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Abstract

This paper proposes a sparse image representation us-
ing deformable templates of simple geometric structures
that are commonly observed in images of natural scenes.
These deformable templates include active curve templates
and active corner templates. An active curve template is a
composition of Gabor wavelet elements placed with equal
spacing on a straight line segment or a circular arc segment
of constant curvature, where each Gabor wavelet element
is allowed to locally shift its location and orientation, so
that the original line and arc segment of the active curve
template can be deformed to fit the observed image. An
active corner or angle template is a composition of two ac-
tive curve templates that share a common end point, and
the active curve templates are allowed to vary their overall
lengths and curvatures, so that the original corner template
can deform to match the observed image. This paper then
proposes a hierarchical computational architecture of sum-
max maps that pursues a sparse representation of an image
by selecting a small number of active curve and corner tem-
plates from a dictionary of all such templates. Experiments
show that the proposed method is capable of finding sparse
representations of natural images. It is also shown that ob-
ject templates can be learned by selecting and composing
active curve and corner templates.

1. Introduction
Finding sparse representations of natural images is one

of the most fundamental problems in both computer and bi-
ological vision. A sparse representation gives a meaningful
interpretation of the image. By varying the attributes of the
sparse coding elements, we can generalize from one image
to another, or construct and learn statistical models that cap-
ture the regularities and variabilities of images from various
object or scene categories.

This paper proposes a sparse representation of images
using active curve templates and active corner templates. In
an active curve template, the prototype template is a com-
position or grouping of a small number of Gabor wavelet el-
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Figure 1. (Better viewed in color) An image is represented by a
small number of active corner templates and active curve tem-
plates. Top Row, Left: Original image. Middle: Selected active
corner templates, where a corner is illustrated by a red arm and
a green arm. For clarity of illustration, the red and green arms
do not cover the whole extents of the two curves of a corner tem-
plate. Right: Sketch the image by deforming the active curve
templates. Bottom Three Rows: Compositional relation between
active curve templates and active corner templates.

ements placed with equal spacing on a straight line segment
or a circular arc segment of constant curvature. So the pro-
totype template is parametrized and very simple. However,
these wavelet elements are allowed to locally shift their lo-
cations and orientations so that the prototype curve template
can be deformed to different instances in order to fit ob-
served images. Thus an active curve template is also flexible
enough to account for deviations from the simple prototype.
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Two active curve templates that share a common end-
point can be further composed into an active corner or angle
template, where the two constituent active curve templates
are allowed to vary their overall geometric attributes such
as lengths and curvatures, so that a prototype corner tem-
plate corresponds to many different variants. See Fig.1 for
an illustration.

This paper then proposes a layered computational archi-
tecture of sum-max maps that pursues a sparse represen-
tation of an image by selecting a small number of active
corner templates and active curve templates from a dictio-
nary of all such templates. The computation has a bottom-
up pass and a top-down pass. The bottom-up pass tests all
the possible templates exhaustively but efficiently by paral-
lel recursive computations that alternate between local sum
pooling and local max pooling. The sum pooling scores the
active curve and corner templates by combining the scores
of their constituent components, while the max pooling op-
timizes the variations of the constituent components to in-
fer deformations. After the bottom-up pass, the top-down
pass selects the active corner templates and active curve
templates, and deforms them into their optimal variants to
represent the observed image, by retrieving the argmax ele-
ments in the local max pooling.

2. Literature Review
The proposed representation can be considered a con-

crete implementation of the idea of primal sketch [12, 7].
It is inspired by two theories on the primary visual cortex
or V1. One is the sparse coding theory of Olshausen and
Field [13] for the simple cells in V1. The other is the local
max pooling proposed by Riesenhuber and Poggio [14] as a
function of the complex cells in V1.

In the sparse coding theory of Olshausen and Field, an
image is represented by a linear superposition of a small
number of wavelet elements selected from a large dictio-
nary. The active curve templates and corner templates in
our work are based on the representation of Olshausen and
Field, where each template is a composition or grouping
of a small number of Gabor wavelet elements. Because of
such grouping, the representation based on such templates
can be considered a further sparse coding of the selected
Gabor wavelets in the Olshausen-Field representation.

