition



   

 

 

   

Figure 3. Examples of cluster number selection guided by the
prior: β = 6 for the top panel and β = 2 for the bottom panel.
Left: the forest is divided into two subsets with different scales.
Right: the highway is divided into two subsets with different road
environments.

problem (in which each image is treated as a vertex) un-
der the Bayesian framework. In implementation, we use
information projection to pursue features which are both in-
formative and discriminative for each category and adopt
the Swendsen-Wang Cut algorithm for effective inference
with cluster number selected automatically for globally op-
timal clustering. In experiments, we test two datasets, LHI
8 scene categories and MIT 8 scene categories, and obtain
state-of-the-art results.
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using a hybrid generative/discriminative approach. PAMI,
30(4):712–727, 2008.

[4] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
volume 2, pages 264–271, 2003.

[5] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky.
An hdp-hmm for systems with state persistence. In ICML,
pages 312–319, 2008.

[6] K. Grauman and T. Darrell. The pyramid match kernel:
discriminative classification with sets of image features. In
ICCV, volume 2, pages 1458–1465, 2005.

[7] T. Hofmann. Unsupervised learning by probabilistic latent
semantic analysis. Mach. Learn., 42(1-2):177–196, 2001.

[8] F.-F. Li and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In CVPR, pages 524–531,
2005.

[9] D. Liu and T. Chen. Unsupervised image categorization and
object localization using topic models and correspondences
between images. In ICCV, pages 1–7, 2007.

[10] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[11] A. Oliva and A. Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope. IJCV,
42(3):145–175, 2001.

[12] S. D. Pietra, V. J. D. Pietra, and J. D. Lafferty. Inducing
features of random fields. PAMI, 19(4):380–393, 1997.

[13] Z. Si, H. Gong, Y. N. Wu, and S.-C. Zhu. Learning mixed
image templates for object recognition. In CVPR, 2009.

[14] I. Simon, N. Snavely, and S. M. Seitz. Scene summarization
for online image collections. In ICCV, pages 1–8, 2007.

[15] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T.
Freeman. Discovering object categories in image collections.
In ICCV, 2005.

[16] E. B. Sudderth, A. B. Torralba, W. T. Freeman, and A. S.
Willsky. Describing visual scenes using transformed objects
and parts. IJCV, 77(1-3):291–330, 2008.

[17] S. Todorovic and N. Ahuja. Unsupervised category mod-
eling, recognition, and segmentation in images. PAMI,
30(12):2158–2174, 2008.

[18] Z. Tu, X. Chen, A. L. Yuille, and S. C. Zhu. Image parsing:
Unifying segmentation, detection, and recognition. IJCV,
63(2):113–140, 2005.

[19] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Bun-
tine. Unsupervised object discovery: A comparison. IJCV,
2009.

[20] S. Waydo and C. Koch. Unsupervised learning of individuals
and categories from images. Neural Comput., 20(5):1165–
1178, 2008.

[21] M. Weber, M. Welling, and P. Perona. Towards automatic
discovery of object categories. CVPR, 2:2101, 2000.

[22] J. Wu and J. M. Rehg. Where am i: Place instance and cate-
gory recognition using spatial pact. In CVPR, 2008.

[23] Y. Wu, Z. Si, H. Gong, and S.-C. Zhu. Learning active ba-
sis model for object detection and recognition. IJCV, Epub
ahead, 2009.

[24] B. Yao, X. Yang, and S. C. Zhu. Introduction to a large scale
general purpose ground truth dataset: methodology, annota-
tion tool, and benchmarks. In EMMCVPR, 2007.