The proposed architecture of sum-max maps is a varia-
tion of the cortex-like structure of Riesenhuber and Poggio
[14]. The difference between the proposed sum-max archi-
tecture and the structure of Riesenhuber and Poggio is that
we test and select explicit geometric templates of curves and
corners, and there is a top-down pass that deforms the tem-
plates by retrieving the argmax elements in the local max
pooling, in order to represent and sketch the observed im-
age. This procedure is also similar to the inference algo-
rithm in hierarchical object models such as [4].

The proposed representation follows the general princi-
ple of hierarchical compositionality and re-usable parts [1].
In terms of detecting large structures by grouping smaller
ones, the proposed sum-max architecture tests all possi-
ble templates exhaustively instead of resorting to greedy
schemes that make early decisions which may not be cor-
rect. Specifically, no edge detection is performed before the
active curve and corner templates are detected. Decisions
on edges are made after the templates are detected and de-
formed to match the observed data.

The proposed representation is different from feature
detectors such as edge detectors [2, 16], corner detectors
[8, 15], or invariant features such as SIFT [10]. The active
curve and corner templates used in our representation are
sparser and usually cover larger ranges than feature detec-
tors.

The method of meaningful alignment [3] also seeks to
find geometric structures in images. The line segments
tested by meaningful alignment are not deformable, and the
computation there does not employ recursive schemes such
as those in sum-max maps.

3. Active Curve and Corner Templates

Following the active basis model [18], an image I is rep-
resented by

I =

N∑
i=1

ciBxi+∆xi,θi+∆θi + U, (1)

where each B is a Gabor wavelet element with position x
and orientation θ. Each Gabor wavelet element has a pair of
sine and cosine components, so the coefficient ci also has a
pair of components correspondingly. U is the unexplained
residual image. In this paper, we fix the scale of Gabor ele-
ments, so this attribute is not shown in the subscript. We al-
low each Gabor wavelet element i to shift from its nominal
position xi and orientation θi by ∆xi and ∆θi respectively.
The nominal positions and orientations are either designed
as in this paper or learned as in the active basis model, and
the perturbations ∆xi and ∆θi deform the template to fit
the image I. These perturbations can be inferred by the lo-
cal max pooling of the Gabor filter responses.

As is shown in Fig.2, an active curve template A is a
composition or grouping of Gabor elements placed with
equal spacing on a straight line segment or a circular arc
segment of a constant curvature. By design, the Gabor ele-
ments are placed so that the distance between two consec-
utive elements is 0.9 times their lengths, so these elements
are slightly overlapping. As an approximation, we still treat
them as being orthogonal to each other, so that the coeffi-
cients ci are simply the projections of the image I on the
Gabor wavelet elements. As Gabor wavelets resemble the
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Figure 2. Illustration of active curve templates. Left: an example
of active curve templateAx,θ,ρ,2. Right: the active curve template
and one of its possible variant. Blue arrows indicate the location
deformation range of the Gabor elements.

edge and ridge patches, they are symbolically illustrated by
bars.

We use the center position x, orientation θ, curvature ρ
and length l to index each active curve template, which is a
composition of Gabor wavelet elements:

Ax,θ,ρ,l = (Bx0,θ0 , Bx+
i ,θ

+
i
, Bx−i ,θ

−
i
, i = 1, . . . , l − 1),

(2)
where x0 = x, θ0 = θ, x±i refer to the position of the i-th
Gabor element, and ± denotes the two sides relative to the
arc center.

We quantize the orientations of Gabor wavelets into K
values equally spaced by α = π/K. The curvature is
then quantized such that the orientation difference between
neighboring elements is a multiple of α. We use this integer
to index the curvature, thus an active curve template of cur-
vature ρ satisfies: θ+

i = θ+
i−1 +ρ ·α, and θ−i = θ−i−1−ρ ·α.

The length is quantized by the length of Gabor wavelets. A
curve of length l has 2l + 1 Gabor wavelet elements.

The active curve template reduces to a line segment if
ρ = 0, and it further reduces to a single Gabor element
if l = 0. We use arcs as prototype shape because they
are more general than straight line segments, yet simpler
to parametrize than more general curves such as splines.

An active corner or angle template is a composition of
two active curve templates. As is shown in Fig.3, an active
corner template C is defined in terms of two active curve
templates that share a common end point x′:

C = {Ax′,θ′1,ρ1,l1
, Ax′,θ′2,ρ2,l2

}, (3)

where we use superscript ′ to indicate that the curve is in-
dexed by its end point instead of its center. We require that
the curvature ρ should be below a threshold b1, the length
l1 and l2 should be larger than a threshold b2, and the an-
gle δ = θ′2 − θ′1 should be confined to a proper range, e.g.
δ ∈ [π/2 − b3, π/2 + b3], where b1, b2 and b3 are parame-
ters. Through these constraints, only long curves with low
curvatures can be composed into corners.

δ

θ�1
x�

θ�2
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Figure 3. (a) A schematic plot of an active corner at position x′

and two arm orientations θ′1, θ′2. (b) By definition, an active corner
corresponds to many possible instances of corners. For example,
we can choose any pair of red and green arms in (b) to compose
them into an instance of the active corner in (a).

4. Image Model and Template Matching Score

Following the active basis model, we assume that the
probability distribution of the image, p(I), is specified by
tilting a background distribution q(I), which may be con-
sidered as the distribution of natural images. Theoretical
underpinnings of this model can be found in [18].

Given the N Gabor elements of a template, the log like-
lihood ratio of foreground image versus the background im-
age is:

log
p(I)

q(I)
=

N∑
i=1

[λh(ri)− logZ(λ)], (4)

where h(ri) is a monotone increasing transformation of Ga-
bor element response ri = |ci|2, and h(ri) saturates for
large ri. λ is a parameter, and Z(λ) is the normalizing con-
stant for the corresponding exponential distribution. This
is essentially a linear scoring scheme. If ri is small, it will
lead to a negative score. We want to detect those curve tem-
plates whose constituent elements contribute large positive
scores. Different values of λ correspond to different expec-
tations E[h(ri)] on foreground, and E[h(ri)] is a monotone
increasing function of λ. We treat all the selected Gabor el-
ements with equal importance, so we use the same λ for all
ri. This λ is kept as a parameter in our model, and the cor-
responding Z(λ) is computed by pooling Gabor responses
from natural images.

With such a model, we can simply define the template
matching score of an active curve template as the log likeli-
hood ratio score:

λ

{
h(r0) +

l−1∑
i=1

[h(r+
i ) + h(r−i )]

}
− (2l + 1) logZ. (5)

The template matching score of a corner template is defined
by summing the scores of the two constituent curve tem-
plates.



5. Scoring All Templates by Sum-Max Maps
According to the definition of the active curve templates

in Eqn.(2), an active curve template of length l can be com-
posed by an active curve of length l − 1, plus two Ga-
bor elements (i.e., active curves of length 0) at two ends:
Ax,θ,ρ,l = {Ax,θ,ρ,l−1, Ax+

l ,θ+l·α,ρ,0
, Ax−l ,θ−l·α,ρ,0

}.
This immediately implies a recursive algorithm to com-

pute the template matching score Eqn.(5) of long active
curve templates by first computing the scores of shorter
ones. Scores of length zero active curves are obtained by lo-
cal maximum pooling of the Gabor filter responses, because
the Gabor elements are allowed to shift their locations and
orientations. The computation can be highly parallel, since
scores of active curves at different positions, orientations
and curvatures can be computed independently. Based on
these two features, the following sum-max maps are pro-
posed to compute scores of all active curve and corner tem-
plates.

1. S1 maps. S1 maps store the responses of Gabor filters
at all positions and orientations. It is computed by convolv-
ing the Gabor filter with the image, followed by local nor-
malization and saturation transformation on the responses.
The local normalization step divides the response of a Ga-
bor wavelet element by the local average of responses of all
the Gabor elements within a window centered at this ele-
ment.

2. M1 maps. To account for the deformations of active
curve templates, each element on M1 maps is computed as
the maximum of S1 map values within its local deformation
range: M1(x, θ) = max∆x,∆θ S1(x+∆x, θ+∆θ), where
∆x = d · (cos θ, sin θ), d ∈ [−b4, b4] and ∆θ ∈ [−b5, b5].

3. S2 maps. The S2 maps store the scores of all the
active curve templates. According to curve length, S2 maps
can be further divided into sub-layers. Scores at different
sub-layers are computed as follows:

S2(x, θ, ρ, 0) = λM1(x, θ)− logZ, (6)
S2(x, θ, ρ, l) = S2(x, θ, ρ, l − 1)

+ S2(x+
i−1, θ + l · α, ρ, 0)

+ S2(x−i−1, θ − l · α, ρ, 0), (7)

where in Eqn. (7), we assume l > 0.
The template matching score of active corner templates

can be expressed as S2(x′, θ′1, ρ1, l1) + S2(x′, θ′2, ρ2, l2).
According to Eqn.(3), for a given point x′ and a given

supporting curve orientation θ′1, there are 2b1 · (|l|− b2) · |δ|
different corners. If we assume that there can be at most one
corner instance among these, we shall choose it by solving
the following problem:

max : S2(x′, θ′1, ρ1, l1) + S2(x′, θ′2, ρ2, l2),

subject to the constraints on the ranges of ρ and l for each
curve, and δ spanned by the two curves.

Ax−2
′
,(θ−2ρα)′,ρ,l

Ax+
2

′
,(θ+2ρα)′,ρ,l

Ax,θ,ρ,l

A

B

C

D(a) (b)
Figure 4. (a) Three indices of an active corner, by center and two
ends. (b) When changing center point index to end point index,
one index will correspond to two curves (such as A,B or C,D). We
solve this overriding issue by extending the orientation index from
[0,K − 1] to [0, 2K − 1], and setting the orientation of one curve
to θ +K .

Since there is no constraint on the relation between
(ρ1, l1) and (ρ2, l2), this problem can be solved by first
solving smaller problems. The corresponding computation
steps can be summarized as sequentially computing the fol-
lowing maps:

4. M2 maps. M2(x′, θ′) = maxρ,l S2(x′, θ′, ρ, l),where
−b1 < ρ < b1 and l > b2, .

5. S3 maps. S3(x′, θ′1, θ
′
2) = M2(x′, θ′1) +M2(x′, θ′2),

where S3 maps are scores for all the possible active corner
templates. In computing S3 maps, we should only compute
over (θ′1, θ

′
2) pairs so that the spanned angle δ is within the

defined range.
In the local maximization steps 2 and 4, the optimal

deformations that achieve the maxima can be obtained by
arg max operation.

Algorithm 1: Matching Pursuit of Active Curve Tem-
plates

Input: S1 maps after inhibition, threshold T .
Output: Selected active curve templates

A = {A1, · · · , AN}
1 repeat
2 Compute M1 and S2 maps.;
3 s∗ ← maxS2(x, θ, ρ, l);
4 A∗ ← arg maxS2(x, θ, ρ, l);
5 Decompose A∗ into a set of Gabor elements B;
6 Backtrack the deformed B∗ of B ;
7 foreach B ∈ B∗ do
8 Set correlated entries on S1 to 0;

9 A← A ∪ {A∗};
10 until s∗ < T ;

The sum-max maps score all the active curve and corner
templates without early decisions such as edge detection.
The max operations make the scores invariant to shape de-
formations.
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Figure 5. The sum-max data structure, using the image in Fig.1 as an example. Maps for different orientations are laid out horizontally,
and maps for different layers are laid out vertically. Sub-layers in the S2 maps correspond to active curves of different lengths, and depth
direction in the S2 maps corresponds to curves of different curvatures. Depth direction in the S3 maps corresponds to orientation of the
second arm. Maps on the right are typical maps from each sum layer.

6. Selection of Corner and Curve Templates

As can be seen from Fig.5, most responses on S3 maps
are very low, because corners are rare events and highly lo-
cation sensitive. So, after the M3 maps are computed, we
can simply apply a threshold and use non-maximum sup-
pression to select active corner templates for image repre-
sentation. Specific curves and their Gabor elements that be-
long to these selected corners can then be obtained by a top-
down process that retrieves the optimal deformations from
the arg max maps of the local max operations.

To select active curve templates that are not overlapping
with the selected active corner templates, we need to inhibit
the scores of those curves that overlap with the selected cor-
ners. To do this, we trace back the active curve templates
that belong to the selected active corner templates, and trace
back the Gabor elements of these curves. For each Gabor el-
ement of the selected and deformed corner, we let it inhibit
its nearby Gabor elements whose correlations with this Ga-
bor element exceeds a certain threshold, by setting the filter
responses of those Gabor elements to zero. In practice, the
correlations can be computed before the algorithm starts, so
that inhibition can be done very efficiently.

After inhibition, we can select salient active curve tem-
plates by sequentially selecting the current best curve with
the highest score, and let the selected curve inhibit the over-
lapping ones. This is essentially a matching pursuit [11]
process, where in each step, we select a group of Gabor
elements packed into an active curve template. The pur-
suit algorithm stops once the selected score is lower than a
threshold T . The process is summarized in Algorithm 1.

7. Experiments

7.1. Implementation and Parameters

The recursive and parallel algorithm is mainly composed
of sum and max operations, which can be computed very
efficiently. However, if we keep all the maps and arg max
maps, the memory consumption can be excessive. In prac-
tice, since only a small number of Gabor elements will be
backtracked in top-down process, we choose not to save
the arg max maps and instead re-do the local maximum
computing for selected corners or curves to retrieve their
arg max deformations. For an image of size 341× 512 and
parameters in Table.1, the algorithm would consume about



Parameter Notation Value
Gabor Filter Size s 15× 15 pixel

Number of Orientations K 25
Position Change b4 ±1 pixel

Orientation Change b5 ±1 orientation
Curve Curvature Range ρ ρ ∈ [−4, 4]

Curve Length Range l l ∈ [0, 3]
Corner Arm curvature Threshold b1 2
Corner Arm Length Threshold b2 0

Corner Angle Range b3 π/6, δ ∈ [π/3, 2π/3]
Weight λ 2.5

Arc Score Threshold T 3{λ · E[h(r);λ]− logZ}
Corner Score Threshold b6 2.3T

Table 1. Parameters for all the experiments on single images
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Figure 6. AUC curves of boosted classifiers on horse images and
leaves images, using active Gabor features, active curve templates,
and both active corner and curve templates.

1.2 GB of memory. Although we listed 12 parameters in the
table, most of them are not essential, and only for properly
discreitizing the space of possible curves and corners. Only
λ, T , and b6 are of importance. We calibrate the last three
parameters according to the image in Fig.1, and fix these
parameters for all the experiments on single images below
and those in the project page.

7.2. Sketch Single Images

Fig.5 shows the intermediate results for the example im-
age in Fig.1, where each row shows maps from different
layers, and each column corresponds to curves or corners in
different orientations. As the size of active curve and corner
templates become lager, the high scores on corresponding
maps become sparser and more clustered. Maps at S3 level
become very sparse, and high scores only appear around the
true corner points of the image. As evidences are accumu-
lated over larger areas, it becomes safer to make decisions at
higher levels. Since the selected templates are much larger
than a single Gabor wavelet, the resulting representation is
much sparser than wavelet representation.

More results are shown in Fig.9 and in the project page.
For each image,we also show the result from edge link [9]
as a reference. We would like to stress that our representa-
tion is much sparser than the representation based on edge
points.

Figure 7. Learned object templates and their deformations on train-
ing images. The learned template for each category is shown in
the first column. The rest of the templates are deformed versions
for images on their left. Grayscale of the strokes in the deformed
templates indicates the strengths of Gabor responses, where darker
means stronger.

7.3. Learn from Multiple Images

We can also select and compose curve templates into
an object template by learning from multiple images, ei-
ther generatively or discriminatively. To accommodate ge-
ometric variations of active curve templates across mul-
tiple object images, we extend the S2 and the S3 maps
as below, and use them as features to model object cate-
gories: M2+(x, θ, ρ, l) = max∆x,∆θ,∆ρ S2(x + ∆x, θ +
∆θ, ρ + ∆ρ, l), and M3+(x′, θ′1, θ

′
2) = max∆x S3(x′ +

∆x, θ′1, θ
′
2).

To illustrate the use of the above features for object mod-
eling, we collect a dataset and compare the testing errors of
adaBoost classifiers [6, 17] based on different sets of fea-
tures. We collected 280 horse images, 186 leaf images as
positive examples, and 559 images as negative examples.
The leaf images are from Vision lab of Caltech. Using 20%
of those images as training examples, we use adaBoost to
build three discriminative models, by replacing the Haar
features by the feature pools of M1 maps, M2+ maps, and
both M2+ and M3+ maps. We compute the AUC scores
of the classification results on the rest 80% of the images.
For each category, we repeat the above procedure five times
by randomly splitting the data at each time, and show the
averaged AUC in Fig.6. From the results, we can see that
to achieve the same classification performance (AUC), the
number of active corners or curves used is always less than
that of active Gabor wavelets.

To show the potential of learning deformable object tem-
plates, we use the ETHZ object dataset [5], and run the
shared matching pursuit algorithm in [18] over the M2+

maps to select curve templates which are composed into a
deformable object template. Templates learned using the
first half of images in each category are shown in Fig.7.

We then perform the detection task on 5 random splits
of the dataset as in [5]. For each split, we learn the tem-
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Figure 8. Detection results on the ETHZ dataset. We use the same evaluation procedure and criterion as [5]. Blue, green and purple curves
are from [5]. Note that only one repetition is used in producing the green curve.

plates using training data, and use `2 regularized logistic re-
gression to adjust the weight of each Gabor element in the
learned template. Negative examples are randomly cropped
from backgrounds of training images. We then match our
template by sliding windows over multiple scales of test-
ing images, and report detection windows by non-maximum
suppression.

We follow the evaluation criterion in [5] and show the
detection performance in Fig.8. From the results, we can
see that models using our representation can achieve com-
parable performance as [5].

8. Discussion

We propose a sparse image representation based on de-
formable templates of simple geometric structures such as
curves and corners. We also propose a computational archi-
tecture that exhaustively tests all the possible deformable
templates in the bottom-up pass and then retrieves the de-
formed templates in the top-down pass. Such templates can
be pursued from single images. They can also be composed
into object templates by learning from multiple images. The
template matching scores of curve and corner templates can
also be used as features for discriminative learning.

Besides corners and angles, it is possible to compose the
curve templates into templates of more complex geomet-
ric shapes such as triangles, rectangles and ellipsoids. But
these are less frequent than corners or angles, and it takes
more computations to test such templates.

In our current scheme of template matching, we only in-
clude the responses of Gabor wavelet elements on the line or
arc segments. We should also pool the responses of those el-
ements that are away from line or arc segments, in the form
of local averages or local max, which are weighted nega-
tively in order to model the flatness of the regions around
the line or arc segments.

Reproducibility
All the results reported in this paper can be reproduced by code

and data included in the project page: http://www.stat.
ucla.edu/˜wzhu/IRAC
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Figure 9. More results on single image representation. (a) Input image. (b) Selected corners. (c) Selected corners with supporting curves.
(d) Deformed curves. (e) Output from edgelink code.


